
The definitive guide to perfino
All you need to know as a performance professional

© 2025 ej-technologies GmbH. All rights reserved.

Index

Introduction .. 4

Architecture .. 5

Installing .. 6

Monitoring JVMs ... 12

Basic concepts .. 17

UI .. 21

Transactions .. 28

Policies ... 36

Cross-VM monitoring ... 40

Probes .. 44

Method Sampling .. 48

Telemetries ... 54

Thresholds .. 61

Triggers ... 64

Alerts ... 69

End user experience monitoring .. 72

Memory ... 76

Historical comparisons .. 83

MBean browser ... 86

REST export API ... 90

Cross-over to profiling ... 96

A Configuration ... 106
A.1 Server configuration ... 106
A.2 Server administration ... 109
A.3 Import/Export .. 114
A.4 Unattended installations ... 116
A.5 Automatic agent update .. 118
A.6 Overload protection ... 119

B Advanced topics .. 120
B.1 Annotation transactions .. 120

B.2 POJO transactions ... 123
B.3 DevOps transactions ... 126
B.4 Customizing net I/O methods .. 128

Introduction To Perfino
What is perfino?

perfino is a monitoring tool for the JVM. It is intended for in-production use and adds
extremely lowoverhead to monitored applications. Its mode of operation is characterized
as APM (1), short for "application performance management". Rather than collecting
performance data at a low level and with a broad scope, perfino presents selected
operations at a high semantic level, called "business transactions". In addition, scalar data
is monitored from a variety of sources. Based on that data, threshold violations can result
in alerts that help you safeguard the quality of service for your applications.

perfino is intended to run with your application at all times. This enables it to focus on
historic data, showing you how performance characteristics evolve over long periods of
time. Data is automatically made less granular as time goes by, so you can look back
years into the past with only a slow rate of storage space consumption.

perfino is designed to monitor multiple VMs and trace the interactions between them.
Whether you have a number of fixed VM installations or a cloud deployment with hundreds
of VMs, perfino can monitor and organize them at the same time.

The perfino UI is a webinterface that can be used by multiple users to analyze the collected
data at the same time. A system of access levels allows you to partition a single server
for multiple groups.

How do I continue?

This documentation is intended to be read in sequence, with later help topics building on
the content of previous ones.

First, a broad overview over the architecture [p. 5] will help you to understand the
components of perfino.

The help topics on installing perfino [p. 6] and monitoring your VMs [p. 12] will get you
up and running.

Following that, the discussion of basic concepts [p. 17] and the overview of the UI [p. 21]
take you to a level of understanding where you can explore perfino on your own.

Subsequent chapters build your expertise with respect to different functionality in perfino.
The "Configuration" and "Advanced topics" sections are optional readings that should be
consulted if you need certain features.

(1) https://en.wikipedia.org/wiki/Application_Performance_Management

4

https://en.wikipedia.org/wiki/Application_Performance_Management

Perfino Architecture

Database Collector UI server

optionally external optionally external

Users

perfino
agent

Monitored
JVM

perfino
agent

Monitored
JVM

perfino
agent

Monitored
JVM

perfino server

perfino consists of two main parts: the server and the agent. The agent is loaded in the
monitored VM and records data. The agent connects to a perfino server. The server
periodically queries all connected agents and processes their data. Historical information
is written to a database. Users log in with their web browser to the perfino server to analyze
the recorded data.

Internally, the perfino server consists of three components:

• The collector accepts TCP connections from perfino agents in monitored VMs. These
connections can be encrypted and authenticated, so they are viable for wide area
networks. The collector also consolidates data in the database, fires triggers and
generates alerts.

• The embeddedH2database stores all persistent data. There are two separate databases
in that directory, one called "perfino" that contains recorded data and one called "config"
that only contains configuration data. If you delete the "perfino" database while the
perfino server is shut down, all configuration options are preserved.

• The UI server accepts HTTPS connections where users can log in, view and analyze the
collected data and configure the server.

5

Installing Perfino
Installing perfino is done in two steps. First, you run the installer. After perfino is running,
you complete the post-installation setup in the browser.

Installer

Installers are available for all major platforms. By default, the installer shows a GUI, but if
you start the installer with the argument -c, it shows a console interface. This is required
if you install perfino on a remote server with ssh.

For cloud-based deployments you may want to install and configure the perfino server
without any user interaction. See the help topic on unattended installations [p. 116] for how
to do that.

The installer asks you about all configuration options that are not configurable through
the browser in the perfino UI. The most common setting that has to be adjusted is the
HTTPS/HTTP port for the web server.

Beside the installation directory, a perfino installation needs a data directory where all
variable data is stored. This includes the database, log files and security certificates. By
default, this directory is set to the program data directory on Windows (typically C:\
ProgramData) and /var/opt/perfino on Unix and Mac OS X. In a scenario where you
install multiple instances of perfino on the same machine, each perfino installation has
to have its own data directory.

6

For evaluation purposes, this is all the installer needs to know. If you are deploying to a
production environment, you might want to adjust other options.

Changing the initial configuration later on

The installer saves the configuration to the file perfino.properties in the installation
directory. To change the configuration at a later time, you can edit that file or run the
configure[.exe] tool in the installation directory. The configure tool requests elevated
privileges on Windows and Mac OS X, so that it can overwrite the configuration file and
restart the server.

7

The GUI of the configure tool presents the configuration options in the same way as the
installer if you choose to configure advanced settings. Just like the installer, you can run
the configure tool in console mode by calling it with the -c argument:

configure -c

The various options are briefly documented in perfino.properties with the same explanations
shown in the GUI when you hover the mouse over the question mark icons. For more
information, see the help on server configuration [p. 106].

Post-installation setup

After the installer has finished, the perfino server is running and you can open your browser
at http[s]://localhost:[port] to connect to the perfino UI. Note that if you have
selected HTTPS for the web server, there is no port that serves HTTP requests.

Before you can use perfino, you have to complete the installation wizard in the perfino UI.
The first step of the wizard asks you about the license key.

In the freedevelopmentmode, you can monitor one VM without time restrictions. Historical
data is only shown for the last 24 hours. This mode is intended for testing the perfino API
during development.

With an evaluation license, an unlimited number of VMs can be monitored for a limited
period of time. If you need more time to evaluate, contact sales@ej-technologies.com in
order to get a new evaluation key. After the expiration of the evaluation key, the perfino
server will continue to run, but JVM monitoring is suspended.

After purchasing a permanent license, you can monitor an unlimited number of VMs with
no time restrictions. You can enter the permanent license key directly in the installer. After
the installation, you can add a permanent license key on the "License Keys" tab of the
"General settings".

8

mailto:sales@ej-technologies.com

The second important step is the next one where you configure the initial admin user.
You can configure other admin and non-admin users later on. The full name is displayed
in the UI, and the email can be entered so that an administrator can more easily identify
or contact users.

By default 2FA is enabled, but you can disable it in this step. If 2FA is enabled, you will have
to set up 2FA with your authenticator app when the wizard is completed. Single users can
be exempted from 2FA later on in the user settings.

9

In the "Recording Options" step you already get a chance to configure VMgroups. However,
it is not necessary to do so at this point.

The server can only send emails if it has a valid SMTP server configuration, so in the next
step it asks you to provide this information. If you do not intend to send emails, you can
skip this step.

When you complete the wizard, the server is fully initialized and the installation wizard
cannot be shown again. However, all settings in the installation wizard can also be adjusted
in the perfino UI. You are now presented with the empty dashboard and can continue to
set up monitored JVMs as explained in the next chapter.

10

11

Monitoring JVMs
After perfino is installed, the agent can be added to JVMs on the local machine and on
remote machines.

Basic mechanism

The perfino agent is a Java agent. It is loaded into a VM by specifying the -javagent VM
parameter. Java agents are able to instrument classes as they are loaded and to
retransform classes that have already been loaded.

To prepare a VM for monitoring, you need the perfino agent files and you have to know
the actual VM parameter that needs to be inserted into the start script of your application
server or your application. In a production deployment, the monitored VMs will usually be
running on different machines. You do not have to install perfino on those machines, you
just download the agent files from the perfino UI. Also, you will get instructions on how to
construct the correct -javaagent VM parameter.

To get started, click on the "Add VMs" button in the header.

perfino server and monitored VM running on the local machine

If the perfino UI server is running locally, the perfino agent is already available in the perfino
installation directory and you can easily monitor a locally running VM. This is a likely
scenario if you are evaluating perfino. In that case, you will be asked whether the VM is
running on the local machine or on a remote machine.

The "Add VMs" dialog displays the complete -javaagent VM parameter for the simplest
case without any further configuration. It is suitable for monitoring a single VM.

12

Further instructions regarding group and pool names are explained below.

perfino server and monitored VM running on the different machines

In the general case, where the perfino server and the monitored VMs are running on
different machines, you can download the agent files from the dialog:

perfino has an integration with JProfiler [p. 96] that allows you to perform full sampling of
a monitored VM and open the resulting snapshots in JProfiler. The libraries that implement
full sampling are native libraries, and are included in the archive.

Depending on the selected option, a .zip or a .tar.gz file will be saved after clicking the
Download button. Extract that archive anywhere on the computer where the monitored

13

VM is running. In the top-level directory of that archive there is a file named perfino.jar,
whose path will be referenced in the -javaagent VM parameter.

The VM parameter is not specified completely in the "Add VMs" dialog, since it depends
on where you extract the archive and the name or IP address of the perfino server:

-javaagent:[path to perfino.jar]=server=[IP or host name]

Without the server option, the agent will assume that the perfino server is running on
localhost.

Naming VMs

If you monitor multiple VMs, you have to give them names to be able to identify them in
theperfinoUI. To assign a VM name, pass the nameoption to the -javaagentVM parameter:

-javaagent:[path to perfino.jar]=server=[IP/host],name=[VM name]

Each name can only be used by one VM at the same time. A second VM that requests to
be monitored with the same name will be rejected by the perfino server. If you have a pool
of VMs that cannot be assigned with unique names, see the section on VM pools below.

perfino Server

Monitored VM
name "web"

Monitored VM
name "web"

rejected

In addition to the VM name, you can group VMs into a hierarchy. By default, a VM is inserted
into the top-level group. To assign it to another group, set the group option in the VM
parameter:

-javaagent:[path to perfino.jar]=server=[IP/host],name=[VM name],group=[group name]

In the group name, separate hierarchy levels with forward slashes, as in Web/Workers/
Gen3. A complete -javaagent parameter looks like this:

-javaagent:/opt/perfino/perfino.jar=server=192.198.0.33,name=web,group=Web/Workers/Gen3

VM names must be unique within the same group.

14

VM pools

Sometimes it is not possible to configure VMs with unique names, for example, in a cloud
environment where instances are provisioned dynamically. In that case, you can assign
the VM to a VM pool:

-javaagent:/opt/perfino/perfino.jar=server=192.198.0.33,pool=Web/Workers

Like the group option, the pool option takes a hierarchical name with forward slashes as
the hierarchy separator. If pool is specified, you cannot specify name or group and vice
versa.

In a pool, a monitored VM is given a name with a unique identifier. When the VM detaches,
this identifier will never be used again. Unlike for named VMs, the history of a single VM is
limited to the connection time of that VM, so there is no associated long-term history.
However, you can follow the history of the entire pool to analyze trends and make historical
comparisons.

perfino Server

Monitored VM
pool "web"

Monitored VM
pool "web"

assign ID

0x44a7

assign ID0x825f

Server port

By default, a perfino server listens for VM connections on port 8847. This is the port that
needs to be opened in firewalls to allow monitored VMs to reach the perfino server.

A perfino server may be configured to use a different port by adjusting the "vmPort"
property [p. 106] in perfino.properties. This is necessary if the port is already in use or
if you install multiple instances of perfino on the same machine.

To tell the agent about such a non-default port, you have to add the port option to the
-javagent VM parameter. For example:

-javaagent:/opt/perfino/perfino.jar=server=192.198.0.33,port=8912,name=test

Logging

The perfino agent logs errors to the directory $HOME/.perfino/log on Linux/Unix or
%USERPROFILE%\.perfino\log on Windows. Log files are created on demand, if nothing
is logged, no file is created. The name of the log file is <VM name>.log where <VM name>
is the value of the name or the pool parameter.

15

To log to a different file, you can add the logFile=<path to log file> option to the
-javagent VM parameter. To disable logging altogether, the option logEnabled=false
can be appended.

Encryption and authentication

Mutual authentication and encryption are enabled by the agent keystore file agent.ks in
the same directory as the perfino.jar file. The agent keystore is generated by the server
and is located in the ssl directory below the perfino data directory.

When the "vmUseSsl" property in perfino.properties is set to true, the agent keystore
file is automatically added to the agent files that you download from the perfino UI. In that
case, encryption and authentication work out of the box.

If you switch encryption and authentication on or off after you have set up your monitored
VMs, you have to make the following changes manually:

• Switching encryption on
Locate[perfino data directory]/ssl/agent.ksand copy it to the agent installations
on all machines where VMs are monitored. The keystore file has to be copied to the
same directory as the file perfino.jar. If the correct agent keystore is not present, the
server will refuse the connection from the agent.

• Switching encryption off
Delete the file agent.ks next to the file perfino.jar in the agent installations on all
machines where VMs are monitored. If that file is present and the server does not use
encryption, the agent will refuse to connect to it.

If you would like to keep the agent keystore file in a different path, add the keystoreoption
to the -javagent VM parameter. For example:

-javaagent:/opt/perfino/perfino.jar=server=192.198.0.33,keystore=/sec/agent.ks,name=test

16

Basic Concepts
perfino collects data of two fundamentally different types: transactions and telemetries.
Policies and thresholds are used to detect anomalous conditions while triggers take action
if something is out of order.

Transactions

In perfino, you analyze your business processes with transactions [p. 28]. At a technical
level, a transaction is simply a method invocation. To measure a transaction, perfino
records its timing and constructs a transaction name that describes the business process.

The transaction naming has a significant impact on what you will see in the perfino UI.

• It enables you to understand what triggered the transaction.
• It groups all business processes with the same transaction name and so determines

the granularity that is used to measure business processes.
• It can serve as a basis to filter out unwanted operations.

perfino cannot know what your business processes are, so configuring transactions is an
important part in setting up an application for monitoring. Some frameworks are high-level
by nature, and so perfino can offer them as transaction types that can be configured with
a minimal amount of work.

The most common example of a transaction is the invocation of a URL that is handled by
your application server. In the default configuration, perfino intercepts the method that
handles HTTP calls and constructs a transaction name including the first three segments
of the URL. This is an arbitrary naming strategy that is just intended to get started. In your
application, only the first segment of the URL may be relevant for the business process, or
you may need a particular query parameter in the name.

Also, you will probably not want all URL invocations to become transactions. Many HTTP
requests are for static resources, and those are not interesting in terms of business
processes. In perfino, you can discard transactions based on the name that would be
associated with a transaction. If you generate too many different transaction names,
perfino's overload protection [p. 119] is activated.

The following figure shows how different URLs end up as the same transaction based on
a transaction naming that

• adds the value of the query parameter "action"
• adds the fixed text "in shop"
• adds the second segment of the URL

17

URL

/shop/b2b/submit?action=order&p=123

Naming

order in shop b2b

Browser

URL

/shop/b2b/submit?action=order&p=234

Naming

order in shop b2b

Transaction

order in shop b2b

count:

time: 300ms time: 100ms

time: 400ms
2

Policies

Transactions have associated policies. The policies determine

• the acceptable timing for a transaction
• the way errors are detected and handled
• when to perform method-level sampling

For each violated condition in the policies, you can see transaction details separately in
the perfino UI. For example, you can inspect slow transactions or transactions that resulted
in an error separately and not cumulated with other regular transactions of the same
name.

perfino gets information from the monitored application by instrumenting methods. To
keep the overhead low, very few methods are instrumented. To get more detailed
information in the case of a very slow transaction, the policy can start method level
sampling [p. 48] for a transaction once it is clear that it is taking too long.

With sampling, you get a cumulated call tree and hot spots on the method level that show
you where the time is actually spent.

Telemetries

The other fundamental type of data source in perfino is the periodic sampling of scalar
values, like heap size or thread count. Each telemetry [p. 54] can be plotted as a
time-resolved graph. In perfino, telemetries are often shown as sparklines, without defined
axes and with a trailing current value.

There are many standard telemetries in perfino that collect their data from well-known
subsystems of the JVM or popular databases and frameworks. In addition, integer values

18

that exposed by an MBean (1) can be monitored by perfino. On a programmatic level, you
can use the @Telemetry annotation to define custom telemetries on static methods with
a numeric return value.

Thresholds

You will have different expectations with respect to different telemetries. For example, the
heap usage often oscillates around a baseline and where a steady increase is a sign of
a bug in the application.

Or, the average duration of JDBC statements usually varies with server load and is an
indicator for the health of the application.

To detect anomalous conditions, you define thresholds [p. 61] with an optional lower and
an optional upper bound. Threshold violations are counted on a per-VM basis or for each
VM group. They do not have actions associated with them. Often, you will not want to take
any action for single threshold violations, but only for a cascade of such conditions.

Threshold violation

Threshold violation

OK

Time

Te
le

m
et

ry

Triggers and alerts

Both transactions and telemetries can lead to anomalous conditions: A transaction policy
can identify a slow transaction, and a telemetry threshold can be violated.

In order to take action on these conditions, you use triggers [p. 64]. Triggers do not operate
on a per-VM level, they process all recursively contained VMs in a VM group. Each VM
group in a hierarchy of groups has its separate triggers.

For example, you could define a trigger for all VMs that fires when the number of connected
VMs falls below 20. In the same VM hierarchy, you might have a group that only contains
database VMs. In that group, you might want a separate trigger that fires when the number
of connected database VMs falls below 3.

When a trigger fires, it executes its actions. Actions can start data collection, such as full
VM sampling, send emails or create alerts.

Alerts [p. 69] are shown in the dashboard and are the highest level in perfino's pyramid
of concepts:

(1) https://docs.oracle.com/javase/tutorial/jmx/mbeans/

19

https://docs.oracle.com/javase/tutorial/jmx/mbeans/

Transactions Telemetries

Policies Thresholds

Triggers

Alerts

Data
collection

Anomaly
detection

Actions

Notifications

20

UI
The perfino UI separates data and configuration. When you log in, you are in the data
perspective. The configuration drop-down in the top right corner gives you access to the
configuration.

The data perspective

The data perspective is divided into several tabs. The tabs are ordered from more general
information on the left to more specific information on the right.

After logging in, you see the dashboard where important information about the activity
and the health of the monitored VMs is presented on a single screen. From the dashboard,
you can drill down into the more detailed "VM data views" by clicking on the items of
interest, including transaction names, problems, sparklines and slices of the policy violation
pie chart.

21

The VMs view shows you the hierarchy of all connected VMs, together with selected
information in the form of sparklines.

22

The "show" context action takes you to the "VM data views" for the selected group or VM
and provides quick access to all recorded data that is available for your selection. Like in
the dashboard, clicking on the sparklines takes you to the full telemetry views in the "VM
data views".

The call graph focuses on remote calls between monitored VMs. Each VM is a node and
remote calls like EJB, RMI and web service invocations are edges in the graph. Clicking on
nodes and edges shows further information.

The VM data views tab holds all views that show data for a single selected VM or a group
of VMs. The actual VM selection and the desired view can be adjusted in the view selector.

The inbox view shows all messages that have been sent to you. For example, if you start
full-VM sampling on a particular VM, a notice will be sent to your inbox once the snapshot
is ready for downloading.

23

If there are unread messages in your inbox, you will see a red notification in the tab area.

Configuration

Configuration is divided into two parts: general settings and recording options. If you
want to view and edit general settings, you have to be an administrator. Recording options
can also be edited by the "profiler", but not by the "viewer" access level.

Both general settings, as well as recording options are modal panels. If you did not change
anything, you have to click on the "Go Back" button to return to the data perspective.

If you made a change, the "Go Back" button is replaced by Apply Changes and Discard
Changes buttons. No changes to the configuration have any effect before this confirmation.

General Settings

In the general settings you administrate the perfino server. This includes

• the users and their access levels
• the license keys
• data consolidation options
• SMTP access

24

In addition, you can export and import the entire server configuration.

Recording & triggers

Recording options and triggers are configured for each VM group. You can click the edit
button or double-click on any column to jump directly to the desired step.

The configuration contains recording options as well as threshold and trigger settings.
Recording options are sent to the monitoring agents in each connected VM. They are
inherited to nested VM groups and nested VM groups can override settings in their parent
groups.

25

Thresholds and triggers, on the other hand, are handled in the perfino server and are
processed for the VM group for which they have been defined. They operate on all VMs
that are contained recursively in their VM group. If you need additional thresholds or
triggers that operate only on a nested VM group, you can define them on that group.

User settings

The user drop-down in the header shows selected information about your account and
the current session and contains the Logout button that terminates your perfino session.

User settings, like your name and password can be adjusted by following the "Account
Settings" link. If your access level is "profiler", this is where you can see the VM groups that
you are allowed to modify.

26

Dark mode

If you prefer a dark UI, use the theme switcher in the header. The setting is persistent for
the current browser.

27

Transactions
Configuration

Transactions are configured in the recording settings. When you edit a VM group or a VM
pool, the first displayed step in the wizard shows the transaction settings.

If no transactions are defined for a nested VM group, VMs get their configuration from the
nearest ancestor group where transactions are defined. The "All VMs" configuration always
has associated transaction definitions and is always a successful last stop for this search
in the hierarchy.

28

When a nested group overrides transaction settings, it overrides all of them and there is
no merging with the settings of a parent group. If you want to reuse selected definitions
from a parent group, save them to a set and include them in the configuration of
the nested group.

A transaction definition selects a segment of all possible transactions in its subsystem.
For example, web transactions are defined with a URL wildcard or regular expression. Each
transaction definition has an optional associated naming scheme and optional associated
policies. For both naming and policies, perfino keeps looking in the list of defined
transactions until it finds a matching entry.

URL shop/order/*

URL shop/*

URL *

Naming

Policy

Naming

Naming

Policy

Match URL shop/list?q=123Transaction definitions

1

2

3

This allows you to define a series of transaction definitions that all have different naming
schemes while keeping common policy definitions for a group of transaction definitions.
Keep in mind that the transaction matching in perfino takes the first match, so more
generic filters should be lower in the list of transaction definitions.

There are a number different transaction types in perfino. All types fall into two different
categories: predefined transaction types and custom transaction types.

Predefined transaction types

The most common mechanism that starts a business transaction is via a URL invocation.
In perfino, this is called a web transaction. In the default configuration, perfino intercepts
all URLs and creates transactions for them. For your application, you will want to limit the
intercepted URLs to those that are meaningful from a business perspective. To do that,
you can remove the transaction definition for the URL wildcard "*" and add your own
specific transaction definitions.

Another way to limit transaction matching is to use the "Discard" flag. In that case, any
matching URLs will be excluded and no further matching will take place.

29

In the list of transaction definitions, the filter expression will be shown as the name of the
transaction definition. Often, this is not descriptive enough. Use the "Custom description"
check box shown above to enter a meaningful name. This is only used in the configuration
and not in the displayed data where the transaction naming determines the name of the
transaction.

The name of a transaction is composed of a chain of naming elements. The list of available
naming elements depends on the transaction type. For web transactions you can use
specific elements like "URL query parameter" and "URL segments".

An important consideration when defining complex transactions is what kind of nested
transactions should be allowed. Perfino does not record a directly nested transaction that
has the same name. More restrictive options are to prevent nested transactions

• that match this entry
No nested transactions will be created if the nested transaction originates from this
transaction definition.

• with the same group name
If you select this option, you have to configure a group name for this transaction
definition. For example, you might have different entry points for a particular business
transaction from a web transaction and from an EJB transaction, and the URL handler
always calls the EJB. If you do not want to see the EJB as a nested transaction, you can
assign the same group name to the web transaction and the EJB transaction.

• of the same transaction type
This option is suitable if you only want to see entry points and not the internal structure.
For example, EJBs will often call other EJBs. This reentry mode prevents a tree of nested
transactions in that case.

• all further entries
Use this option to prevent any kind of nested transaction if a transaction is created from
the current transaction definition.

The reentry inhibition only applies to the transactions that would be directly nested. If a
nested transaction is allowed, its own reentry inhibition setting will be used for the next
nesting level.

30

EJB transactions are created from calls into public methods of an EJB that is annotated
with @Stateful, @Stateless, @MessageDriven or @Singleton. Springservice invocations
are for calls into beans that are annotated with @Component, @Controller, @Repository
or @Service. You can limit transaction recording to a subset of those transactions for both
EJB and spring transactions.

When creating transaction definitions, both these transaction types can be filtered with
respect to class or package name. The discard mechanism is useful to exclude certain
classes that are not generating significant data. By default, perfino shows all EJB and
Spring service invocations.

RMI transactions handle incoming RMI calls into a VM. Like for EJB and Spring transactions,
you can use a class filter to include or exclude implementation classes. The default
configuration in perfino shows all RMI invocations.

Custom transaction types

There are many frameworks where specific interceptions can capture all important
business transactions. Also, your own code will often be structured in such a way that a
small set of methods will map to your business transactions. perfino offers three
mechanisms for monitoring these cases. Configuration of these transaction types is more
elaborate so that each of them has its own chapter in the advanced topics.

For an annotated invocation transaction, you specify a particular annotation class name.
In the further configuration [p. 120] you can decide whether the annotation should apply
to classes or methods and how inherited classes should be handled.

DevOps transactions are defined in your code with annotations supplied by perfino. While
the naming is completely specified with those annotations, the policy must be configured
in the perfino UI. This is the most maintainable way to define complex transactions. See
the advanced topic about DevOps transactions [p. 126] on how to add them to your project.

If you cannot modify the code that should be monitored, POJO transactions allow you to
specify all the same interceptions as DevOps transactions directly in the perfino UI. See
the detailed explanation of POJO transactions [p. 123] for more information.

31

Call tree and hot spots

perfino builds a call tree from all recorded transactions. A call tree is a cumulated data
structure that captures all the different sequences in which transactions are nested. If
transaction C is called within transaction A and also within transaction B, it will occur twice
in the call tree, once as a child of A and once as a child of B. Each of these sequences can
occur many times, increasing the invocation counts along the corresponding paths in the
call tree.

The numbers for each transaction - total time, invocation count and average time are
displayed for the selected period. If the period is not fully measured, perfino will tell you
the covered percentage at the bottom of the view. For example, when starting up the
perfino server, the current hourly interval will not be fully measured until a full hour has
passed. Similarly, if you stop the perfino server for some time, this will leave holes in the
history with incomplete intervals at both sides.

Hot spots are the inversion of the call tree, where all occurrences of each transaction are
summed and shown with their backtraces. The invocation counts and execution times in
backtraces do not refer to the transactions, but rather to the number of times the hot spot
was called along this path.

32

Transaction A
Count 5

Transaction C
Count 3

Transaction C
Count 1

Transaction B
Count 2

Call Tree Hot spots

Transaction C
Count 4

Transaction A
Count 3

Transaction B
Count 1

backtraces

hot spot
invocation
counts

inve
rsi

on

To emphasize the point about backtraces, all hot spots have a child node called
"Cumulated backtraces". Searching for transactions is done with the filter bar at the bottom
of the view. Many views in perfino have such a filter bar.

In order to give you a chronological context for the selected interval in the call tree and
hot spots views, a transaction timeline is shown at the bottom where the current interval
is highlighted. You can also use this timeline to select another interval by clicking on a
data point. When you display a timeline for a single selected transaction, the total
transaction timeline is replaced and can be restored by clicking on the close button.

33

Transactions in the dashboard

Frequency, average time and total time of your most important transactions are key
measures for your application. To give you a quick overview in that respect, the dashboard
contains a transaction table that shows the most important transactions with these
numbers from the last hour or the last day. You can sort by the different columns and the
configure button at the top of the table allows you to select which of the columns should
be used as the "primary measure" and show a histogram next to the numeric values.

In the transaction table, transactions are not shown in the form of a call tree, but completely
flat. This means that it also shows transactions that are not entry points but only invoked
as nested transactions. For a detailed analysis, click on the transaction row to go to the
call tree view in the "VM data views" tab.

The drop-downs at the top provide three ways to adjust the range of the displayed
transactions in the dashboard:

• Period
By default, the dashboard shows the last running hour. Alternatively, you can switch to
the last running day.

• Request type
By default, all transactions are shown. Alternatively, you can restrict the display to web
transactions only.

• VM group
By default, all monitored VMs are shown. With the "VM group" drop-down, you can restrict
the displayed data to a particular VM group and its nested groups. For example, if you

34

select group "A/B", then all VMs that are contained in "A/B" are shown, but also VMs in
"A/B/C".

Overload protection

A common problem with new perfino installations is that web transactions have not yet
been configured to map to high-level business transactions. As a consequence, too many
distinct transaction names are being generated. In that case, perfino's overload
protection [p. 119] mechanism caps the maximum number of transaction names and
sends you an inbox message with instructions on how to fix this condition.

35

Policies
Configuration

Policies detect anomalous conditions with respect to transactions. Each transaction
definition [p. 28] has associated policy definitions.

Policies create the following anomalous transaction states:

• Slow
The threshold after which a transaction is classified as slow can be specified as an
absolute time or as a relative percentage value with respect to the average duration
of transactions that are generated by this transaction definition.

• Very slow
Another time-based threshold like "Slow", only for a more severe category. You can
partition "Slow" and "Very slow" so that "Slow" transactions can occur without notifications
and "Very slow" transactions trigger notifications.

• Overdue
After a third time-based threshold which is usually an absolute time and much larger
than the "Very slow" threshold, you can view a transaction as deadlocked or hanging.

• Error
Transactions that result in an error require special attention. There are three sources of
errors:

36

Exceptions
Exceptions derived from java.lang.Error (errors), java.lang.RuntimeException
(runtime exceptions) and java.lang.Exception (checked exceptions) can be

1.

activated separately. Checked exceptions are usually handled by the application
and do not necessarily result in a transaction error.

2. Logged errors
If your application logs an error with a logging framework, perfino can mark the
transaction with an error. java.util.logging, log4j, JBoss logging and Logback are
supported by perfino. Optionally, you can also configure that warnings result in a
transaction error.

3. Specific conditions
Certain transaction types have their own built-in error conditions. For example, as
shown in the screen shot above, web transactions can use the HTTP status code to
detect an error. By default, all status codes >= 400 are handled as errors. If some of
these status codes should not be viewed as errors, you can list them here.

If policies are not defined for a transaction definition, perfino continues in the list of
transaction definitions until it finds a matching entry where policy definitions are enabled.
This allows you to define the same policies for multiple transaction definitions, in the most
extreme case with a "catch-all" entry that has no naming definition, but only policy
definitions.

Sometimes, you want to go the other way and define more granular policies for certain
transactions within a single transaction definition. For example, you might have a single
EJB transaction definition which captures all your business transactions. If the acceptable
durations depend on the transaction name, you can define policyspecializations to avoid
having to re-add the transaction definition and its naming scheme multiple times.

Unlike the parent transaction definition, which filters classes in this case, the policy
specialization filters on the result of the transaction naming.

37

Policies in the call tree

Both call tree and hot spots views have a policy mode drop-down at the top. By default,
the call tree is split for different policy violations. For example, this means that you can
see slow transactions separately from normal transactions. This is important, since the
cause of a slow transaction will often be visible from nested transactions or a slow
database statement. Transactions with policy violations show their transaction type icon
in the color of the policy violation so you can easily spot them in the call tree.

When you set the policy mode to "merged", all policy splits are added so that there is only
one transaction of the same name and type on the same call tree level.

In the screen shot above, you can also see the policy selector at the bottom the view. By
default, it is set to "All". If you choose a particular policy violation type, the tree will be filtered
immediately. For example, selecting "Error" will show all transactions that have been marked
as an error, regardless of how deep they are in the call tree. These transactions will be
expanded, and all ancestor nodes are shown, even if they are not transactions with errors.
When you also add a filter text, only transactions with errors will be searched for the filter
expression.

38

Policies in the dashboard

The dashboard is your first stop for checking the health of your application. That's why
policy violations are featured prominently in the dashboard. The problems view shows
transactions with policy violations. By default, "Overdue", "Error" and "Very slow" are
displayed. With the configure above the problems view you can select different policy
violations and set absolute and percentage limits for each policy violation type. As in the
transaction table, problems can originate from transactions that are not entry points but
only invoked as nested transactions. For a detailed analysis, click on the problem row to
go to the call tree view in the "VM data views" tab.

To visualize the proportion of policy violations with respect to the total number of
transactions, a policy pie chart is shown next to the transaction table. Numbers and
percentages are shown as tool tips and by clicking on the legend entries, you can hide
selected policy violation types.

Clicking on the slices of the pie chart will take you to the call tree view in the "VM data
views" tab and set the filter drop-down below the call tree to the selected policy violation
type.

39

Cross-VM Monitoring
One of perfino's core features is the ability to track calls between monitored VMs. No
configuration is necessary to enable cross-VM monitoring. As soon as an outgoing and
incoming call of a supported subsystem can be matched between two monitored VMs,
perfino shows it as a remote call in the call graph and in the call tree.

The following remote call mechanisms are supported:

• RMI
• Web services: JAX-WS-RI, Apache Axis2 and Apache CXF
• Remote EJB calls: JBoss 7.1+ and Weblogic 11+

Call graph

The natural representation for remote calls is the call graph, where each pair of VMs that
participate in a remote call are connected by an edge. In addition, two other node types
are present in the call graph that usually represent calls to and from external processes:

• External calls
The "world" node shows external calls that create transactions in monitored VMs, such
as URL invocations.

• Databases
Database nodes show database operations. If perfino detects that two VMs are using
the same physical database, it only shows a single node in the call graph.

When a node or an edge is selected in the call graph, a detail panel is shown that holds
several tabs with information about the associated transactions. The number and names
of the tabs depend on the selected object:

40

• External calls node
The only tab is the "Transactions" tab which shows the call tree of all transactions with
external origin. Transactions are only shown in the first neighbor nodes, not across the
whole graph.

• Database node
The only tab tab is the "Remote origin hot spots" tab which shows the database
operations with cumulated backtraces. To restrict displayed data to a particular VM,
select an incoming edge instead.

• VM node
The "Remote origin hot spots" tab shows the duration and count of handled remote
calls mapped to the originating transactions from other monitored VMs. Backtraces
are resolved up to the leaves that specify the VMs where the calls originated. The
"Transactions" tab shows the call tree of all transactions executed in the selected VM.
Finally, the "Remote call hot spots" tab shows the duration and count of remote calls
originating in the selected VM. The top-level hot spots are the transactions that cause
the jump into a different monitored VM. Check the outgoing edges to learn more about
those calls.

• Edge
The "Call site hot spots" tab shows which transactions in the source node caused remote
calls along the selected edge together with cumulated backtraces. For edges into
"Database" nodes, this is the only tab and shows database operations instead of
transactions. The "Execution sites" tab shows the call tree of the transactions that were
caused by the selected edge. For edges starting at the "External calls" node, this is the
only tab.

Call tree

In the call tree, you can recognize transactions that cause a remote call by the "show
remote call" link that is shown next to the transaction name. When following such a link,
it is advisable to select the "Merge" option for the policy split [p. 36], otherwise the numbers

41

on the remote side may not match the numbers in the source VM. This is because policy
splitting is not tracked across VMs. In any case, there may be small discrepancies due to
calls that are close to period boundaries which may be assigned differently by source
and target VMs.

Clicking on the "show remote call" link opens a new dialog that shows the call tree of
transactions in the remote VMs that were started by the selected transaction. At the
top-level, the call tree is partitioned into VM groups.

The call tree only shows the transaction in the target VMs. If there are further remote calls,
you will see "show remote call" links, just like in the original call tree view. Clicking on those
links replaces the call tree in the dialog and shows a Back In History button that can be
used to return to the previous level. If the button disappears after clicking it, you are now
looking at the first level.

It is also possible to move in the opposite direction and ask which remote calls in other
VMs started transactions in the currently selected VMs. First, change the remote origins
drop-down to "Split". By default, that drop down is set to "Merge" and you cannot see the
remote origins. With the "Split" setting, "Called from ..." nodes appear at the top-level
containing transactions that were started by remote calls from other monitored VMs. If
you are looking at VM group or VM pool data, a split is performed for each VM group, but

42

not for individual VMs. If the data is not granular enough, consider making your VM group
structure more granular. If you are looking at the data for a single named VM, the split is
performed for each remote VM.

Similarly to remote calls, clicking on the "show remote origins" link brings up a modal
dialog. In the dialog, the count and duration of the selected transaction is attributed to
the remote transactions that started it. The data is presented as hotspots with the
innermost transactions from the originating VM at the top level. Analogous to the "remote
calls" dialog, you can jump further back in a chain of remote calls when you see a "show
remote origins" link next to a transaction. The Back In History button brings you closer to
the original transaction.

Overload protection

If you monitor many VMs that all call each other, the number of the remote call sites grows
with the square of the number of VMs. Remote call sites have a substantial overhead,
since the transaction call trees have to be split for each remote call site. If too many distinct
remote call sites are being created, perfino's overload protection [p. 119] mechanism
prevents excessive resource usage.

43

Probes
Transactions typically use external resources that are often the cause for performance
problems. The most prominent example is JDBC. Just looking at the name of a slow
transaction may not generate any insight. However, if you can see the SQL statement that
is responsible for most of the time, you can often find the cause of the slowness right away.

perfino records this kind of data with probes. Probes generate payload data that is attached
to the currently running transaction. If no transaction is running, the data is discarded.

Configuration

To see the list of available probes, you can edit the recording settings of a VM group and
go to the "Options" step. Most of the probes are for databases or messaging systems. You
can switch off subsystems that you are not interested in. For example, if you use JPA, but
do not want the overhead of measuring the duration of JPA calls, you can deselect the
"JPA/Hibernate" check box.

Probes in the call tree

Every transaction that performs an operation measured by a probe shows this information
as child nodes in the call tree. Each probe type has a separate grouping node with the
name of the probe.

44

Often, the description of the operation is very long, like a complex SQL statement with
many output fields, joins and conditions, and the finite length of the table column prevents
further inspection. In this case, click the "show" link in the same table tell. A dialog will be
shown, where you can scroll through the payload data and copy it to the clipboard.

Probe hot spots

Sometimes your focus is not on transactions, but on the probe data. For example, when
trying to speed up your database, the question is: What are my slowest database
operations? For that purpose, perfino offers the probe hot spot views. Each probe has a
separate view of this kind where a list of operations is shown together with cumulated
backtraces.

45

The probe hot spots view can be filtered on a per-transaction basis. By default, cumulated
data for all transactions in the selected time interval is shown. When clicking on the Choose
transaction button, you can select one transaction from which the probe hot spots should
be taken.

Probe data granularity

Probe operations can be extremely frequent, and they usually don't do the same thing
over and over again. perfino makes an effort to modify the displayed name of a probe so
that frequently varying information is replaced with placeholders. Imagine a loop of SQL
queries where an ID varies in each statement. Showing the raw SQL in the UI would mean
that perfino would potentially have to remember millions of SQL statements per hour.

This is why perfino by default does not show SQL for JDBC statements that have been
created with the createStatement(...)method. Rather, perfino shows those operations
with a description of "unprepared select statement". SQL is only shown for prepared
statements without resolving the single parameters. If you do not use prepared statements
and need to see more detail, the "Resolve non-prepared statements separately" option
in the probe configuration enables SQL recording for all unprepared statements. Perfino
will then try to replace literals in the SQL string with a placeholder to limit the maximum
number of distinct SQL statements.

46

These considerations only apply to the call tree where data is retained indefinitely at the
highest consolidation level. For sampling, where data is discarded in the medium term,
perfino always records the SQL of unprepared statements.

The same strategy with respect to data granularity is used for other databases. For
example, in MongoDB operations, all values are replaced with question marks.

Overload protection

Under some circumstances, the number of distinct payload strings can grow linearly with
time, for example, if the prepared statement bodies contain IDs directly and not as bound
variables or if the literal replacement of unprepared SQL statements fails. Too many
different payload strings would overwhelm the system over time and so perfino's overload
protection [p. 119] mechanism caps probe payload strings at a configurable maximum
number.

47

Method Sampling
What is method sampling?

Policies in perfino help you to identify slow transactions, but the cause of the slowness is
often not clear, since it usually originates in a subsystem that is not monitored separately.
In that case, you need more information on the method level.

The way perfino gets this information is by periodically inspecting the thread that executes
a transaction and by recording its stack trace. By comparing subsequent "samples", perfino
can build an approximate call tree. It has no information on invocation counts, since it is
not possible to tell if a method is still being called since the last sample was taken - or if
it has exited in the meantime and is being called again. The more time is spent in a method,
the better the information in the sampling call tree is. As such, sampling is a great tool to
find hot spots in the monitored VM.

Timen

A

B

A

A

B

C

A

B

D

A: time 4 x

B: time 3 x

C: time 1 x

D: time 1 x

(n+1) (n+2) (n + 3)

Automatic sampling

perfino can perform automatic sampling for transactions in two ways:

• Periodic sampling
With periodic sampling, perfino takes one transaction from a particular transaction
definition every couple of minutes and samples it from start to finish. Alternatively,
perfino can take every n-th transaction and sample it. The latter may be preferable for
rarely executed transactions.

• Sampling for slow transactions
The most interesting samples are for slow transactions, because they let you investigate
why a transaction is slow. perfino can be configured to sample slow transactions
automatically. When a transaction passes the threshold of a policy violation like "slow"
or "very slow", perfino then starts sampling until the end of the transaction. The period
of time from the beginning of the transaction until the policy violation was reached is
not sampled.

48

Time

Start Policy violation End

Sampling

Transaction

Both automatic sampling modes are configured in the "policies" step of a transaction
definition.

Filters

Method-level call stacks can become very deep. Too much detail is usually distracting,
like the internal call structure of external libraries and the JRE. For each VM group, you can
define the recording scope, either by specifying a list of packages that should be recorded
(inclusive mode) or by listing packages that should not be recorded (exclusive mode). In
both cases, the package filters are recursive.

For the exclusive mode, there are two types of filters:

• Compact
"Compact" means that internal calls will be excluded from the sampling call tree. If a
filtered class is called as an entry point (like java.lang.Thread.run()) or from an

49

unfiltered class, it will be displayed, but further calls within filtered classes will be hidden.
This allows you to focus on the important methods that are in your code and where you
are able to change something. However, you are still able to see calls into third-party
code.

• Ignored
"Ignored" means that filtered classes will be completely removed from the tree.

When you add a filter by browsing in archives or connected VMs, it is compact by default.
To change its type to "ignored", edit the filter and change the drop-down in the edit dialog.

Method sampling view

To see samples in the method perfino UI, you first have to select a transaction and a policy
type. While you can do that with the Choose transaction button, it is usually easier to click
the "show methods samples" link next to a transaction in the call tree or hot spots views.

When choosing a transaction manually, changing the selected policy type to something
other than "All types" shows the transactions for which a corresponding policy violation
has actually recorded at least one sample in the selected period. In the "All types" setting,
all transactions in the selected period are shown regardless of whether a sample has
been recorded. In that way you can select any transaction and tell perfino to record a
sample.

50

The selected transaction and policy type are shown in the header, and the navigation
buttons move between different matching samples. You can use the date chooser to
jump to the sample that is closest to a selected time and date.

The sampling call tree shows methods except when sampling crosses a VM boundary. In
that case, a VM node is inserted. If you want to limit sampling to the current VM, you
can switch off cross-VM sampling in the sampling configuration of the VM group where
the transaction is executed.

Where available, the sampling call tree shows line numbers. To interpret a line number,
always look at the class of the parent item. Intuitively, you would expect the line number
on a method item to show the line number of that method, but that would not be very
useful information. The line number cannot be placed directly on the call site, because
each call site can have multiple children with different associated line numbers.

After the initial inspection of a sampling call tree, you will often want to focus on a particular
package. Modifying the sampling options to exclude all unwanted packages and
re-recording the sample is not a good option, since the package of interest may vary or
the performance problem may not be easily repeatable. To adjust your point of view in
the sampling call tree, use the package filter at the bottom of the view. You can enter a
single package, or a list of packages separated by commas.

51

Packages are included recursively. This means that if you include com.mycorp., then
packages like com.mycorp.projectare included as well. If you want to exclude a particular
package, prefix it with a minus sign. For example, if the classes in com.mycorp. are of
interest, but com.mycorp.algorithm is distracting, enter

com.mycorp.,-com.mycorp.algorithm.

into the filter bar. To better understand the call structure, the firstexcludednodebetween
included nodes is always shown, so even after excluding a package you might see a few
instances of it in the call tree, just not more than two consecutive method calls in such a
package. This corresponds to the "Compact" mode for exclusive filters in the "Sampling"
configuration step.

If the first package in the filter bar is an exclusion (with a prefixed minus sign), then all
other packages will remain visible. If the first package in the filter bar is an inclusion, then
all other packages will be hidden.

The hot spot tab shows the methods where most time is spent together with cumulated
back traces. Note that the set of hot spots strongly depends on the granularity of the
measurement which is governed by the defined filters. Defining different filters in the
sampling options or applying different view filters may change the list of hot spots
completely.

For each probe that recorded data during the sampling period, a separate tab is added
that shows the probe hot spots [p. 44].

Averaging multiple samples

The quality of sampling increases, the longer you sample. Especially for periodic sampling,
you collect a large number of comparable samples over time. perfino can average these
samples to give you better statistics that come closer to the actual execution times. When
you click on the Average Multiple button highlighted in the screen shot above, a modal
dialog will be shown where you can select a range of samples to be averaged.

52

The time line at the bottom shows all available samples. Note that samples are not kept
indefinitely due to their high storage space requirements. The retention threshold can be
configured in the general settings. By clicking and dragging a range in the timeline, you
choose the samples to be averaged. The total selected number of samples is shown at
the top.

Just like for the single samples, you can switch between call tree, hot spots and available
probe hots.

Manual recording of samples

There may be cases where you require a current sample of a particular transaction, and
you cannot wait for periodic sampling or a policy violation that would trigger sampling.
For that purpose, you can use the Record More button in the method sampling view.

You can even request more than one sample which will allow you to average the samples
after they have been recorded. For rarely executed transactions, it may take a long time
to fulfil the recording request.

53

Telemetries
perfino observes scalar values from four different types of sources:

• Counts of entities that are managed by the perfino collector, like the number of
connected VMs or the number of transactions. This is not a direct measurement in the
monitored VM, but an evaluation in the perfino server.

• Telemetries that are measured inside the monitored VM, like the heap size or the average
duration of a JDBC statement. Many of these telemetries are produced by probes [p. 44].

• MBean telemetries that were configured in the recording settings.
• Devops telemetries where you have used the telemetry annotation from the perfino

API.

Telemetry data view

All telemetries are available from the "VM Data Views". Each standard telemetry has its
own entry under the "Telemetries" node, and MBean and Devops telemetries are added
under the "Custom telemetries" node. The latter is only visible if at least one custom
telemetry exists.

Many telemetries are stacked area plots where the single lines add up to a total value.
For example, the "Transactions" telemetry shows the total number of transactions over
time, split into single lines for the various policy violations [p. 36].

When you activate a telemetry view directly, a 10-minute interval up to the current time
is shown. The data displayed here has been recorded with a resolution of one minute.
Other telemetries that do not get its data from the observation of transactions will have
a resolution of 10 seconds. You can move back in time with the navigation buttons at the
top of the telemetry or the hover buttons at the edges of the telemetry itself, but at some
point the one-per-minute resolution will end. perfino consolidates telemetries to
progressively more coarse-grained resolutions and keeps them for progressively longer
periods of time. Zooming out to an interval with a total extent of at least 3 hours,
consolidated data points with a resolution of 2 minutes and a longer historical record are
shown. Now you can move back further in time as compared to the previous higher
resolution.

54

The full table with all display intervals where resolutions and retention times change is
given below:

Retention timeResolutionDisplay interval

6 hours (48 hours for
transaction-based data)

10 seconds (1 minute for
transaction-based data)

10 minutes

10 days2 minutes3 hours

1 year1 hour3 days

unlimited12 hours30 days

Moving to earlier or later times shifts the starting point of the displayed interval by 1/3 of
the total display range. To skip full intervals, press the CTRL key while navigating.

In between those display intervals, there are many other intervals that just increase the
displayed time extent, but use the same resolution. With the zoom buttons at the top or
in the context menu of the telemetry, you can change the zoom level to view more or less
data. Double-clicking on the telemetry zooms in at the selected point in time, if possible.

Some telemetries have multiple data lines that do not add up to a total value. In that case,
there is a drop-down box above the graph and the telemetries are shown as line plots.

55

Detailed numbers can be obtained by hovering the mouse over the graph. in stacked
area plots, you can toggle single data lines by clicking on the legend items.

In the context menu of the telemetry, there are actions for jumping to related views at the
selected point in time. For all telemetries you can jump to the call tree and hot spots views.
For telemetries that are calculated from probes, you can also jump to the associated
probe hot spots view.

Sparklines

The VMs view and the dashboard show small versions of the current telemetry data as
so-called "sparklines". Sparklines do not have labeled axes and are intended to give a
visual impression of the recent development of an observed scalar value. The graph is
followed by the current numeric value. The superscript indicates the observed maximum
value, the subscript the minimum value in the displayed time range.

When you select the "Telemetries" or "Custom telemetries" category nodes in the "VM data
views", a telemetry overview is shown. All contained telemetries are shown as sparklines
for the last hour and the last day while the current value together with maximum and
minimum values is shown in a separate column.

In the "VMs" view, you can configure a set of sparkline columns. This allows you to make
a relative assessment of the different VMs and VM groups with respect to the monitored
value. Sparklines can be scaled separately, with a common scale for each group or with
a common scale for all VMs. This is configured in the options popup.

56

In the dashboard, sparklines are displayed in a table rather than as columns. The useful
number of sparkline columns that you can add in the VMs view is limited due to the finite
width of the table. In the dashboard, you can add a lot of sparkline rows without any such
restrictions. Rather than showing data for separate VM groups or VMs, the dashboard only
shows data for the selected VM group.

As in the VMs view, there is a "Configure" action that takes you to the list of all available
telemetries. The telemetries are grouped into categories. The lower list shows the currently
configured sparklines.

57

By clicking on a sparkline in the dashboard, the "VMs" view or the telemetry overview, the
full telemetry view is activated with a time interval that most closely corresponds to the
interval that was shown in the selected sparkline.

MBean telemetries

Many application servers and frameworks publish MBeans with values that are interesting
for monitoring purposes. All numeric values that are published by an MBean can be polled
by the perfino agent and become part of a telemetry. To this end, it is not necessary that
a JMX server has actually been opened to the outside. It is enough if an MBean was
registered with any MBean server internally.

58

In the "Telemetries" step in the recording settings, you can add MBean telemetries and
their telemetry lines. The telemetry defines the name of the telemetry, the unit, and its
overall behavior while the telemetry lines define the actual data.

If the telemetry lines are parts of a total value, you can stack them into an area graph. If
the monitored values from different VMs should be averaged, choose the "Average values
from all VMs in the group" otherwise the values will be summed. Summing makes sense
for business measurements such as "number of logged-in users" or the use of a shared
resource such as "number of database connections".

The configurable units are base units and unit prefixes will be added as required. For
example, if you select the "bytes" unit, large values in the telemetry will be shown as "kB",
"MB" and "GB" automatically. Sometimes a scale factor has to be applied to get from the
recorded value to the selected unit. You can add that scale factor as a negative power
of 10. For example, to multiply by 0.01, the scale factor is 2.

Each MBean line is defined by an MBeanobjectname and an MBeanvaluepath. You can
most easily obtain these settings by clicking on the Select button in the MBean line
configuration dialog. An MBean attribute browser [p. 86] is shown that allows you to select
a numeric value from one of the monitored VMs. The configured line names are shown in
the legend of the telemetry.

perfino will not create the platform MBean server if it does not exist, so if you configure a
telemetry from the platform MBean server, you must call

ManagementFactory.getPlatformMBeanServer();

59

in your application at startup to be sure that the telemetry will work after a restart of the
monitored VM.

Devops telemetries

To monitor any scalar value in your application, you can add a static method that returns
that number anywhere in your code. Then, annotate the method with the @Telemetry
annotation. You have to make sure that the containing class is actually loaded, otherwise
perfino will not detect the annotated method.

You can display the custom telemetry by going to the "VM Data Views" and locating the
telemetry under the "Custom telemetries" node.

Once an annotation telemetry was detected by perfino, it will always be shown in this list,
regardless of whether the annotated method is currently available in a connected VM.
When you retire such a telemetry, go to the general settings, and click on Configure Hidden
Devops Telemetries. Here you you can hide selected telemetries. Note that the telemetries
are matched by name and not by the annotated method.

For more information, please see the Javadoc of thecom.perfino.annotation.Telemetry
class in the api/doc directory of your perfino installation.

Time zones

All displayed times are expressed in the time zone of the server. If you are in a different
time zone, there will be an offset. perfino detects this condition by inspecting the time zone
provided by the request headers from your browser. In that case, the current time with an
explicit time zone is shown in the header.

60

Thresholds
Thresholds detect anomalous conditions for telemetries. Threshold violations are not
directly coupled to alerts or other actions, they just increase an associated counter.
Thresholds can be configured for single VMs or for VM groups. This is different from
triggers [p. 64] that always operate on a VM group level rather than for single VMs.

For singleVMthresholds, the telemetry value of each VM is checked, and for each offending
VM a threshold violation is created. For example, you may have an upper bound on the
used heap and each VM that uses more than that gets its own threshold violation.

For VM group thresholds, the telemetry value of the VM group is checked, and only one
threshold violation is created no matter how many VMs violate the threshold individually.
Imagine a database that serves 10 VMs in a VM group. If that database becomes very
slow and you have defined a threshold for the average JDBC execution time, all 10 VMs
will report a threshold violation. In the end, you just want one alert and not 10. In addition,
the averaged group value is smoother, and fewer spurious threshold violations will occur
than for single VM thresholds.

All telemetries that show frequency data are summed for VM groups. If you have 10 VMs
that perform 10 JDBC statements per second, the VM group will show 100 JDBC statements
per second. If your acceptable range is defined for the total values rather than the loads
on the single VMs, then you have to configure your threshold as a VM group threshold.

VM 1
Violations: 1

VM 2
Violations: 2

VM 3
Violations: 0

VM 4
Violations: 2

Group EDS/DB
Violations: 3

Group EDS/RMI
Violations: 2

Group EDS
Violations: 5

The counter is maintained on a per-VM level for single VM thresholds as well as on a VM
group level. When a threshold violation occurs, it bubbles up through the parent hierarchy,
increasing all the associated counters by one. At each VM group in that hierarchy, you
can define triggers that react to the corresponding number of threshold violations.

Configuration

You can define thresholds for each telemetry in the recording settings of a VM group. A
threshold definition has an associated telemetry and optional lower and upper bounds.
The available units depend on the selection of the telemetry.

61

In some cases, you need multiple threshold definitions for the same telemetry, for example,
to designate different severities. In that case, you have to give the thresholds different
custom names, like "High average JDBC execution time" and "Very high average JDBC
execution time". These definitions can be used as the basis for triggers with different
escalation strategies.

To avoid spurious firing of threshold violations, a minimum time can be configured for
which the bounds have to be exceeded before a threshold violation is detected. After a
threshold has fired, there is an inhibition time, during which the threshold is muted and
cannot fire again. This serves to prevent frequent firing in the case of oscillating conditions.

Inhibit duplicate time

Min. Min. Min.

Threshold violation Threshold violation

Time

Threshold

If the threshold is continuously violated, perfino will not fire any more threshold violations
during that time. There is a checkbox to disable this constraint. If disabled, new threshold
violations will be fired at a constant rate with a period of the configured inhibition time.

Like for transactions and method sampling filters, you can save and load sets of thresholds.
This makes it possible to copy and paste threshold definitions between VM group
configurations.

62

Threshold violation data

While threshold violations are mainly used to generate alerts, it can be useful to inspect
the actual data to see where the threshold violations are coming from. In the VM data
views, the "Threshold violations" view shows a list of threshold violation types. Each threshold
violation type contains a cumulated group hierarchy tree that shows which VMs or VM
groups are responsible for the total count. The nodes in the back traces are the VM groups,
the leaf nodes are the single VMs or the VM groups where the thresholds are defined.

63

Triggers
While policies [p. 36] and thresholds [p. 61] detect anomalous conditions and display
them in the dashboard and the VM data views, they cannot take any actions by themselves.
With triggers, you can react to policy and threshold violations and execute a list of
configurable actions.

Mechanism

Triggers operate on a different level than policies and thresholds. The latter are
configuration options that are applied to single VMs or VM groups. Triggers, on the other
hand, are not directly coupled to single policy or threshold violations. Rather, they react
to sequences of such events that originate from all monitored VMs in a VM group.

This mechanism is intended to give you greater flexibility for deciding what constitutes a
condition that requires a particular action. For example, you might expect up to one slow
URL invocation when a cache is rebuilt. However, if there are five slow URL invocations per
hour or more, then something is wrong. The definition of what is acceptable and what is
not, strongly depends on the type and the implementation of your application.

Time

1 hour

Time

1 hour

Limit: 5 policy violations per hour

OK

Fire trigger

1

5

Configuration

In the recording settings, you can edit triggers for each VM group. Triggers operate on all
recursively contained VMs. It is possible to define different triggers for a VM group and an
ancestor VM group, both sets of triggers are handled separately.

In some cases, triggers are fired too often. For that case, perfino allows you to disable a
trigger until you have time to figure out how to change the underlying configuration.

64

Like for transaction definitions and other entities in perfino, triggers can be saved to and
loaded from trigger sets. This enables you to copy and paste trigger definitions as starting
points to multiple VM groups.

Trigger types

There are three types of triggers:

• Policy triggers

Policy triggers are fired when the policy violations of a set of transactions exceed a
defined number during a specified period of time. The filter text field takes a transaction
name pattern, either a wildcard expression or a regular expression. Also, policy triggers
are configured for particular policy violation types.

You can have multiple policy triggers, each matching different transaction names.
Unlike for transaction definitions, there is no name matching for policy triggers where
only the first matching entry is used. If you add more than one trigger for the same
transaction name, you will probably want to set different event rates, otherwise both
triggers will be fired at the same time.

65

The trigger condition is decoupled from the actual condition of the policy violation.
Various transactions can define different times after which a transaction is characterized
as "very slow", the policy trigger then counts these events.

• Threshold triggers

Threshold triggers are fired when the rate of threshold violations for a selected telemetry
exceeds a configured value. This requires that you have configured at least one
threshold [p. 61] for the same VM group.

Like for the policy trigger, the trigger condition does not define an actual threshold.
Thresholds can be defined differently in different descendant VM groups, and the
threshold trigger then counts threshold violations.

As an example, imagine you have two groups of machines, powerful machines and
legacy machines. On a powerful machine, the number of threads may not exceed 1000,
on a legacy machine that threshold is just 500. You would create VM groups named
"Powerful" and "Legacy" and define the corresponding thresholds in the recording settings
of each group as well as a default threshold in the "All VMs" group. Then, in the "All VMs"
group, you would define a threshold trigger for the thread count telemetry. That trigger
would handle both VM groups at the same time.

66

• Connection trigger

The number of connected VMs is a scalar value that originates in the perfino collector
and not in the monitored VMs. The connection trigger is intended to take action in the
case that too few VMs are running. The configured minimum number is not reached
immediately when the perfino server is started, so you have the option of arming the
trigger only after the minimum number has been reached for the first time, or after a
fixed amount of time has passed.

Trigger actions

Each trigger can have an arbitrary list of actions.

The types of actions that can be added to a trigger can be ordered into two categories:

• Notification actions

Notifications can be created for consumption inside perfino. Apart from the alerts
mechanism [p. 69], you can write to the log file or to the inbox. Alerts are visible in the
dashboard and are saved as historical data. The inbox is maintained for each user and
has an "unread status" on a per-user basis. Externally, you can send emails or invoke
webhooks (1). For sending emails, the SMTP configuration in the general settings has to
be valid.

(1) https://en.wikipedia.org/wiki/Webhook

67

https://en.wikipedia.org/wiki/Webhook

Emails get a subject line that indicates which VM cause the trigger to file, in webhook
actions you can use the character sequence@TRIGGER@ to insert this message into
headers, query parameters or a JSON request body.

• Data collection actions

As a reaction to anomalous conditions, you can decide to record more data for a
detailed analysis. Some of these data recording options are more intrusive than the
regular perfino recording.

For example. saving an HPROF heap snapshot should not be done on a regular basis,
but if memory is low, it will help you to find a memory leak. HPROF snapshots are written
directly by the JVM and do not require a native JVMTI profiling agent to be loaded. As
such, this is a low-risk activity, although the VM is halted until the snapshot is saved.
JProfiler and other Java profilers can open HPROF snapshots.

For getting memory information with a low overhead, use the action to take a memory
snapshot. Memory snapshots are shown in the "Memory" view in the "VM data views"
section.

Thread dumps are a basic low-overhead way to inspect what is currently happening
in a JVM. A policy trigger with event type "overdue" can save a thread dump, so you can
immediately see in which method a transaction is hanging.

Recording data in profiling mode is an escalation in CPU data gathering that requires
a native JVMTI agent to be loaded. The native perfino agent operates in a restricted
mode that is optimized for minimum overhead and minimum risk. More information on
this topic is available in the chapter oncross-over to profiling [p. 96].

The data collection actions are also available in the "VMs view" when clicking on the
"actions" link next to a connected VM.

The list of actions is executed in order. If one action fails, perfino jumps to next action and
does not terminate the execution of the trigger actions.

68

Alerts
Alerts communicate anomalous conditions to you and other users of the perfino UI server.
By default, perfino does not create any alerts since the conditions that are noteworthy on
such a level are highly individual.

Configuration

To create alerts, you have to add a trigger [p. 64] that fires for a specified policy or threshold
violation. In the list of actions, add a "Create dashboard alert" action.

When configuring the "Create dashboard alert" action you can specify a category. This
selection determines the color of the alert bars in the dashboard:

• Error
 Red alert bars

• Warning
 Orange alert bars

• Info
 Green alert bars

With the configured text message, you will be able to identify the origin of the alert in the
data views.

69

Data

Alerts are displayed in the dashboard. They are drawn as alert bars over the transaction
timeline. In this way, you can quickly correlate an alert with an increase in the general
activity of your application.

If there is more than one alert in the same time slot, just one alert bar is shown with a
height proportional to the number of contained alerts. If those alerts are from different
categories, the associated colors are shown stacked on top of each other. The tool tip
shows the number of alerts in each category.

Clicking on the alert bar brings up the alert detail dialog where you can see exact times,
categories and the text messages that were configured in the trigger action. To view all
alerts in the time range that is currently displayed by the transaction time line, click on
the "show all alerts" link in the top-right corner.

70

The "Last VM" column in the detail dialog shows the VM that was responsible for triggering
the alert. Note that triggers always react to policy and threshold violations of entire VM
groups, so multiple VMs may contribute to the condition that creates a single alert.

The dashboard only shows alerts from the selected period and from VMs that are
recursively contained in the selected VM group. By changing the period or the VM group
selection, you can limit the displayed alerts to your focus of interest.

To analyze alerts in a historical context, go to the alerts view in the "VM data views". Here
you can see alerts from previous days, weeks or months. If the "Auto-update" check box
is selected, alerts are displayed as soon as they are generated by perfino. Also, you can
inspect alerts from a single VM only, which is not possible in the dashboard.

71

End User Experience Monitoring
For web requests, the server transaction time is shorter than the page load time in the
browser. Secondary requests that are triggered by the page can lead to an unacceptable
end user experience even though your server monitoring indicates that everything is fine.

perfino includes a servlet filter that injects a Javascript snippet into HTML pages and reports
the page load time back to the server. In addition, a transaction ID is sent back so that
perfino can correlate execution times of web transactions and the associated page load
times. The snippet is very small and does not require any external libraries. The overhead
is also extremely small, since the snippet only runs after the page has loaded and the
Web Performance API is used to get the timing directly from the browser.

TimeRequest
end

HTML

Javascript
injection

Report page
load time

TimeRequest
start

Page load
completed

Application
server

Browser

perfino
agent

Filter

There are no cross-origin request problems with this scheme, because the browser sends
the data back to the application server where the page was loaded from. A servlet filter
provided by perfino reads the timing data and reports it to the perfino monitoring agent.
From there it is transmitted to the perfino collector.

Typically, you do not need page load times from all HTTP requests that create HTML pages,
so you just sample a particular percentage. This percentage value can be configured in
the policies configuration of web transactions. To disable this feature, set the percentage
value to 0%.

72

In the VM data views, the "Transactions" view category holds the "End user monitoring"
view. It is structured like the hot spots view with different time ranges and navigation
buttons to show previous intervals. The table lists all web transactions for which end user
monitoring data has been received by the perfino collector.

From the ratio of the page load duration and the transaction execution time, an overhead
column is calculated. The "Samples" column shows you how many measurements were
taken, while the "Transactions" column contains the total number of transactions. Their
ratio should correspond to the sampling percentage above. It can be slightly lower due

73

to incomplete page loads and browsers that do not support the Web Performance API.
To get better statistics, switch the time range to a longer interval.

Using the servlet filter

The servlet filter that injects the monitoring Javascript snippet into HTML pages is contained
in the perfino API that is located in the JAR file api/perfino_api.jar. See the javadoc
overview for how to download this JAR file with Maven, Ivy or Gradle.

To enable end user experience monitoring, you have to add a filter definition to your web.
xml file:

<filter>
<filter-name>euem</filter-name>
<filter-class>com.perfino.filter.EndUserFilter</filter-class>

</filter>

In addition, you need at least one filter mapping that passes your HTML pages through
this filter:

<filter-mapping>
<filter-name>euem</filter-name>
<url-pattern>/*</url-pattern>

</filter-mapping>

Only HTML files with a head tag are processed, other files are left unmodified. HTML pages
that are not generated as part of a business transaction are not injected.

If you have filters that compress your pages, you have to make sure to insert the
EndUserFilter after any such filters, so that it can detect and modify the HTML content.

The Javascript snippet is loaded from and reports back to URLs below [context path]/
__perfino. You have to make sure that URLs matching /__perfino/** are passed to the
filter. In the above example configuration, that would be the case. If the filter mapping
only handles selected URLs, the following additional filter mapping has to be added as
the first mapping:

<filter-mapping>
<filter-name>euem</filter-name>
<url-pattern>/__perfino/*</url-pattern>

</filter-mapping>

Cached pages

If you use a filter to cache certain HTML pages, you might want to disable end user
experience monitoring for those pages by adjusting the URL pattern for the EndUserFilter.
If you really want to monitor cached pages, make sure that the sampling percentage for
end user experience monitoring is set to 100%, otherwise not all cached pages will include
the Javascript snippet.

Since the load time of the page will not be correlated to the transaction time on the server
in that case, the average overhead may become negative. In that case, the perfino UI
shows [Cached] instead of the negative percentage number. In the time lines for the
overheads of a single transaction, negative overhead percentages due to caching are
set to zero.

74

For cached pages, a dynamic change of the transaction naming configuration will not
propagate to the browser. perfino uses a hashing technique to detect pages that were
generated with a different configuration and ignores the reported load times.

75

Memory
Memory analysis in perfino is always on a per-VM level. Two kinds of memory snapshots
can be taken and analyzed: Low-overhead memory snapshots and HPROF snapshots.

Memory snapshots

Low overhead memory monitoring is only possible at a "shallow" level. The JVM knows
about loaded classes, and instance counts and exposes this information. There is no kind
of reference information available, which is important for solving memory leaks.
Nevertheless, classes and instance counts give you a good initial overview of the memory
consumption inside a JVM. For historical comparisons [p. 83], plotting the instance count
of a particular class against time often shows important trends.

To get a basis for historical comparisons, memory snapshots are recorded once per day.
This default can be changed on the "Recording" step of the VM group configuration. You
can change the period for memory snapshot recording or disable it altogether.

When you open the "Memory" view in the "VM data views", you are required to select a
single VM or a VM pool with the VM selector in the top-left corner. After you make this
choice, the navigation controls in the top right corner are enabled and you can move to
the most recent snapshot with the Previous button.

If you select a VMpool, you must select a specific snapshot. In this way, you also narrow
your focus to a particular VM from the VM pool, and the VM selection will be set to that VM

76

for all VM data views. To move back to the entire pool, simply click on the "Move one level
up" link below the VM selector.

The record button takes a new snapshot and displays it immediately. Since periodic
snapshots are taken quite rarely, this strategy may be necessary if you want to analyze
a current situation.

If you have selected a VM pool, perfino asks you for which VM the snapshot should be
taken. Just as when selecting an existing snapshot for a VM pool, the VM selection is then
changed to that particular VM.

A memory snapshot is a list of loaded classes together with their instance counts and
shallow sizes. "Shallow" size means that only the direct size of the object is counted. This
includes pointer sizes for referenced objects, but not the referenced objects themselves.
Any other size calculations like deep size or retained size would require information about
references which are not available with this low-overhead technique.

77

The snapshot selector shows you all memory snapshots that are stored in perfino for
the current VM selection. This is also the place to delete snapshots.

You can also take memory snapshots with the corresponding trigger action [p. 64] or by
clicking on the "actions" link next to a VM in the VMs view and selecting "Take memory
snapshot".

78

HPROF snapshots

Advanced memory analysis that can give answers to questions like

• What is the cause for the memory leak in my application?
• My application needs a lot of memory, how can I reduce memory consumption?
• Where does this class loader leak come from?

require a full heap dump.

The JVM can save memory snapshots directly in a format called HPROF without the help
of native JVMTI profiling agents. Saving HPROF snapshots is a low-risk operation, but during
the time that such a snapshot is saved, the JVM is slowed down or temporarily halted.

You can save HPROF snapshots with triggers [p. 64] or manually in the VMs view, by clicking
on the "actions" link next to a VM and selecting "Save HPROF memory snapshot".

79

The snapshot will be delivered to your inbox when it is ready. This can take a few seconds.
If the snapshot is large and the network connection between the perfino collector and the
monitored VM has low bandwidth, it can also take several minutes. From the inbox, you
can download the snapshot and load it with JProfiler or other Java profilers.

Note that if a sampling operation started with the "Record fine-grained CPU data in profiling
mode" is currently in progress, the heap dump will only be taken after that operation has
completed.

Snapshots are stored indefinitely until you delete them from the "Snapshots" view. The
inbox item just notifies you about a new snapshot, deleting the inbox item will not delete

80

the snapshot itself. In the "Snapshots" view you can select the VM group or VM to show
only snapshots that have been taken for the selected VMs.

Heap telemetry

Information about free heap and used heap is always available with a fine time resolution.
As such, they are an ideal basis for trigger conditions that save HPROF snapshots in case
of low memory.

To do that, define a threshold for the "Free heap" telemetry with a specified lower bound
in the recording settings. In the trigger settings, add a threshold trigger for that threshold
and add a "Save HPROF memory snapshot" action to the trigger.

81

perfino only takes a memory snapshot for the last VM where a threshold violation was
detected, not for all such VMs.

82

Historical Comparisons
perfino stores data for long periods of times, in some highly aggregated forms even
indefinitely. Apart from telemetries where the main content of the view already is a historical
comparison by itself, the VM data views show data from a certain time interval and let
you move back and forth to adjacent intervals or select arbitrary intervals in the past.

In addition to looking at this historical data to analyze it by itself, many VM data views
offer facilities to make historical comparisons. There are two kinds of comparisons:
Comparing all the content from two selected points in time and comparing one scalar
value for many points in time.

Content comparisons

Content comparisons are available in the views that show transactions as well as the
probe hot spots views. To start a comparison, click on the "Compare" link in the top right
corner. This immediately shows you a comparison between the following intervals:

• Second interval
The second interval is the interval you were looking at before clicking on the "Compare"
link. You can adjust the second interval with the same navigation controls as before.

• First interval
The first interval is set to the interval just preceding the second interval. New navigation
buttons are shown that let you adjust the first interval as required. With the date and
time chooser you can jump back to arbitrary points in time.

Transaction data is aggregated, so as you move the first interval back in time, you will hit
the limit of stored data. At that point, you have to switch to a larger resolution for which
data is retained longer. The available display intervals with their retention times are:

83

Retention pooled
VMs

RetentionVMgroupsRetention single VMsDisplay interval

12 hours27 hours27 hours1 minute

12 hours27 hours27 hours10 minutes

10 days10 days30 days1 hour

60 days120 daysunlimited1 day

The retention times for VM groups are lower to reduce storage requirements. Analyzing
single pooled VMs is only useful for fixing a problem and not suitable for long-term analysis,
so the retention times for pooled VM data are even lower.

In a comparison view, all measurements that are shown in the regular view get an
additional column that shows the difference between the second and the first interval. In
addition, the measurement columns are shown with a difference bar in the background:

• If the value has increased, the total length of the bar corresponds to the value in the
second interval, with the increase shown in green.

• If the value has decreased, the total length of the bar corresponds to the value in the
first interval, with the decrease shown in red.

• The unchanged fraction is shown in gray.

Timelines

If you click on the "timelines" link next to an element in any of the transaction views, you
can choose which column should be plotted over time.

The timeline will replace the default transaction telemetry in the split panel below the view.
Clicking on the close button will restore the default state. Unlike the default transaction
timeline that shows all transactions split into policy violation lines, these timelines are
calculated from the transaction trees, and each point in such a timeline corresponds to
one specific transaction interval. Instead of a highlighted time range, the currently selected
transaction interval is shown as a special marker on the corresponding data point.

84

Time line data is not available for the one-minute resolution, so the time line links are not
shown for that display interval. For other display intervals, the data points in the time line
initially match the display interval in the data view, so that the numbers are comparable.
The timeline has navigation buttons itself which take you to different intervals of the entire
timeline, just like for telemetry views.

The following display intervals in the data view and the time line are compatible with
respect to the measured intervals:

Time lineData view

3/6/12 hours10 minutes

1/3/6 days1 hour

12/30/60/180 days1 day

To get the chronological context for the data displayed above, look for the up-arrow icon
in the timeline. You can navigate to different points in time by clicking on them.

If you change the display interval of the time line and then click on a data point in the
time line, the resolution of the data view will be adjusted to be compatible with the time
line. Then, the current time can be marked.

If you select a new timeline in the data view, the old timeline will be replaced. Any change
in the parameters of the data view will automatically close the timeline.

85

MBean Browser
Introduction

Many application servers and frameworks such as Apache Camel (1) use JMX to expose a
number of MBeans for configuration and monitoring purposes. The JVM itself also publishes
a number of platform MXBeans (2) that present interesting information around the low-level
operations in the JVM.

perfino includes an MBean browser that shows all registered MBeans in a selected VM.
The remote management level of JMX for accessing MBean servers is not required, because
the perfino agent is already running in-process and has access to all registered MBean
servers.

perfino supports the type system of Open MBeans. Besides defining a number of simple
types, Open MBeans can define complex data types that do not involve custom classes.
Also, arrays and tables are available as data structures. With MXBeans, JMX offers an
easy way to create Open MBeans automatically from Java classes. For example, the
MBeans provided by the JVM are MXBeans.

The "MBean browser" view in the "VM Data Views" shows all registered MBeans in one
selected JVM. If you have selected a VM group, you have to switch to a single VM first. If
you have selected a VM pool, the context area will show an image button that will
present a list of pool VMs.

While MBeans have no hierarchy, perfino organizes them into a tree by taking the object
domain name up to the first colon as the first tree level and using all properties as
recursively nested levels. The property value is shown first with the property key in brackets
at the end. The type property is prioritized to appear right below the top-level node.

Attributes

At the top level of the tree table showing the MBean content, you see the MBean attributes.

The following data structures are shown as nested rows:

(1) https://camel.apache.org/camel-jmx.html
(2) https://docs.oracle.com/javase/7/docs/technotes/guides/management/mxbeans.html

86

https://camel.apache.org/camel-jmx.html
https://docs.oracle.com/javase/7/docs/technotes/guides/management/mxbeans.html

• Arrays
Elements of primitive arrays and object arrays are shown in nested rows with the index
as the key name.

• Composite data
All items in a composite data type are shown as nested rows. Each item can be an
arbitrary type, so nesting can continue to an arbitrary depth.

• Tabular data
Most frequently you will encounter tabular data in MXBeans where instances of java.
util.Map are mapped to a tabular data type with one key column and one value
column. If the type of the key is a simple type, the map is shown "inline", and each
key-value pair is shown as a nested row. If the key has a complex type, a level of "map
entry" elements with nested key and value entries is inserted. This is also the case for
the general tabular type with composite keys and multiple values.

Optionally, MBean attributes can be editable in which case an edit link will be displayed
next to their value. MBean attributes can only be edited by a user with at least the "profiler"
access level. Composite and tabular types cannot be edited in the MBean browser, but
arrays or simple types are editable.

If a value is nullable, such as an array, the editor has a checkbox to choose the null state.

Array elements are separated by semicolons. One trailing semicolon can be ignored, so
1 and 1; are equivalent. A missing value before a semicolon will be treated as a null value
for object arrays. For string arrays, you can create empty elements with double quotes
("") and elements that contain semicolons by quoting the entire element. Double quotes
in string elements must be doubled. For example, entering a string array value of

"Test";"";;"embedded "" quote";"A;B";;

creates the string array

new String[] {"Test", "", null, "embedded \" quote", "A;B", null}

perfino can create telemetries from numeric MBean attribute values. When you define
an MBean telemetry line [p. 54] in the recording settings, the Select button will bring up
an MBean attribute browser with a VM selector on top. After you select a VM, you can
choose an MBean attribute. Contrary to the MBean browser, the attribute rows are
selectable in this case.

87

A telemetry can also track nested values in composite data or tabular data with simple
keys and single values. When you chose the nested row, a value path is built where path
components are separated by forward slashes.

Operations

In addition to inspecting and modifying MBean attributes, you can invoke MBean operations
and check their return values. MBean operations are methods on the MBean interface
that are not setters or getters. To be able to invoke MBean operations, a user has to have
at least the "profiler" access level.

The return value of an operation may have a composite, tabular or array type, so a new
window with a content similar to the MBean attribute tree table is shown. For a simple
return type, there is only one row named "Return value". For other types, the "Return value"
is the root element into which the result is added.

MBean operations can have one or more arguments. When you enter them, the same
rules and restrictions apply as when editing an MBean attribute.

88

89

REST Export API
Introduction

In the perfino UI, the data views have an export button that allows you to extract the
displayed data in a machine-readable format for further processing.

Depending on the type of data, the supported formats are JSON, XML and CSV.

To automate external data analysis, as well as to hook up perfino to other monitoring
systems, this manual export is impractical. In that case, you can use the REST export API
instead.

By default, the REST API service is not made available. You can enable it by setting the
"restApi" property [p. 106] in perfino.properties to a non-zero value. The protocol on the
configured port is the same as that of the web server, meaning either HTTPS or HTTP.

Once enabled you can make HTTP(S) calls to the configured port to retrieve recorded
data. Just like in the web UI, you can request data for single VMs, or ask for cumulated
data for a particular VM group.

Using the API

Access to the API is protected with basic HTTP authentication. This means that the API key
will only be encrypted when using HTTPS as the protocol. Since the API does not make any
modifications, any configured user with an API key can export data with the REST API
regardless of the access mode.

You can create an API key by clicking on "API key" menu item in the user drop-down at the
top of the perfino UI. You will only see the generated API key once. If you confirm the dialog,
the new API key will become active and any previous API key will become invalid.

The returned format depends on the "Accept" header of the HTTP request. The following
mime types are supported:

90

• text/plain
The output will be plain text. If multiple columns are available, CSV data is written. For
hierarchical data, only the top-level will be exported. The separator is a comma by
default, but you can change this with the csvSeparator URL query parameter. The
winLineBreak URL query parameter changes the default line feed from LF to CR+LF.

• application/json
The output will be in JSON format. Use application/json;charset=UTF-8 to ensure
that the output is in UTF-8 encoding regardless of other accept headers.

• application/xml
The output will be in XML format.

A call to the REST API consists of one or more URL segments, followed by a list of query
parameters. For example, if the configured API port is 8500, a call to

https://localhost:8500/groups

lists all groups that are configured in perfino. The URL

https://localhost:8500/transactions/callTree?group=Demo%2FWeb&interval=10min

retrieves the call tree data for the VM group "Demo/Web" for the last 10 minutes. Note the
URL-encoded forward slash in the group name.

All start and end times can be specified in milliseconds between the current time and
midnight, January 1, 1970 UTC or in one of the following formats:

DescriptionExampleFormat

Date and time in the local time of
the server. All shortened versions
will be equal to providing zeros.

2016-03-02T22:40:00.000

2016-03-02T22:40:00

2016-03-02

yyyy-MM-dd'T'HH:mm:
ss.SSS

yyyy-MM-dd'T'HH:mm:
ss

yyyy-MM-dd

Date and time in UTC. All
shortened versions will be equal
to providing zeros.

2016-03-02T22:40:00.000Z

2016-03-02T22:40:00Z

2016-03-02Z

yyyy-MM-dd'T'HH:mm:
ss.SSS'Z'

yyyy-MM-dd'T'HH:mm:
ss'Z'

yyyy-MM-dd'Z'

API documentation

The following URLs are available:

91

• /groups
Returns a list of all VM groups. The group hierarchy separator is a forward slash. All
nodes in the tree table of the recording options are returned in a breadth-first manner.
In XML and JSON, the "pool" attribute shows if the group is a VM pool or not.

• /vms
Returns a list of VMs. The names include the hierarchical group path as returned by the
/groups URL. Individual pool VMs are not returned.

DescriptionQuery Parameter

A specific group the VMs should be listed from. If unspecified,
all VMs are returned.

group

If set to true, only currently connected VMs are returned.connected

• /telemetries
Returns a list of all available telemetry types, to be used in the URL below.

• /telemetries/{telemetryType}
Returns the specified telemetry data. The values of {telemetryType} must be one of
the values that is returned by the /telemetries URL above.

DescriptionQuery Parameter

A telemetry interval. Possible values are 10min, 3h, 3d, 30dinterval

You can specify a start or an end time in addition to the interval.
For time formats, please see above. If left out, the current time
will be used as the end time.

startTime

endTime

You can specify a vm name or a group name. If left out, all VMs
will be used.

vm

group

If set to true, JSON and XML output will be pretty printedpretty

If text/plain is requested, you can specify a custom separator
char

csvSeparator

If set to true and if text/plain is requested, CR+LF line breaks
will be written instead of LF line breaks.

winLineBreak

• /transactions/{dataType}
Returns the specified transaction data. Possible values of {dataType} are callTree,
hotSpots, overdue and endUser.

92

DescriptionQuery Parameter

A transaction interval. Possible values are 1min, 10min, 1h, 1dinterval

You can specify a start or an end time in addition to the interval.
For time formats, please see above. If left out, the current time
will be used as the end time.

startTime

endTime

You can specify a vm name or a group name. If left out, all VMs
will be used.

vm

group

If set to true, policies will be merged for the data types
callTree and hotSpots.

mergePolicies

If set to false, origins will be shown for data type callTree.removeOrigins

If set to true, JSON and XML output will be pretty printedpretty

If text/plain is requested, you can specify a custom separator
char

csvSeparator

If set to true and if text/plain is requested, CR+LF line breaks
will be written instead of LF line breaks.

winLineBreak

• /probeHotSpots
Returns a list of all available probe types to be used in the URL below.

• /probeHotSpots/{probeType}
Returns the specified probe hotspot data. The values of {probeType} must be one of
the values that is returned by the /probeHotSpots URL above.

DescriptionQuery Parameter

A transaction interval. Possible values are 1min, 10min, 1h, 1dinterval

You can specify a start or an end time in addition to the interval.
For time formats, please see above. If left out, the current time
will be used as the end time.

startTime

endTime

You can specify a vm name or a group name. If left out, all VMs
will be used.

vm

group

If set to true, policies will be merged.mergePolicies

If set to true, JSON and XML output will be pretty printedpretty

If text/plain is requested, you can specify a custom separator
char

csvSeparator

93

DescriptionQuery Parameter

If set to true and if text/plain is requested, CR+LF line breaks
will be written instead of LF line breaks.

winLineBreak

• /alerts
Returns the specified list of alerts.

DescriptionQuery Parameter

You can specify a start and an end time. If one is left out, one
day will be exported. If both are left out the current time will be
used as the end time.

startTime

endTime

You can specify a group name. If left out, all VMs will be used.group

If set to true, JSON and XML output will be pretty printedpretty

If text/plain is requested, you can specify a custom separator
char

csvSeparator

If set to true and if text/plain is requested, CR+LF line breaks
will be written instead of LF line breaks.

winLineBreak

• /violations
Returns the specified threshold violation data.

DescriptionQuery Parameter

You can specify a start and an end time. If one is left out, one
day will be exported. If both are left out the current time will be
used as the end time.

startTime

endTime

You can specify a vm name or a group name. If left out, all VMs
will be used.

vm

group

If set to true, JSON and XML output will be pretty printedpretty

If text/plain is requested, you can specify a custom separator
char

csvSeparator

If set to true and if text/plain is requested, CR+LF line breaks
will be written instead of LF line breaks.

winLineBreak

• /triggerBackup

Triggers a backup of the database. The backup files are written to the backup directory
inside the perfino data directory. You need to authenticate with an admin user in order
to be able to use this URL.

94

The return value of this call is the absolute directory path of the backup directory.

To restore such a backup, stop the perfino server, replace the contents of the "db"
directory with the contents of the "backup" directory and start the perfino server again.

If the REST API is impractical to use, or if you have not activated it for your perfino
installation, you can also create a file named trigger_backup in the perfino data
directory. After the backup has been completed successfully, the file will be deleted
and the backup will be performed.

95

Cross-over To Profiling
There are several reasons why you should not have a profiler running in production at all
times. For one, there is the overhead that may be unacceptably high depending on the
profiling settings. Profilers are geared towards maximizing the extraction of useful
information with no explicit guarantees as to the incurred overhead. Also, the use of the
native profiling interface in the JVM (JVMTI) is something that is an additional risk in a
production environment. Depending on whether you use non-standard garbage collectors
or other JVM tuning options, there may be stability concerns, since the JVM is not tested
as extensively with JVMTI as it is without.

However, the best defense against performance problems is defense in depth. Sometimes
there are situations that require more information than what can be obtained from the
low overhead monitoring and sampling techniques that are available in perfino.

Recording CPU snapshots

For these cases, perfino offers a full sampling mode that loads a native JVMTI library
that is optimized for in-production use. The result of this operation is a JProfiler snapshot
file that can be downloaded from perfino and opened in JProfiler - similarly to the HPROF
memory snapshot files [p. 76] that are saved directly by the JVM.

This profiling mode is only available if the correct native libraries are present in the lib/
[platform] directory next to the perfino.jar file that was used in the -javaagent VM
parameter. If you download the agent [p. 12] from the perfino UI, native libraries for all
supported platforms are already included. If you copy the agent yourself from the perfino
installation directory, copy the agent/lib directory along with it.

Once the JVMTI has been turned on, it cannot be turned off again. As long as the JVM is
running, it will remain in this state. Typically, the overhead of the JVMTI without any data
recording is less than 1%, though.

To take a CPU snapshot of a particular VM, go to the VMs view, click on the "actions" link
next to the VM and select "Record fine-grained CPU data in profiling mode".

96

The duration of CPU recording can be configured. perfino monitoring is not impacted by
CPU sampling. Also, you can specify if the call tree should be split for each transaction or
not. This is a top-level split, and the sampling call tree is appended to the perfino
transaction tree (see below). Whether this split is beneficial or not depends on your
transaction definitions and what kind of problem you want to find. The overhead for
sampling with transaction splitting is higher than without.

To take snapshots automatically if the CPU load is too high, you can set up a threshold
for the CPU telemetry and configure a trigger that includes the "Record fine-grained CPU
data in profiling mode" trigger action.

97

Note that only the last offending VM will be profiled, not all of them.

If you use a custom library for network I/O, you can add selected methods to the net I/O
thread state [p. 128], so that you get useful hot spots for your analysis.

Viewing CPU snapshots in JProfiler

CPU snapshots are delivered to your perfino inbox from where you can download them.
The file extension is ".jps" which stands for "JProfiler snapshot". If you have JProfiler installed,
you can double-click on the snapshot file to open it, or choose Session->Open Snapshot
from JProfiler's main menu.

CPU snapshots taken by perfino only contain data for the call tree, hot spots and call
graph views as well as the thread history and thread monitor views. Other views are
disabled when you open a perfino CPU snapshot.

If transaction splitting was enabled for CPU recording, the perfino call tree is shown at the
top and the sampling data is attached as appropriate.

98

The back traces in the hot spots view also show the perfino transactions in this case.

The attribution of sampling data to transactions is not exact, but only an estimation based
on the analysis of subsequent sampling call stacks. For very short running transactions
(< 5ms), sampling data may be attributed to another transaction or even be placed
outside any transaction.

In the thread history view, you can check when threads were created or terminated and
what kind of activity they performed over their recorded lifetime. Only green areas indicate
times when the thread was actually eligible to execute methods. Other thread statuses

99

designate idle time while waiting or blocking on monitors or reading or writing to network
sockets.

Full profiling

Sometimes performance or memory problems are so tricky that you need the entire
arsenal of recording techniques that a profiler has to offer. For example, the capabilities
of the heap walker for live heap snapshots can be instrumental for solving a memory leak
or the CPU and probe profiling features may be required for understanding a performance
problem. Questions involving threading issues, monitors and locks can only be solved in
JProfiler and not in perfino.

perfino helps you to cross over to full profiling with the minimum amount of intrusion into
your production environment. If a JProfiler installation can be found, perfino can load its
agent into a monitored VM and prepare it for a connection from the JProfiler GUI. Use the
"Detach VM for JProfiler" action in the VMs view to initiate this process. The VM will be
detached from perfino and has to be restarted after profiling to reconnect to perfino.

100

To take advantage of this integration, you have to download the JProfiler archive (1) and
extract it in one of the following directories:

• The directory where the perfino.jar file has been installed
• The directory $HOME/.perfino on Linux/Unix or %USERPROFILE%\.perfino on Windows,

for the user who is running the monitored VM.

The JProfiler archives from the download page contain a single top-level directory named
jprofiler[major version]. The perfino agent sequentially looks for such directories in
the above locations and uses the directory with the highest version number. Any version
of JProfiler starting from 8.0.6 can be used for this integration.

If none of the standard directories above are suitable or if you already have a JProfiler
installation elsewhere, you can append the option,jprofiler=[JProfiler installation
directory] to the VM parameter for monitoring [p. 12]. If the appropriate native library
file can be found in that JProfiler installation, it will be used preferentially, otherwise the
perfino agent will continue to look in the standard directories.

If no JProfiler installation can be found, specific instructions for integrating JProfiler are
given. You can download and extract JProfiler on the machine where the monitored VM
is running and execute the "Detach VM for JProfiler" action again, there is no need to restart
the monitored VM.

If JProfiler was found, a confirmation dialog is shown, where you get the chance to configure
the profiling port to which the JProfiler GUI will attach. You can either enter the desired
port number yourself or let perfino find a free port for you. In the latter case, an inbox
message will be sent to you with the actual port number.

(1) https://www.ej-technologies.com/redir?product=jprofiler&target=download

101

https://www.ej-technologies.com/redir?product=jprofiler&target=download

In JProfiler, create a new session of type "Attach to profiled JVM (local or remote)" and
enter the IP address or host name where the VM is running as well as the port on which
the profiling agent is listening.

perfino will stop monitoring the VM when you prepare it for profiling. To monitor it again,
you have to restart the JVM.

102

Recording JFR snapshots

An alternative mechanism to get more low-level information on a monitored VM is to
record a JDK Flight Recorder (JFR) (2) snapshot. The Java version of the monitored VM has
to be 11+, and the JRE has to include the module jdk.jfr. JFR recording can have very low
overhead because it does not activate the JVMTI. Also, it does not interfere with perfino
monitoring in any way.

To record a JFR snapshot, go to the VMs view, click on the "actions" link next to the VM and
select "Record JDK Flight Recorder snapshot".

Besides configuring the duration of the JFR recording, you can choose a predefined setting
or upload a .jfc settings file that was exported from the "Flight recording template
manager" in JMC (3). The two predefined settings that are guaranteed to exist are "default"
and "profile". perfino suggests to use "profile" by default, because it records more relevant
information. Other settings can be predefined by placing .jfc files in the lib/jfrdirectory
of the JVM that is monitored. If you upload a settings file, make sure that is created for a
compatible Java version.

(2) https://en.wikipedia.org/wiki/JDK_Flight_Recorder
(3) https://openjdk.java.net/projects/jmc/

103

https://en.wikipedia.org/wiki/JDK_Flight_Recorder
https://openjdk.java.net/projects/jmc/

As with the other recordings above, JFR snapshots can also be recorded automatically
with triggers and the corresponding trigger action for JFR recording.

While you can use JMC (4) to view JFR snapshots, we recommend using JProfiler, just like
for CPU snapshots. In addition to CPU, allocation, and monitor recordings, JProfiler shows
a number of probes that are constructed from JFR events.

(4) https://openjdk.java.net/projects/jmc/

104

https://openjdk.java.net/projects/jmc/

105

A Configuration

A.1 Server Configuration
perfino configuration options that cannot be changed in the perfino UI are contained in
the text file perfino.properties in the perfino installation directory. You can either edit
that text file in a text editor or use the configure executable in the perfino installation
directory. The latter presents an organized view of all properties, saves the file even if
elevated privileges are required and can restart the perfino server to apply your changes.

The properties themselves are documented with comments in perfino.properties. Here,
a couple of scenarios are discussed where it is necessary to adjust the default parameters.

Data directory

The dataDirectory property points to the directory where all variable data is located. The
following subdirectories are created by perfino:

• db
Contains the embedded H2 database.

• log
Contains all log files. By default, log files are rotated. The rotation settings can be
changed in the log4j.properties file in the perfino installation directory. Different
settings can be applied to the three different log files, "server", "connection" and "event".
All log files can be viewed in the perfino UI.

• snapshots
Memory snapshots and profiling snapshots are saved in this directory. These snapshots
can be downloaded or deleted in the "Snapshots" view in perfino.

• ssl
This directory contains the file pair agent.ks / server.ks for authentication and
encryption as well as the SSL certificate for the web server.

If you run two perfino servers on the same machine, they have to have different data
directories. By default, the installer always suggests the same location for the data directory,
so in the case of multiple installations you have to adjust it in the installer or after the
installation in the perfino.properties file.

Web server

perfino comes with a built-in web server that listens on port 8020 by default. You can
adjust that port with the httpPort property and switch to HTTPS by setting useHttps to
true.

When you use HTTPS, perfino will generate a self-signed certificate ssl/self_signed.ks
in the perfino data directory. Browsers will display warning messages with this certificate.
If you have a certificate signed by a recognized certificate authority, you can copy it in
PKCS12 format to ssl/web.pkcs12. If the certificate file has a different name, you can
specify the keystoreName property.

If the certificate is protected with a password, you can specify it in the keystorePassword
property. While the password cannot be encrypted, it can at least be obfuscated with the
command line tool perfino_obfuscate:

106

perfino_obfuscate [password]

If you put perfino behind a reverse proxy, you have to set the reverseProxy property to
true. The web server will then analyze the proxy headers to create correct URLs. If this
should not work due to a problem with the reverse proxy, set the reverseProxyHost to the
host name of the proxy.

If you have infrastructure that can check the health of a web server by making an HTTP
GET request, you can set the healthCheckPort to a non-zero value to create such an HTTP
port in perfino. Any HTTP request to that port will return a document with HTML mime type
and the text "Alive". For example, Amazon Web Services provides a health check service
that is used by Route 53 to determine if an IP address can be routed to or not.

The REST API service [p. 90] is enabled by setting the apiPort property to a non-zero value.
You cannot set it to the same port as the web server. The REST API port uses the same
protocol (HTTP/HTTPS) as configured for the web server.

Communication with monitored VMs

Monitored VMs create a TCP connection on the port that is configured with the vmPort
property.

By default, the communication between monitored VMs and the perfino collector is
unencrypted and unauthenticated. This means that every VM can connect to the perfino
server and the perfino agent has no way of knowing if the perfino server on the other side
can be trusted. This can be acceptable in certain local area networks, but it is not suitable
for connecting over WANs or even over the internet.

To enable authentication and encryption set the property vmUseSsl to true. In that case,
the file pair ssl/agent.ks and ssl/server.ks will be created. Now, the server will only
allow connections from agents who possess the agent.ks file and agents will only connect
to servers who have the server.ks file. In addition, the communication protocol will be
encrypted.

For more information on this topic, see the chapter on monitoring JVMs [p. 12].

Remote perfino UI

Running the perfino UI on a different server than the collector can have two purposes. First,
it allows you to split the server load of the UI and the collector to separate machines, which
is a good idea if you have many users. Second, some network topologies require that the
collector runs in one and the perfino UI in another network. For example, if the collector
runs in an internal network that is protected by a dual firewall, and the perfino UI should
be available to the outside, the perfino UI has to run on a machine in the DMZ.

The first change you have to make is to set the startRemoteServer property to true. Then,
the perfino server will listen for remote perfino UIs on the port configured with the
remoteServerPort property.

The perfino UI can be deployed as a WAR file to a servlet container like Tomcat or Jetty.
The WAR file has to be generated with the deploy tool in the deploy directory of your
perfino installation. It will create the file perfino-standalone.war in the same directory.

In the application server, define the JNDI propertyï¿½perfino/server with a value of "server
name"[:port] where "server name" is the name or IP address of the server where the
perfino collector server is running. The port is optional and defaults to 1099 unless you
have configured the remoteServerPort property differently. Then, deploy the generated

107

WAR file into your application server. The perfino web application will make an RMI
connection to the configured data collection server automatically.

108

A.2 Server Administration
Many server options are contained in the file perfino.properties in the installation
directory and can only be changed when the server is restarted [p. 106]. The server
administration settings that can be changed in the perfino UI are contained in the "General
Settings". These settings include user configuration, license keys and data consolidation
options.

Access control

There are three different access levels in perfino: admin, profiler and viewer. With these
access levels you can implement a safe usage policy for the perfino UI in a larger
organization.

• Admin
When you install perfino, you have to create an admin user. Only an admin user can
open the "General Settings" and make modifications to it.

• Profiler

With the "Profiler" access level, you can assign full control for a particular VM group,
including the ability to put the JVM in profiling mode.

First, you create the VM group in the recording settings, if it does not already exist. When
creating the user, set its access level to "Profiler" and add the VM group to the list of
access rights, removing the entry for "All VM groups".

This user will now be able to change the recording settings for this VM group and all VM
groups that are contained within it. In addition, heap dumps and CPU snapshots in
profiling mode can be taken for the associated VMs.

Viewing rights are not restricted in perfino.

109

• Viewer

To give somebody access to monitoring data without the ability to change any
monitoring settings, use this access level.

LDAP authentication

Instead of managing user passwords in perfino, you can delegate authentication to an
LDAP server. After you configure a URL for the LDAP server, you can switch the type of a
user from "Local" to "LDAP" and enter the LDAP DN for the user. The LDAP server URL must
start with ldap:// or ldaps://, if you select the "Start TLS" LDAP extension, an ldap:// URL
must be used.

110

LDAP users do not have to be manually created in perfino, they can be mapped
automatically. In the LDAP server configuration, you can map the login name entered by
the user in perfino to an LDAP user DN. If no configured mapping matches, the user will
see the generic error message that the combination of user name and password is
incorrect. Local user definitions will always be given precedence to LDAP user mappings.
If a new LDAP user authenticates successfully, a new user entry will be created in perfino
and you can inspect the user details on the "Users and Roles" tab of the general settings.

A single user mapping consists of a base LDAP DN whose entire subtree will be searched.
The user filter is an LDAP filter expression containing the character sequence @USER@ that

111

will be replaced with the login name entered by the user. Each mapping has an associated
access level and may match exactly one LDAP DN. If zero or more than one matches are
found, perfino will try the next configured mapping.

License keys

As an administrator, you can add or remove license keys from perfino.

If more VMs are monitored than licenses are available, then some VMs will be marked as
"unlicensed" and no monitoring data will be available for those VMs. When you add a new
license key, perfino will start monitoring additional VMs right away, without the need for
a restart.

The license key entry dialog can take multiple license keys, with each license key on a
separate line. One of the license keys in perfino has to be a product key, otherwise no VMs
can be monitored. License keys for additional VMs increase the maximum number of
monitored VMs.

Global settings

In the global settings, you can configure an SMTP server that is used for sending emails.
Emails are only sent by "Send email" trigger actions [p. 64]. If no SMTP server is defined,
these actions do not have any effect.

112

The data consolidation options determine how long certain types of data are kept in the
database.

For transaction data [p. 83], the maximum retention time can be indefinite or a fixed
number of days. Smaller time scales are consolidated progressively and independently
of this setting, so that for times that are far in the past, there is only a relatively small
increase in the size of the database. Method samples cannot be retained longer than
transaction data.

Telemetries [p. 54] are consolidated automatically, the highest aggregation level remains
in the database indefinitely. Due to the large interval size, the linear increase in required
storage space is small.

Detailed data like method sampling takes a lot of space and is of decreasing interest the
farther back you go. After some time, it can be deleted. The higher the retention times are
set, the more disk space will be used by the database.

With the "frequency unit for telemetries" option you can make the numbers in telemetries
easier to interpret. It should be set to a value that fits with the typical throughput in your
applications. If your monitored VMs handle many transactions per second, you can set it
to "per second", if the transaction frequency is more on the order of minutes, the setting
"per hour" will be appropriate.

The global settings also show the currently installed version of perfino and let you configure
automatic update checking. If selected, perfino will check for updates within the current
major version once a day. If an update is detected, an inbox message will be sent to all
admin users. The inbox message contains the new version and hyperlinks for change log
and download. An update notification will only be shown once even if perfino is restarted.
When another version is released, a new update notification will be sent, even if you have
not updated perfino in the meantime.

Whether you have enabled or disabled automatic update checking, the manual Check
For Updates Now button performs the same check live and shows you its results in a dialog
right away.

113

A.3 Import And Export
There are several kinds of motivations for exporting and importing your perfino
configuration:

• Backup
Backing up your perfino server configuration from time to time is a good idea. The
configuration contains a lot of knowledge about your business transactions and their
expected behavior. It is a valuable piece of data that could be stored in a version control
system.

• Staging
If you have a staging environment where you try out changes in the perfino configuration
before deploying them to a production server, you need a way to transport the
configuration from one perfino installation to another.

• Unattended deployment
If you deploy your perfino server to the cloud, you probably use the unattended
installation mode [p. 116] of perfino and install it on a server instance where no perfino
server has been installed yet. In that case you have to put the exported configuration
next to the installer.

Server configuration

If you are an administrator, you can go to the general settings and select the "Export/Import"
tab. The entire configuration is exported to an XML file. When you import that file, the entire
server configuration is replaced. The change does not happen until you click on Apply
Settings. It is not possible to delete the current user that way.

114

The XML file format is always backwards compatible, a more recent perfino server can
read the exported file of an older version.

Naming that file perfino_server_config.xmland copying it to the perfino data directory
overwrites the entire configuration at startup. This mechanism is used by the unattended
installation [p. 116]. After the import, the file is deleted automatically.

Recording configuration

The exported XML file with the entire configuration contains license keys and user data.
This may not be what you want for staging or also for backup purposes. In the recording
settings, you can also export selected VM group configurations. Here, you can select "All
VMs" or a particular VM group and click on the export button on the right.

This export is not only available for administrators, but also for users with "profiler" access
rights.

Naming this file perfino_recording_config.xml and copying it to the perfino data
directory overwrites the entire recording configuration at startup. The file is deleted
automatically after the import has been completed.

115

A.4 Unattended Installations

Unattended mode and response files

In case you want to fully automate the installation of perfino, you can pass the argument-q
to the installer. This makes the installer run in unattended mode. To set the installation
directory, pass the argument -dir [installation directory]:

./perfino_unix.sh -q -dir /opt/perfino

To apply user input from a previous GUI or console installation, locate the response file
.install4j/response.varfile in the installation directory and pass it to the installer
with the argument -varfile response.varfile. The response file is a plain text file, and
the contained property definitions can be changed in a text editor. Properties related to
the perfino.properties file will not be picked up from the response file. To modify them,
you have to use the server configuration mechanism detailed below.

Automatic server configuration

In a cloud environment, you might want to recycle an instance or set up scripts that
initialize a new instance with a completely configured perfino installation. To help you with
that task, the perfino installer tries to read a number of optional configuration files with
special names from the same directory.

parent directory

perfino_installer.[sh|exe|dmg]

perfino.properties

perfino_server_config.xml

perfino_recording_config.xml

agent.ks

server.ks

web.pkcs12

optional

server configuration

monitoring configuration

agent configuration

agent keystore

server keystore

server SSL certificate

Each of those files is explained in the following sections.

Server configuration

To adjust values in perfino.properties, you simply copy a perfino.properties file
from the data directory of a configured installation into the same directory as the installer.

The installer will use the data in that file for the initial values. You can trim the contents of
that file to the properties that deviate from the defaults, the installer will supply the default
values for all other options. The basis for the structure of the actual perfino.properties
file is the default template in the installer, so it does not matter if you delete comments
or change the order of properties. Extra properties that are not present in the default
template are merged in at the end.

116

Monitoring configuration

The monitoring configuration includes everything you can adjust in the perfino UI. Open
the general settings in a configured installation, select the "Export/Import" tab and click
on "Export configuration". This will save the entire server configuration to a file [p. 114]. If
you rename that file to perfino_server_config.xml and put it into the same directory
as the installer, the installer will automatically apply this configuration in the new
installation.

Agent configuration

The monitoring configuration in the previous section includes the configuration for the
agent. However, there is one case where you might want to supply a separate agent
configuration: When the perfino agent connects to a perfino server for the first time, it
receives its configuration from the server and, as a consequence, some classes have to
be reinstrumented for monitoring.

If your policy is to avoid all class retransformations, you can specify that on the "Options"
step of the VM group configuration. In that case, any configuration change will only be
applied when the monitored VM is restarted. To avoid the need for a restart in an
unattended deployment, the configuration for the agent can be imported in advance.

First, you have to open the recording settings and export the VM group configurations [p. 114]
of interest. Then, rename the exported file to perfino_recording_config.xml and place
it next to the installer. The installer will perform the import for agents that are running on
the local machine. For other machines, you have to perform this import yourself by calling

java -jar perfino.jar import perfino_recording_config.xml

The agent extracts its config from that file and writes it in binary form to the directory

$HOME/.perfino/config.

This directory is read by all agents on the local machine.

Note that these steps are only necessary if you want to avoid class retransformations.
Otherwise all configuration changes are applied on the fly.

Agent and server keystores

You can encrypt and authenticate [p. 106] the communication between monitored VMs
and the perfino server. The files agent.ksand server.ks constitute a key pair that enables
both encryption as well as mutual authentication.

For an unattended deployment, you will probably already be using a particular key pair
with your monitored VMs. In a configured perfino installation you can find these files in the
ssldirectory below the data directory. Placing them next to the installer ensures that they
are copied to the same location in the new installation and that the server does not
generate a new key pair.

Server SSL certificate

It is recommended to use SSL [p. 106] to encrypt the communication between the perfino
UI server and browsers. If you enable SSL during the installation, a self-signed SSL certificate
is generated and saved to ssl/web.pkcs12 in the perfino data directory. You can replace
that file with a certificate that is signed by a well-known certificate authority.

If you have such a certificate, you can put it next to the installer with the name web.pkcs12.
No self-signed certificate will be generated in that case.

117

A.5 Automatic Update Of The Perfino Agent
When you set up a JVM for monitoring, you copy the perfino agent files to the machine
where the monitored JVM is running. When you update the perfino server, the question
arises how the agent files are updated.

While the server is shut down during an update, so that all of its files can be replaced, the
monitored JVM cannot be terminated just for updating a monitoring agent. This is why
perfino performs an automatic deployment of agent updates whenever the server
installation is updated.

Server Update

You can check for updates within the same major series in the global settings [p. 109] and
update notifications are sent to you as inbox messages if automatic update checking is
enabled.

When you update the perfino server, all monitoring agents are disconnected from the
collector. However, the agents continue to record data and will transmit it to the collector
when it becomes available again. After a disconnection, the agent will periodically try to
reconnect to the perfino collector with diminishing frequency. Data is only discarded if its
quantity exceeds limits that are considered unsafe with respect to memory overhead.

After a server update, the perfino agent may have changed with respect to the older
version. In that case, the VMs view will show an update icon next to the VM name. The
perfino server will continue to work with agents of all previous versions, but new functionality
may not be available for JVMs that are being monitored with an outdated agent.

When the monitored JVM is restarted at some point in the future, the new agent will be
used automatically. There is no need for you to transfer new agent files to remote machines.

Agent Update Mechanism

When connected to a JVM that is monitored with an outdated perfino agent, the perfino
server transfers the new agent files to the remote machine. Because the original agent
files are in use and may be write-protected, they cannot be overwritten. New agents are
stored in the $HOME/.perfino/agent2 directory. In that directory there are subdirectories
for each monitored VM that in turn contain directories with the transferred agents.

When a monitored JVM is started, it loads the perfino.jar Java agent that you have
specified [p. 12] in the -javaagent VM parameter. That Java agent bootstraps the actual
implementation of the monitoring agent by looking into $HOME/.perfino/agent2 and
selecting the most recent agent files for the monitored JVM. If no agents have been
transferred, the implementation in the libdirectory of the extracted agent archive is used.

While the perfino.jar file with the bootstrapping code is never updated, it performs a
limited function at startup that does not impact the monitoring functionality itself. Even if
the JAR file changes in a newer release, it does not mean that you have to replace it on
any remote machines.

118

A.6 Overload Protection
If too much information is generated that cannot be cumulated by the perfino collector,
the system would be overloaded - the perfino collector would not be able to keep up with
its consolidation efforts, the database would grow to eat up all disk space and the UI would
become sluggish or unusable.

In a correct configuration, a limited amount of distinct information is generated. For the
case that the configuration is not optimal, perfino provides an overload protection
mechanism that prevents a breakdown by capping various recording types and warning
you with inbox messages that your configuration needs to be adjusted.

When an overload cap is reached, the recorded information is not discarded, but no new
names are generated and all further information is shown cumulated in a "capped
description" node. While total numbers remain correct, insight into recording details is
restricted until you fix your configuration and reset the cap counters.

Types of overloads

The problematic data collection types include

• Transaction names
For example, if each distinct URL creates a transaction with the full URL path as its name
and you have a lot of different static resources, then too many transaction names are
generated. You should discard the static resource calls because they do not map to
high-level business transactions.

• Payloads

For example, if you have configured to resolve non-prepared JDBC statements
separately, and the SQL statements contain non-numeric embedded IDs that perfino
cannot extract and replace with ID markers, there will be too many distinct statements
after a certain amount of time.

Another possibility is that your prepared statements contain parameters directly in the
statement body and not as bound variables. Such usage of prepared statements is
non-optimal and does not work with perfino.

• Remote call sites
perfino can track inter-VM calls for several technologies, like web services, EJB and RMI.
For each such remote call site, perfino has to split its transaction trees and maintain
associated information. In VM pools where many VMs call each other, this can lead to
excessive overhead if the number of calls grows like O(n^2) with the number of monitored
VMs.

Configuring overload protection

Each overload type is configurable separately. Open the general settings, select the "Global
Settings" tab and change one of the maximum numbers in the "Overload protection"
section.

Next to each overload type, a colored label informs you whether the particular cap has
been reached yet or not. For example, if the transaction name cap has been reached, a
typical strategy is to change the configuration so that fewer transaction names are created.
After that, you want perfino to start counting again from zero. Click the Reset all cap
counters to zero button to reset all counters.

119

B Advanced Topics

B.1 Annotation Transactions
Many frameworks use annotations for designating important classes and entry points
that could be turned into transactions in perfino. With the "Annotated invocations"
transaction type you can let perfino do this work for you.

Method and class annotations

An annotation transaction definition takes the fully qualified class name of the annotation
that you are interested in. Annotations can be either used on classes or on methods.
Before proceeding with the configuration, you have to tell perfino for which target the
selected annotation is used.

For an annotated method, each method invocation becomes a transaction in perfino.
Annotations on classes create transactions for all calls into public instance methods.

The second choice is whether derived classes should be considered as well. For methods,
it can be important to capture the time in an overridden method. For example, if a
framework creates an implementing proxy class and overrides the annotated method to
add database transactions, you want to intercept the method in the proxy class, and not
only the annotated method.

For annotated classes, the "Method selection" options determine which methods are
selected to generate transactions:

• Implementing methods only
If the annotation is placed on an interface that already defines all operations of interest
with its methods, you should select this option.

• All public methods
If the derived classes have their own methods of interest that do not implement or
override the methods in the annotated class, use this option to create transactions
from all public methods.

120

Naming

When you use annotations on classes with the setting for intercepting public methods in
derived classes, the question remains what class name should be used in the transaction
naming.

By default, a naming element of type "Class name" adds the name of the class where the
intercepted method is defined. If you want to add the name of the annotated superclass
instead, select the "Use annotated class name for filter and naming" check box in the
"Annotation" step of the wizard.

If you want to go the other way and add the class name of the actual instance on which
the method was called, use the "Instance class name" naming element instead.

Even more specific, the "Instance name" naming element adds the toString() invocation
on the object where the transaction method was called.

This naming element can also apply a getter chain to this object and append the
toString() invocation on the result to the transaction name instead. For example, if the
instance class has a getVerbose() method that returns the desired text, set the getter
chain to getVerbose(). You can mix public field accesses and parameterless invocations
of public methods like this:

getParent().descriptor.getVerbose()

If you use the getClass() method to append a class name, there are two special fields
that are provided by perfino to simulate the abbreviated and simple class name modes
that are available for the "Class name" and "Instance class name" naming elements:

• With getClass().simpleName, the name of the class without its package is added. For
example, com.mycorp.MyClass becomes MyClass.

• WithgetClass().abbrevName, the abbreviated package names are added. For example,
com.mycorp.MyClass becomes c.m.MyClass.

121

Note that the "Instance name" naming element generates a far higher overhead than the
"Instance class name" or "Class name" naming elements, since it always involves actual
method calls.

122

B.2 POJO Transactions
With POJO transactions you can take any method call in the JVM and turn it into a
transaction. The functionality for POJO transactions mirrors that of the DevOps
transactions [p. 126] which are specified directly in your code by using the perfino
annotations.

POJO transactions are necessary if you cannot add annotations into your code or if the
classes of interest are in an external library. Otherwise, DevOps transactions are
recommended for easier maintainability.

Classes or methods

Similar to annotation transactions [p. 120], the first question is whether you want to choose
a single method or all public methods from a particular class.

POJO transactions have the same configuration options regarding inheritance as
annotation transactions. You can switch on transactions from derived classes with the
"intercept subclasses" check box.

For a single method transaction, this means that overridden methods will create
transactions as well. If such a method makes a super call, that super call will create a
separate transaction. If the names of both transactions are equal, the super call will not
be recorded separately. However, with an "Instance class name" naming element, it is
easy to create two different names. In that case, you will see the super method as a nested
transaction. If this is not what you want, you can set the "no nested transaction" option on
the "Naming" step of the wizard to the value "That match this entry".

The method of interest is conveniently chosen with the method chooser. It can show you
classes from all connected VMs or from JAR, WAR and EAR files that can be uploaded on
the fly. You can also edit the method manually in which case you have to take care to
enter the method signature in bytecode format (1).

(1) https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-4.html#jvms-4.3

123

https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-4.html#jvms-4.3

For classes, all public methods of the selected class will create transactions. When the
inheritance option is turned on, you can choose between two different strategies for
method selection in the derived classes.

• Implementing methods only
This makes sense if you have selected an interface that defines all operations of interest
with its methods. Additional public methods in implementing classes will be ignored.

• All public methods
The selected class may be a base class or a marker interface, and the methods of
interest are in the derived classes. In this case, all public methods in derived classes
will create transactions.

As an additional way to collect transaction methods you can select static methods. If the
inheritance option is selected and all public methods are used, this will collect public static
methods in derived classes as well.

124

Naming

In addition to the naming elements that are available for annotation transactions, POJO
method transactions have a "method parameter" naming element. Method parameter
interception only makes sense if a particular method is selected, so it is not available for
POJO class transactions.

You can select a parameter by its zero-based index. In addition, a getter chain can be
applied to the parameter just like for the "Instance name" element that is described for
annotation transactions [p. 120].

125

B.3 DevOps Transactions
Maintaining POJO transactions in the perfino VM group configurations is an extra step in
the development workflow and can get easily out of sync with the actual code. While POJO
transactions are ideally suited for external classes, it is much more maintainable to directly
annotate the methods and classes of interest in your own code.

The naming of this transaction type comes from the DevOps (1) software development
method that stresses the importance of increased collaboration between the development
and the operations departments. Thinking about and implementing monitoring aspects
at development time falls into this category.

The perfino annotations are located in the JAR file api/perfino_api.jar, see the javadoc
overview for how to download this JAR file with Maven, Ivy or Gradle.

All annotations have a class retention policy. This means that they are present in the class
file, but the JVM does not load them into memory. Code that queries runtime annotations
on a particular method cannot be confused by the additional perfino annotations because
they are only detected by perfino at the class loading stage and do not appear in the
loaded class objects.

The usage of DevOps transactions is described in detail in the Javadoc that is present in
the api/doc directory of the perfino installation.

Policies

DevOps annotations only define the transaction naming, but not the policies for
transactions. Policies are closer to the operation side and often need to be adjusted in
production.

It is possible to select different DevOps annotations in the perfino configuration by way of
the group name. Each DevOps annotation can have a "group" parameter that is set to
the empty string by default.

If the configured groups are not granular enough or if you want to single out a particular
class, go to the next step to add a class filter. Here, it is also possible to discard all DevOps
transactions that originate from the selected group and classes.

(1) https://en.wikipedia.org/wiki/DevOps

126

https://en.wikipedia.org/wiki/DevOps

On the last step of the wizard, you define the policies for the selected DevOps transactions.
As with other transaction types, it often makes sense to keep a catch-all transaction
definition at the bottom and add more specific transaction definitions at the top.

127

B.4 Customizing Net I/O Thread States For CPU Recording
perfino offers you the possibility to record natively sampled CPU data [p. 96] with minimum
overhead and stability risk for the entire VM. The resulting snapshot files can be viewed in
JProfiler.

One pre-condition for useful sampling data is that all thread states where the thread is
waiting are separate from the default "Runnable" thread state. If that is not the case, the
top hotspots usually consist of methods that wait, block or perform network input and
output (net I/O).

While waiting and blocking are comprehensively handled by the perfino sampling library,
network I/O is often performed via native libraries that perfino does not know about. To
mitigate this problem, perfino offers a mechanism to specify a list of additional methods
that will be considered as net I/O.

To do that, you can specify the system property -Dperfino.netioMethods=[path to
text file] in the Java invocation of the monitored VM. The referenced text file must be
located on the machine where the monitored VM is running. Alternatively, perfino looks
for the file$HOME/.perfino/netio.txton Linux/Unix or%USERPROFILE%\.perfino\netio.
txt on Windows.

In the netio.txt file, add your net I/O method definitions, one definition per line. A method
definition can have one of three forms:

• Class wildcard

Add a class name with a trailing asterisk, like

com.mycorp.MyClass.*

If you reference an inner class, the inner class separators must be written as dollar signs:

com.mycorp.MyClass$InnerClass.*

In this case, all methods of the selected class will be recorded in the net I/O state.

• Signature wildcard

Add a class name and a method name, separated by a dot, like

com.mycorp.MyClass.myMethod

In this case, all methods of the selected class with the specified name but with an
arbitrary signature will be recorded in the net I/O state.

• Specific method

Like "Signature wildcard", but with the signature in bytecode format appended at the
end. For example,

java.net.AbstractPlainSocketImpl.doConnect(Ljava/net/InetAddress;II)V

128

This is an actual net I/O method that is handled by default, the signature is for a method
that returns void and takes a java.net.InetAddress and two int parameters. This is
the same format that is used by JNI type signatures (1).

The single specified method will be recorded in the net I/O state as a result of this
definition.

(1) https://docs.oracle.com/javase/8/docs/technotes/guides/jni/spec/types.html#type_signatures

129

https://docs.oracle.com/javase/8/docs/technotes/guides/jni/spec/types.html#type_signatures

	Introduction
	Architecture
	Installing
	Monitoring JVMs
	Basic concepts
	UI
	Transactions
	Policies
	Cross-VM monitoring
	Probes
	Method Sampling
	Telemetries
	Thresholds
	Triggers
	Alerts
	End user experience monitoring
	Memory
	Historical comparisons
	MBean browser
	REST export API
	Cross-over to profiling
	Configuration
	Server configuration
	Server administration
	Import/Export
	Unattended installations
	Automatic agent update
	Overload protection

	Advanced topics
	Annotation transactions
	POJO transactions
	DevOps transactions
	Customizing net I/O methods

