
The definitive guide to JProfiler
All you need to know as a performance professional

© 2025 ej-technologies GmbH. All rights reserved.

Index

Introduction .. 4

Architecture .. 6

Installing .. 8

Profiling a JVM ... 12

Recording data .. 28

Snapshots ... 41

Telemetries ... 46

CPU profiling .. 54

Method call recording .. 67

Memory profiling ... 72

The heap walker ... 81

Thread profiling ... 98

Probes .. 105

GC analysis .. 119

MBean browser .. 125

Offline profiling ... 130

Comparing snapshots .. 135

IDE integrations .. 142

A Custom probes .. 153
A.1 Probe concepts .. 153
A.2 Script probes .. 160
A.3 Injected probes .. 164
A.4 Embedded probes ... 169

B Call tree features in detail .. 173
B.1 Auto-tuning for instrumentation .. 173
B.2 Async and remote request tracking .. 176
B.3 Viewing parts of the call tree .. 182
B.4 Splitting the call tree ... 187
B.5 Call tree analyses ... 191

C Advanced CPU analysis views .. 197
C.1 Outlier detection ... 197

C.2 Complexity analysis .. 201
C.3 Call tracer ... 203
C.4 Javascript XHR .. 205

D Heap walker features in detail .. 208
D.1 HPROF snapshots .. 208
D.2 Minimizing overhead .. 210
D.3 Filters and live interactions ... 212
D.4 Finding memory leaks ... 216

E JDK Flight Recorder (JFR) ... 223
E.1 JFR overview ... 223
E.2 Recording JFR snapshots .. 225
E.3 JFR event browser ... 229
E.4 JFR views ... 236

F Configuration in detail ... 243
F.1 Trouble shooting connection problems ... 243
F.2 Scripts ... 246
F.3 Custom help ... 250
F.4 Profiling settings at startup ... 251

G Command line reference ... 254
G.1 Executables for profiling .. 254
G.2 Executables for snapshots .. 257
G.3 Gradle tasks .. 266
G.4 Ant tasks .. 270

Introduction To JProfiler
What is JProfiler?

JProfiler is a professional tool for analyzing what is going on inside a running JVM. You can
use it in development, for quality assurance and for firefighting missions when your
production system experiences problems.

There are four main topics that JProfiler deals with:

• Method calls
This is commonly called "CPU profiling". Method calls can be measured and visualized
in different ways. The analysis of method calls helps you to understand what your
application is doing and find ways to improve its performance.

• Allocations
Analyzing objects on the heap with respect to their allocations, reference chains and
garbage collection falls into the category of "memory profiling". This functionality enables
you to fix memory leaks, use less memory in general and allocate fewer temporary
objects.

• Threads and locks
Threads can hold locks, for example, by synchronizing on an object. When multiple
threads cooperate, deadlocks can occur and JProfiler can visualize them for you. Also,
locks can be contended, meaning that threads have to wait before they can acquire
them. JProfiler provides insight into threads and their various locking situations.

• Higher level subsystems
Many performance problems occur on a higher semantic level. For example, with JDBC
calls, you probably want to find out which SQL statement is the slowest. For subsystems
like that, JProfiler offers "probes" that attach specific payloads to the call tree.

JProfiler's UI is delivered as a desktop application. You can interactively profile a live JVM
or profile automatically without using the UI. Profiling data is persisted in snapshots that
can be opened with the JProfiler UI. In addition, command line tools and build tool
integrations help you with automating profiling sessions.

How do I continue?

This documentation is intended to be read in sequence, with later help topics building on
the content of previous ones.

First, a technical overview over the architecture [p. 6] will help you to understand how
profiling works.

The help topics on installing JProfiler [p. 8] and profiling JVMs [p. 12] will get you up and
running.

Following that, the discussion of data recording [p. 28] and snapshots [p. 41] take you to
a level of understanding where you can explore JProfiler on your own.

Subsequent chapters build your expertise with respect to different functionality in JProfiler.
The sections at the end are optional readings that should be consulted if you need certain
features.

4

We appreciate your feedback. If you feel that there's a lack of documentation in a certain
area or if you find inaccuracies in the documentation, please don't hesitate to contact us
at support@ej-technologies.com.

5

mailto:support@ej-technologies.com

JProfiler Architecture
The big picture of all important interactions involving the profiled application, the JProfiler
UI and all command line utilities is given below.

remote or local
local

Profiled JVM

 JProfiler
MBean

jpcontroller

publishes

connects via
socket

connects
via JMX

loads with
-agentpath

controls with
offline profiling

jpenable

jpdump

Command line arguments

jpexport
jpcompare
jpanalyze

transmits
data

takes HPROF
heap dump

loads via
attach JProfiler

agent

Snapshots

loads the profiling agent

profiling data

controls recording

command line tool

process component

data

JProfiler UI

The profiling agent

The "JVM tool interface" (JVMTI) is a native interface that a profiler uses to gain access to
information and add hooks for inserting its own instrumentation. This means that at least

6

part of the profiling agent must be implemented as native code and so a JVM profiler is
not platform-independent. JProfiler supports a range of platforms that are listed
here [p. 8].

A JVM profiler is implemented as a native library that is loaded either at startup or at some
point later on. To load it at startup, a VM parameter -agentpath:<path to native
library> is added to the command line. You rarely have to add this parameter manually,
because JProfiler will add it for you, for example, in an IDE integration, an integration wizard
or if it launches the JVM directly. However, it's important to know that this is what enables
profiling.

If the JVM succeeds in loading the native library, it calls a special function in the library to
give the profiling agent a chance to initialize itself. JProfiler will then print a couple of
diagnostic messages prefixed with JProfiler> so you know that profiling is active. The
bottom line is that if you pass the -agentpath VM parameter, the profiling agent is either
loaded successfully or the JVM does not start.

Once loaded, the profiling agent asks the JVMTI to be notified of all kinds of events, such
as thread creation or class loading. Some of these events directly deliver profiling data.
Using the class loading event, the profiling agent instruments classes as they are loaded
and inserts its own bytecode to perform its measurements.

JProfiler can load the agent into an already running JVM, either by using the JProfiler UI,
or with the bin/jpenable command line tool. In that case, a substantial number of already
loaded classes may have to be retransformed in order to apply the required
instrumentation.

Recording data

The JProfiler agent only collects the profiling data. The JProfiler UI is started separately
and connects to the profiling agent through a socket. For secure connections to remote
servers, you can configure JProfiler to automatically create SSH tunnels.

From the JProfiler UI, you can instruct the agent to record data, display the profiling data
in the UI and save snapshots to disk. As an alternative to the UI, the profiling agent can be
controlled through its MBean (1). A command line tool that uses this MBean is bin/
jpcontroller.

Yet another way to control the profiling agent is with a predefined set of triggers and
actions. In that way, the profiling agent can operate in unattended mode. This is called
"offline profiling" in JProfiler and is useful for automating profiling sessions.

Snapshots

While the JProfiler UI can show live profiling data, it is often necessary to save snapshots
of all recorded profiling data. Snapshots are either saved manually in the JProfiler UI or
automatically by trigger actions.

Snapshots can be opened and compared in the JProfiler UI. For automated processing,
the command line tools bin/jpexport and bin/jpcompare can be used to extract data
and create HTML reports from previously saved snapshots.

A low-overhead way of obtaining a heap snapshot from a running JVM is to use the bin/
jpdump command line tool. It uses the built-in functionality of the JVM to save an HPROF
snapshot that can be opened by JProfiler and does not require the profiling agent to be
loaded.

(1) https://en.wikipedia.org/wiki/Java_Management_Extensions

7

https://en.wikipedia.org/wiki/Java_Management_Extensions

Installing JProfiler
Executable installers are provided for Windows and Linux/Unix that lead you step-by step
through the installation. If a previous installation is detected, the installation is streamlined.

On macOS, JProfiler uses the standard installation procedure for UI applications: a DMG
archive that you can mount in the Finder by double-clicking on it, then you can drag the
JProfiler application bundle to the /Applications folder. That folder is visible as a symbolic
link in the DMG itself.

On Linux/Unix, installers are not executable after download, so you have to prepend sh
when executing them. The installer performs a command line installation if you pass the
parameter -c. Completely unattended installations for Windows and Linux/Unix are
performed with the parameter -q. In that case, you can pass the additional argument
-dir <directory> in order to choose the installation directory.

8

After you run an installer, it will save a file .install4j/response.varfile that contains
the entire user input. You can take that file and use it to automate unattended installations
by passing the argument -varfile <path to response.varfile> on the command
line.

To set licensing information for unattended installations, pass -Vjprofiler.licenseKey=
<license key> -Vjprofiler.licenseName=<user name>and optionally -Vjprofiler.
licenseCompany=<company name> as command line arguments. If you have a floating
license, use FLOAT:<server name or IP address> instead of the license key.

Archives are also provided as ZIP files for Windows and as .tar.gz files for Linux. The
command

tar xzvf filename.tar.gz

will extract a .tar.gz archive into a separate top-level directory. To start JProfiler, execute
bin/jprofiler in the extracted directory. On Linux/Unix, the file jprofiler.desktop can
be used to integrate the JProfiler executable into your window manager. For example, on
Ubuntu you can drag the desktop file into the launcher side bar in order to create a
permanent launcher item.

Distributing the profiling agent to remote machines

JProfiler has two parts: The desktop UI together with the command line utilities that operate
on snapshots, on the one hand, and the profiling agent together with the command line
utilities that control the profiled JVM, on the other hand. The installers and archives that
you download from the website contain both parts.

For remote profiling, however, you only need the profiling agent to be installed on the
remote side. While you can simply extract an archive with the JProfiler distribution on the
remote machine, you may want to limit the number of required files, especially when
automating a deployment. Also, the profiling agent is freely redistributable, so you can
ship it with your application or install it on customer machines for trouble-shooting.

To get a minimal package with the profiling agent, the remote integration wizards shows
you the download link for the appropriate agent archive as well as the download page
with the agent archives for all supported platforms. In the JProfiler GUI, invoke
Session->Integration Wizards->New Server/Remote Integration, select the "Remote" option
and then proceed to the Remote installation directory step.

9

The URL for the HTML overview page for a particular JProfiler version is

https://www.ej-technologies.com/jprofiler/agent?version=15.0

The format of the download URLs for the single agent archives is

https://download.ej-technologies.com/jprofiler/jprofiler_agent_<platform>_15_0.<extension>

where platform corresponds to the agent directory name in the bin directory and
extension is zip on Windows, .tgz on macOS and .tar.gz for Linux/Unix. For Linux, x86
and x64 are grouped together, so for Linux x64 the URL is

https://download.ej-technologies.com/jprofiler/jprofiler_agent_linux-x86_15_0.tar.gz

The agent archive contains the required native agent libraries together with the jpenable,
jpdump andjpcontroller executables. The executables in the archive as well as the
profiling agent only require Java 8 as a minimum version.

The sub-directories that you see after extracting the agent archive on the remote machine
are described below. They are a subset of a full JProfiler installation on the respective
target platform.

10

top-level directory after extraction

.install4j

bin

<platform-64>

<platform-32>

lib

agent JAR file and helper executables

native libraries for 64-bit JVMs

native libraries for 32-bit JVMs

support libraries for attach functionality

runtime libraries for launchers

Supported platforms

Because JProfiler utilizes the native profiling interface of the JVM (JVMTI), its profiling agent
is a native library.

JProfiler supports profiling on the following platforms:

VersionsSupported JVMsArchitectureOS

1.8 - 24

1.8 - 24

Hotspot (OpenJDK)

IBM/OpenJ9

x86

x64/AMD64

Windows 11/10

Windows Server
2025/2022/2019/2016

1.8 - 24

1.8 - 24

Hotspot (OpenJDK)

IBM/OpenJ9

Intel, ApplemacOS 10.12 - 15

1.8 - 24

1.8 - 24

Hotspot (OpenJDK)

IBM/OpenJ9

x86

x64/AMD64

Linux

1.8 - 24

1.8 - 24

Hotspot (OpenJDK)

IBM/OpenJ9

PPC64LELinux

1.8 - 24Hotspot (OpenJDK)ARMv7

ARMv8

Linux

The JProfiler GUI frontend needs a Java 21 VM to run. A Java 21 JRE is bundled with JProfiler
for that purpose on Windows, macOS and Linux x64. The attach command line tools
jpenable, jdump and jpcontroller only require a Java 8 VM.

11

Profiling A JVM
To profile a JVM, JProfiler's profiling agent has to be loaded into the JVM. This can happen
in two different ways: By specifying an -agentpath VM parameter in the start script or by
using the attach API to load the agent into an already running JVM.

JProfiler supports both modes. Adding the VM parameter is the preferred way to profile
and is used by the integration wizards, the IDE plugins, and session configurations that
launch a JVM from within JProfiler. Attaching works both locally as well as remotely over
SSH.

-agentpath VM parameter

It is useful to understand how the VM parameter that loads the profiling agent is composed.
-agentpath is a generic VM parameter provided by the JVM for loading any kind of native
library that uses the JVMTI interface. Because the profiling interface JVMTI is a native
interface, the profiling agent must be a native library. This means that you can only profile
on the explicitly supported platforms [p. 8]. 32-bit and 64-bit JVMs also need different
native libraries. Java agents, on the other hand, are loaded with the -javaagent VM
parameter and only have access to a limited set of capabilities.

After -agentpath:, the full path name to the native library is appended. There is an
equivalent parameter -agentlib: where you only specify the platform-specific library
name, but then you have to make sure that the library is contained in the library path.
After the path to the library, you can add an equals sign and pass options to the agent,
separated by commas. For example, on Linux, the whole parameter could look like this:

-agentpath:/opt/jprofiler15/bin/linux-x64/libjprofilerti.so=port=8849,nowait

The first equals sign separates the path name from the parameters, the second equals
sign is part of the parameter port=8849. This common parameter defines the port on
which the profiling agent is listening to connections from the JProfiler GUI. 8849 is actually
the default port, so you can also omit that parameter. If you want to profile multiple JVMs
on the same machine, you have to assign different ports, though. The IDE plugins and the
locally launched sessions assign this port automatically, for integration wizards you have
to choose the port explicitly.

The second parameter nowait tells the profiling agent not to block the JVM at startup and
wait for a JProfiler GUI to connect. Blocking at startup is the default because the profiling
agent does not receive its profiling settings as command line parameters but from the
JProfiler GUI or alternatively from a config file. The command line parameters are only for
bootstrapping the profiling agent, telling it how to get started and for passing debug flags.

Under some circumstances, setting the profiling settings at startup [p. 251] is required and
some manual work may be required to achieve this.

By default, the JProfiler agent binds the communication socket to the loopback interface.
You can add the option address=[IP address] in order to select a specific interface or
address=0.0.0.0 to bind the communication socket to all available network interfaces.
This can be necessary if you want to publish the profiling port from a docker container.

Locally launched sessions

Like "Run configurations" in an IDE, you can configure locally launched sessions directly in
JProfiler. You specify the class path, the main class, working directory, VM parameters and
arguments, and JProfiler launches the session for you. All the demo sessions that ship with
JProfiler are locally launched sessions.

12

A special launch mode is "Web Start" where you select the URL of the JNLP file, and JProfiler
will launch a JVM to profile it. This feature supports OpenWebStart (1), legacy WebStart from
pre-Java 9 Oracle JREs is not supported.

(1) https://openwebstart.com/

13

https://openwebstart.com/

Locally launched sessions can be converted to standalone sessions with the conversion
wizards by invoking Session->Conversion Wizards from the main menu. Convert Application
Session to Remote simply creates a start script and inserts the -agentpathVM parameter
into the Java call. Convert Application Session to Offline creates a start script for offline
profiling [p. 130] which means that the config is loaded on startup and the JProfiler GUI is
not required. Convert Application Session to Redistributed Session does the same thing,
but creates a directory jprofiler_redist next to it that contains the profiling agent as
well as the config file so you can ship it to a different machine where JProfiler is not installed.

If you develop the profiled application yourself, consider using an IDE integration [p. 142]
instead of a launched session. It will be more convenient and give you better source code
navigation. If you do not develop the application yourself, but already have a start script,
consider using the remote integration wizard. It will tell you the exact VM parameter that
you have to add to the Java invocation.

Integration wizards

JProfiler's integration wizards handle many well-known third party containers with start
scripts or config files that can be modified programmatically to include additional VM
parameters. For some products, start scripts can be generated where VM parameters are
passed as arguments or via environment variables.

14

In all cases, you have to locate some specific file from the third-party product, so JProfiler
has the necessary context to perform its modifications. Some generic wizards only give
you instructions on what you have to do in order to enable profiling.

The first step in each integration wizard is the choice whether to profile on the local machine
or on a remote machine. In the case of the local machine you have to provide less
information, because JProfiler already knows the platform, where JProfiler is installed and
where its config file is located.

15

An important decision is the "startup mode" that was discussed above. By default, the
profiling settings are transmitted from the JProfiler UI at startup, but you can also tell the
profiling agent to let the JVM start immediately. In the latter case, the profiling settings
can be applied once the JProfiler GUI connects.

However, you can also specify a config file with the profiling settings, which is much more
efficient. This is done on the Config synchronization step. The main problem in this case
is that you have to synchronize the config file with the remote side each time you edit the
profiling settings locally. The most elegant way is to connect to the remote machine via
SSH on the Remote address step, then the config file can be transferred automatically via
SSH.

16

At the end of the integration wizard, a session will be created that starts profiling and - in
the non-generic cases - also starts the third party product, such as an application server.

External start scripts are handled by the Execute start script and Execute stop script options
on the Application settings tab of the session configuration dialog and URLs can be shown
by selecting the Open browser with URL check box. This is also the place where you can
change the address of the remote machine and the config synchronization options.

17

The integration wizards all handle cases where the profiled JVM is running on a remote
machine. However, when a config file or start script has to be modified, you have to copy
it to your local machine and transfer modified versions back to the remote machine. It
may be more convenient to directly run the command line tool jpintegrateon the remote
machine and let it perform its modifications in place. jpintegrate requires a full installation
of JProfiler and has the same JRE requirements as the JProfiler GUI.

When an error occurs while starting a remote profiling session, see the trouble-shooting
guide [p. 243] for a checklist of steps that you can take to fix the problem.

18

IDE integrations

The most convenient way to profile an application is through an IDE integration. If you
usually start your application from your IDE during development, the IDE already has all
the required information and the JProfiler plugin can simply add the VM parameter for
profiling, start JProfiler if necessary and connect the profiled JVM to a JProfiler main window.

All IDE integrations are contained in the integrationsdirectory in the JProfiler installation.
In principle, the archives in that directory can be installed manually with the plugin
installation mechanisms in the respective IDEs. However, the preferred way to install IDE
integrations is to invoke Session->IDE integrations from the main menu.

Profiling sessions from the IDE do not get their own session entry in JProfiler, because such
a session could not be started from the JProfiler GUI. Profiling settings are persisted on a
per-project or a per-run-configuration basis, depending on the settings in the IDE.

When connected to an IDE, JProfiler shows a window switcher in the tool bar that makes
it easy to jump back to the associated window in the IDE. All the Show Source actions now
show the source directly in the IDE instead of the built-in source viewer in JProfiler.

IDE integrations are discussed in detail in a later chapter [p. 142].

Attach mode

You do not necessarily have to decide beforehand that you intend to profile a JVM. With
the attach functionality in JProfiler, you can select a running JVM and load the profiling
agent on the fly. While attach mode is convenient, it has a couple of drawbacks that you
should be aware of:

• You have to identify the JVM that you want to profile from a list of running JVMs. This
can sometimes be tricky if a lot of JVMs are running on the same machine.

• There is additional overhead because potentially many classes have to be redefined
to add instrumentation.

• Some features in JProfiler are not available in attach mode. This is mostly because
some capabilities of the JVMTI can only be switched on when the JVM is being initialized
and are not available in later phases of the JVM's lifecycle.

• Some features require instrumentation in a large fraction of all classes. Instrumenting
while a class is being loaded is cheap, adding instrumentation later on when the class

19

has already been loaded is not. Such features are disabled by default when you use
attach mode.

• Attach functionality is supported for OpenJDK JVMs, Oracle JVMs with version 6 or higher,
recent OpenJ9 JVMs (8u281+, 11.0.11+ or Java 17+) or IBM JVMs that are based on such
a release. The VM parameters -XX:+PerfDisableSharedMem and -XX:
+DisableAttachMechanism must not be specified for the JVM.

The Quick Attach tab in JProfiler's start center lists all JVMs that can be profiled. The
background color of the list entries indicates whether a profiling agent has already been
loaded, whether a JProfiler GUI is currently connected or if offline profiling has been
configured.

When you start a profiling session, you can configure profiling settings in the session
settings dialog. When you repeatedly profile the same process, you do not want to re-enter
the same configuration again and again, so a persistent session can be saved when you
close a session that has been created with the quick attach feature. The next time you
want to profile this process, start the saved session from the Open Session tab instead of
the Quick Attach tab. You will still have to select a running JVM, but the profiling settings
are the same ones that you have already configured before.

Attaching to local services

The attach API in the JVM requires that the invoking process runs as the same user as the
process that you want to attach to, so the list of JVMs that are displayed by JProfiler is
limited to the current user. Processes launched by different users are mostly services. The
way to attach to services differs for Windows, Linux and Unix-based platforms.

On Windows, the attach dialog has a Show Services button that lists all locally running
services. JProfiler launches bridge executables to be able to attach to those processes
no matter what user they are running with.

20

On Linux, JProfiler supports switching the user directly in the UI through PolicyKit that is
part of most Linux distributions. By clicking Switch user in the attach dialog, you can enter
a different user name and authenticate with the system password dialog.

On Unix-based platforms including macOS, you can execute the command line tool
jpenable as a different user with su or sudo, depending on your Unix variant or Linux
distribution. On macOS and Debian-based Linux distributions like Ubuntu, sudo is used.

With sudo, call

sudo -u userName jpenable

with su, the required command line is

su userName -c jpenable

jpenable will let you select JVMs and tell you the port on which the profiling agent is
listening. After that you can either connect with a local session from the JProfiler UI or an
SSH connection that directly connects the port given by jpenable.

21

Attaching to JVMs on remote machines

The most demanding setup for profiling is remote profiling - the JProfiler GUI runs on your
local machine and the profiled JVM on another machine. For a setup where you pass the
-agentpath VM parameter to the profiled JVM, you have to install JProfiler on the remote
machine and set up a remote session on your local machine. With the remote attach
functionality in JProfiler, no such modifications are required. You just need SSH credentials
to log into the remote machine.

The SSH connection enables JProfiler to upload the agent package that was discussed in
the "Installing JProfiler" [p. 8] help topic and execute the contained command line tools
on the remote machine. You don't need SSH to be set up on your local machine, JProfiler
ships with its own implementation. In the most straightforward setup you just define host,
user name and authentication.

With an SSH connection, JProfiler can perform an automatic discovery of running JVMs or
connect to a specific port on which a profiling agent is already listening. For the latter
case, you can use jpenable or jpintegrate on the remote machine as described above
and prepare a special JVM for profiling. Then, the SSH remote attach can be configured
to directly connect to the configured profiling port.

Automatic discovery will list all JVMs on the remote machine that have been started as
the SSH login user. In most cases, this will not be the user that has started the service that
you would like to profile. Because users that start services usually are not allowed for SSH
connections, JProfiler adds a Switch User hyperlink that lets you use sudo or su to switch
to that user.

22

In complex network topologies, you sometimes cannot connect directly to the remote
machine. In that case, you can tell JProfiler to connect with a multi-hop SSH tunnel in the
GUI. At the end of the SSH tunnel you can make one direct network connection, usually to
"127.0.0.1".

For other authentication mechanisms, you can use the OpenSSH tunnel mode. You enter
the host name as you would enter it on the command line when using OpenSSH
executables. This can also be an alias as configured in the OpenSSH config file. Apart from
the host name, port and user name can optionally be specified. On Windows, only the
built-in OpenSSH client by Microsoft is supported.

The SSH options text field takes arbitrary additional arguments to the OpenSSH executable
that you would specify on the command line. This is especially useful when you are following
instructions given by a tutorial, for example on how to tunnel an SSH connection through
AWS session manager.

23

HPROF snapshots can only be taken for JVMs that were started with the SSH login user.
This is because HPROF snapshots require an intermediate file that is written with the access
rights of the user that has started the JVM. For security reasons, it is not possible to transfer
file rights to the SSH login user for download. No such restriction exists for full profiling
sessions.

Attaching to JVMs running in Docker containers

Docker containers usually do not have SSH servers installed, and while you can use jpenable
in a Docker container, the profiling port will not be accessible from the outside unless you
have specified it in your Docker file.

In JProfiler, you can attach to a JVM running in a local Docker Desktop installation in
Windows or macOS by selecting the Docker container in the quick attach dialog. By default,
JProfiler detects the path to the docker executable automatically. Alternatively, you can
configure it on the "External tools" tab of the general settings dialog.

24

After you select the container, all JVMs that run inside the Docker container will be shown.
When you select a JVM, JProfiler will use Docker commands to automatically install the
profiling agent in the selected container, prepare the JVM for profiling and tunnel the
profiling protocol to the outside.

For remote Docker installations, you can use the SSH remote attach functionality and then
select a Docker container on the remote machine. If the login user is not in the docker
group, you can first switch the user as described above.

With the Select container hyperlink in the remote attach dialog you can choose a running
Docker container and show all JVMs that are running in it.

Attaching to JVMs running on Kubernetes clusters

To profile a JVM that is running on a Kubernetes cluster, JProfiler uses the kubectl
command line tool, both for discovering pods and containers, as well as to connect to a
container, list its JVMs and finally to connect to a selected JVM.

25

The kubectl command line tool may be available on your local computer or alternatively
on a remote machine to which you have SSH access. JProfiler directly supports both
scenarios. For local installations, JProfiler will try to detect the path to kubectlautomatically,
but you can configure an explicit path on the "External tools" tab of the general settings
dialog.

JProfiler lists all detected containers in a tree with three levels. At the top are namespace
nodes that contain child nodes with the detected pods. The leaf nodes are the containers
themselves and one of them has to be chosen to proceed to the selection of a running
JVM .

kubectl may require additional command line options for authentication in order to be
able to connect to the Kubernetes cluster. These options can be entered at the top of the
container selection dialog. Because these options may be sensitive information, they are
only saved to disk if you explicitly select the checkbox to remember them across restarts.
Deselecting this checkbox will clear any previously saved information immediately.

26

Setting the display name of running JVMs

In the JVM selection table, the displayed process name is the main class of the profiled
JVM together with its arguments. For launchers generated by exe4j or install4j, the
executable name is displayed.

If you wish to set the displayed name yourself, for example, because you have several
processes with the same main class that would otherwise be undistinguishable, you can
set the VM parameter -Djprofiler.displayName=[name]. If the name contains spaces,
use single quotes: -Djprofiler.displayName='My name with spaces' and quote the
entire VM parameter with double quotes if necessary. In addition to -Djprofiler.
displayName JProfiler also recognizes -Dvisualvm.display.name.

27

Recording Data
The main purpose of a profiler is to record runtime data from various sources that is useful
for solving common problems. The principal problem with this task is that a running JVM
generates such data at an enormous rate. If the profiler always recorded all types of data,
it would create an unacceptable overhead or quickly use up all available memory. Also,
you often want to record data around a particular use case and not see any unrelated
activity.

This is why JProfiler offers fine-grained mechanisms for controlling the recording of
information that you are actually interested in.

Scalar values and telemetries

From a profiler's viewpoint, the least problematic form of data is scalar values, for example,
the number of active threads or the number of open JDBC connections. JProfiler can
sample such values with a fixed macroscopic frequency - usually once per second - and
show you the evolution over time. In JProfiler, views that show such data are called
telemetries [p. 46]. Most telemetries are always recorded because the overhead of the
measurement and the memory consumption are small. If data is recorded for a long time,
older data points are consolidated so that memory consumption does not grow linearly
with time.

There are also parametrized telemetries, such as the number of instances for each class.
The extra dimension makes a permanent chronological recording unsustainable. You can
tell JProfiler to record telemetries of the instance counts of a number of selected classes,
but not of each and every class.

28

To continue the previous example, JProfiler is able to show you the instance counts of all
classes, but without the chronological information. This is the "All objects" view, and it
shows each class as a row in a table. The frequency for updating the view is lower than
once per second and may be adjusted automatically depending on how much overhead
the measurement causes. Determining the instance counts of all classes is relatively
expensive and takes longer the more objects are on the heap. This is why the "All objects"
is not updated automatically and you need to manually create new dumps of all objects.

Some measurements capture enum-like values, such as the execution status a thread is
currently in. This kind of measurement can be displayed as a colored time line and
consumes a lot less memory than numerical telemetries. In the cases of thread statuses,
the "Thread history" view shows the timelines for all threads in the JVM. Just like for the
telemetries with numeric values, older values are consolidated and made more
coarse-grained to reduce memory consumption.

29

Allocation recording

If you are interested in instance counts that have been allocated during a certain time
interval, JProfiler has to track all allocations. Contrary to the "All objects" view where JProfiler
can iterate over all objects in the heap to get information on demand, tracking single
allocations requires that additional code has to be executed for each object allocation.
That makes it a very expensive measurement that can significantly change the runtime
characteristics of the profiled application, such as the performance hot spots, especially
if you allocate many objects. This is why allocation recording has to be started and stopped
explicitly.

Views that have an associated recording initially show an empty page with a recording
button. The same recording button is also found in the toolbar.

Allocation recording not only records the number of allocated instances, it also records
the allocation stack traces. Keeping stack traces for each allocated recording in memory
would create excessive overhead, so JProfiler cumulates recorded stack traces into a tree.
This also has the advantage that you can interpret the data much more easily. However,
the chronological aspect is lost and there is no way to extract certain time ranges from
the data.

30

Memory analysis

Allocation recording can only measure where objects are allocated and has no information
on the references between objects. Any memory analysis that requires references, such
as solving a memory leak, is done in the heap walker. The heap walker takes a snapshot
of the entire heap and analyzes it. This is an invasive operation that pauses the JVM -
potentially for a long time - and requires a large amount of memory.

A more lightweight operation is marking all objects on the heap before you start a use
case, so that you can find all newly allocated objects when you take a heap snapshot
later on.

The JVM has a special trigger for dumping the entire heap to a file that is named after the
old HPROF profiling agent. This is not related to the profiling interface and does not operate
under its constraints. For this reason, the HPROF heap dump is faster and uses fewer
resources. The downside is that you will not have a live connection to the JVM when viewing
the heap snapshot in the heap walker and that some features are not available.

31

Method call recording

Measuring how long method calls take is an optional recording, just like allocation
recording. Method calls are cumulated into a tree, and there are various views that show
the recorded data from different perspectives, such as a call graph. The recording for this
type of data is called "CPU recording" in JProfiler.

Under particular circumstances it may be useful to see the chronological sequence of
method calls, especially if multiple threads are involved. For these special cases, JProfiler
offers the "Call tracer" view. That view has a separate recording type that is not tied to the
more general CPU recording. Note that the call tracer produces too much data to be useful
for solving performance problems, it is only intended for a specialized form of debugging.

The call tracer depends on CPU recording and automatically switches it on if necessary.

Another specialized view that has its own recording is the "Complexity analysis". It only
measures the execution times of selected methods and does not require CPU recording
to be enabled. Its additional data axis is a numeric value for the algorithmic complexity
of a method call that you can calculate with a script. In this way, you can measure how
the execution time of a method depends on its parameters.

32

Monitor recording

To analyze why threads are waiting or blocking, the corresponding events have to be
recorded. The rate of such events varies greatly. For a multi-threaded program where
threads frequently coordinate tasks or share common resources, there can be an enormous
number of such events. This is why such chronological data is not recorded by default.

When you switch on monitor recording, the "Locking history graph" and the "Monitor history"
view will start to show data.

To eliminate noise and reduce memory consumption, very short events are not recorded.
The view settings give you the possibility to adjust these thresholds.

33

Probe recording

Probes show higher-level subsystems in the JVM, such as JDBC calls or file operations. By
default, no probes are recorded and you can toggle recording separately for each probe.
Some probes will add very little or no overhead, and some will create a considerable
amount of data, depending on what your application is doing and how the probes are
configured.

Just like allocation recording and method call recording, probe data is cumulated and
chronological information is discarded except for time lines and telemetries. However,
most probes also have an "Events" view that allows you to inspect the single events. This
adds a potentially large overhead and has a separate recording action. The status of that
the recording action is persistent, so that when you toggle probe recording, the associated
event recording is toggled as well if you have switched it on previously.

34

The JDBC probe has a third recording action for recording JDBC connection leaks. The
associated overhead with looking for connection leaks is only incurred if you are actually
trying to investigate such a problem. Just like the event recording action, the selection
state of the leak recording action is persistent.

Recording profiles

In many situations, you want to start or stop various recordings together with a single
click. It would be impractical to visit all the corresponding views and toggle the recording

35

buttons one by one. This is why JProfiler has recording profiles. Recording profiles can be
created by clicking on the Start Recordings button in the tool bar.

Recording profiles define one particular combination of recordings that can be activated
atomically. JProfiler tries to give you a rough impression on the overhead that you create
by the selected recordings and tries to discourage problematic combinations. In particular,
allocation recording and CPU recording do not go well together because allocation
recording will distort the timings of CPU data significantly.

You can activate recording profiles at any time while a session is running. Recording
profiles are not additive, they stop all recordings that are not included in the recording
profile. With the Stop Recordings button you stop all recordings no matter how they have

36

been activated. To check what recordings are currently active, hover the mouse over the
recordings label in the status bar.

A recording profile can also be activated directly when you start profiling. The "Session
startup" dialog has an Initial recording profile drop-down. By default, no recording profile
is selected, but if you need data from the startup phase of the JVM, this is the place to
configure the required recordings.

Recording with triggers

Sometimes you want to start a recording when a particular condition occurs. JProfiler has
a system for defining triggers [p. 130] that execute a list of actions. The available trigger
actions also include changes to the active recordings.

For example, you could want to start a recording only when a particular method is executed.
In that case, you would go to the session settings dialog, activate the Trigger Settings tab
and define a method trigger for that method. For the action configuration, you have a
number of different recording actions available.

37

The "Start recording" action controls those recordings without any parameters. Usually,
when you stop and re-start a recording, all previously recorded data is cleared. For the
"CPU data" and "Allocation data" recordings, you also have the option to keep the previous
data and continue cumulating across multiple intervals.

Method triggers can be added conveniently in the call tree by using the "Add method
trigger" action in the context menu. If you already have a method trigger in the same
session, you can choose to add a method interception to an existing trigger.

38

By default, triggers are active when the JVM is started for profiling. There are two ways to
disable triggers at startup: You can disable them individually in the trigger configuration
or deselect the Enable triggers on startup check box in the session startup dialog. During
a live session, you can enable or disable all triggers by choosing Profiling->(Enable|Disable)
Triggers from the menu or clicking on the trigger recording state icon in the status bar.

Sometimes, you need to toggle trigger activation for groups of triggers at the same time.
This is possible by assigning the same group ID to the triggers of interest and invoking
Profiling->Enable Triggers Groups from the menu.

Recording with jpcontroller

JProfiler has a command line executable for controlling the recordings in any JVM that is
already being profiled. jpcontroller requires that the JProfiler MBean is published,
otherwise it will not be able to connect to the profiled JVM. This is only the case if the
profiling agent has already received profiling settings. Without profiling settings, the agent
would not know what to record exactly.

One of the following conditions has to apply:

• You have already connected to the JVM with a JProfiler GUI
• The profiled JVM was started with an -agentpath VM parameter that included both the
nowait and the config parameters. In the integration wizards, this corresponds to the
Startup immediately mode and the Apply configuration at startup option in the Config
synchronization step.

• The JVM was prepared for profiling with the jpenable executable and the -offline
parameter was specified. See the output of jpenable -help for more information.

Specifically, jpcontrollerwill not work if the profiled JVM was started only with the nowait
flag. In the integration wizards, the Apply configuration when connecting with the JProfiler
GUI option on the Config synchronization step would configure such a parameter. For
more information, see the help topic on setting profiling settings at startup [p. 251].

39

jpcontroller presents you with a looping multi-level menu for all recordings and their
parameters. You can also save snapshots with it.

Programmatic way to start recordings

Yet another way to start recording is through the API. In the profiled VM, you can call the
com.jprofiler.api.controller.Controller class to start and stop recordings
programmatically. See the chapter on offline profiling [p. 130] for more information and
for how to get the artifact that includes the controller class.

If you want to control recordings in a different JVM, you can access the same MBean in
the profiled JVM that is also used by jpcontroller. Setting up programmatic usage of
the MBean is somewhat involved and requires quite a bit of ceremony, so JProfiler ships
with an example that you can reuse. Check the file api/samples/mbean/src/
MBeanProgrammaticAccessExample.java. It records CPU data for 5 seconds in another
profiled JVM and saves a snapshot to disk.

40

Snapshots
Until now, we have only looked at live sessions where the JProfiler GUI obtains the data
from the profiling agent that is running inside the profiled JVM. JProfiler also supports
snapshots where all profiling data is written to a file. This can be of advantage in several
scenarios:

• You record profiling data automatically, for example, as part of a test so that connecting
with a JProfiler GUI is not possible.

• You want to compare profiling data from different profiling sessions or look at older
recordings.

• You want to share profiling data with somebody else.

Snapshots include data from all recordings, including heap snapshots. To save disk space,
snapshots are compressed, except for heap walker data which has to remain
uncompressed to allow for direct memory mapping.

Saving and opening snapshots in the JProfiler GUI

When you are profiling a live session, you can create snapshots with the Save Snapshot
tool bar button. JProfiler pulls all profiling data from the remote agent and saves it to a
local file with a ".jps" extension. You can save multiple such snapshots during the course
of a live session. They are not opened automatically and you can continue to profile.

Saved snapshots are added automatically to the File->Recent Snapshots menu, so you
can conveniently open a snapshot that you have just saved. When opening a snapshot
while the live session is still running, you have a choice of terminating the live session or
opening another JProfiler window.

When you use the snapshot comparison feature in JProfiler, the list of snapshots is
populated with all the snapshots that you have saved for the current live session. This
makes it easy to compare different use cases.

41

In general, you can open snapshots by invoking Session->Open Snapshot from the main
menu or by double-clicking the snapshot file in the file manager. JProfiler's IDE integrations
also support opening JProfiler snapshots through the generic Open File actions in the IDEs
themselves. In that case, you get source code navigation into the IDE instead of the built-in
source code viewer.

When you open a snapshot, all the recording actions are disabled and only views with
recorded data are available. To discover what kind of data has been recorded, hover the
mouse over the recording label in the status bar.

Profiling short-lived programs

For a live session, all profiling data resides in the process of the profiled JVM. So when the
profiled JVM is terminated, the profiling session in JProfiler is closed as well. To continue
profiling when a JVM exits, you have two options, both of which can be activated in the
session startup dialog.

42

• You can prevent the JVM from actually exiting and keep it artificially alive as long as
the JProfiler GUI is connected. This may be undesirable when you are profiling a test
case from the IDE and want to see the status and total time in the test console of the
IDE.

• You can ask JProfiler to save a snapshot when the JVM terminates and switch to it
immediately. The snapshot is temporary and will be discarded when you close the
session unless you use the Save Snapshot action first.

Saving snapshots with triggers

The final result of an automated profiling session is always a snapshot or a series of
snapshots. In triggers, you can add a "Save a snapshot" action that saves the snapshot
on the machine where the profiled JVM is running. When the trigger runs during a live
session, the snapshot is also saved on the remote machine and may not include parts of
the data that have already been transmitted to the JProfiler GUI.

There are two basic strategies for saving snapshots with triggers:

• For test cases, start recording in the "JVM startup" trigger and add a "JVM exit" trigger
to save the snapshot when the JVM is terminated.

• For exceptional conditions like the "CPU load threshold" trigger or for periodic profiling
with a "Timer trigger", save the snapshot after recording some data with a "Sleep" action
in between.

43

HPROF heap snapshots

In situations where taking a heap snapshot produces too much overhead or consumes
too much memory, you can use the HPROF heap snapshots that the JVM offers as a built-in
feature. Because the profiling agent is not required for this operation, this is interesting for
analyzing memory problems in JVMs that are running in production.

With JProfiler, there are three ways to obtain such snapshots:

• For live sessions, the JProfiler GUI offers an action in the main menu to trigger an HPROF
heap dump.

• JProfiler has a special "Out of memory exception" trigger to save an HPROF snapshot
when an OutOfMemoryError is thrown. This corresponds to the VM parameter (1)

-XX:+HeapDumpOnOutOfMemoryError

that is supported by HotSpot JVMs.

(1) http://docs.oracle.com/javase/9/troubleshoot/command-line-options1.htm#JSTGD592

44

http://docs.oracle.com/javase/9/troubleshoot/command-line-options1.htm#JSTGD592

• The jmap executable in the JDK (2) can be used to extract an HPROF heap dump from a
running JVM.

JProfiler includes the command line tool jpdump that is more versatile than jmap. It lets
you select a process, can connect to processes running as a service on Windows, has
no problems with mixed 32-bit/64-bit JVMs and auto-numbers HPROF snapshot files.
Execute it with the -help option for more information.

JDK Flight Recorder snapshots

JProfile fully supports opening snapshots saved by Java Flight Recorder (JFR). The UI is
notably different in this case and is adjusted to the capabilities of JFR. See the JFR help
topics [p. 223] for more details.

(2) https://docs.oracle.com/en/java/javase/11/tools/jmap.
html#GUID-D2340719-82BA-4077-B0F3-2803269B7F41

45

https://docs.oracle.com/en/java/javase/11/tools/jmap.html#GUID-D2340719-82BA-4077-B0F3-2803269B7F41

Telemetries
One aspect of profiling is monitoring scalar measurements over time, for example, the
used heap size. In JProfiler, such graphs are called telemetries. Observing telemetries gives
you a better understanding of the profiled software, allows you to correlate important
events over different measurements and may prompt you to perform a deeper analysis
with other views in JProfiler if you notice unexpected behavior.

Standard telemetries

In the "Telemetries" section of the JProfiler UI, a number of telemetries are recorded by
default. For interactive sessions, they are always enabled. Some telemetries require that
a special type of data is recorded. In that case, a recording action will be shown in the
telemetry.

To compare multiple telemetries on the same time axis, the overview shows multiple
small-scale telemetries on top of each other with a configurable row height. Clicking on
the telemetry title activates the full telemetry view. The default order of the telemetries in
the overview may not be suitable, for example, because you want to correlate selected
telemetries side by side. In that case you can reorder them with drag and drop in the
overview.

The full view shows a legend with current values and may have more options than what
is visible in the overview. For example, the "Memory" telemetry allows you to select single
memory pools.

46

JProfiler has a large number of probes [p. 105] that record events from high-level systems
in the JVM and important frameworks. Probes have telemetries that are displayed in the
corresponding probe views. To compare these telemetries to the system telemetries, you
can add selected probe telemetries to the top-level telemetries section. From the toolbar,
choose Add telemetries->Probe Telemetry and select one or more probe telemetries.

Each added probe telemetry gets its own view in the telemetry section and is also displayed
in the overview.

47

Once a probe telemetry has been added, data is only shown if probe data has been
recorded. If not, the telemetry description contains an inline button to start recording.

The context menu for probe telemetries contains the recording actions as well an action
to show the corresponding probe view.

48

Similar to the probe views, the VM telemetries for the recorded objects depend on memory
recording and also have a recording button and a similar context menu.

Finally, there are "tracking" telemetries that monitor a scalar value that is selected in
another view. For example, the class tracker view allows you to select a class and monitor
its instance count over time. Also, each probe has a "Tracker" view where selected hot
spots or control objects are monitored.

Bookmarks

JProfiler maintains a list of bookmarks that are shown in all telemetries. In an interactive
session, you can add a bookmark at the current time by clicking on the Add Bookmark
tool bar button, or by using the Add Bookmark Here feature in the context menu.

49

Bookmarks can not only be created manually, they are added automatically by the
recording actions to indicate the beginning and the end of a particular recording. With
trigger actions or with the controller API, you can add bookmarks programmatically.

Bookmarks have color, a line style and also a name that shows up in the tool tip. You can
edit existing bookmarks and change these properties.

If right-clicking several bookmarks in a telemetry is too inconvenient, you can use the
Profiling->Edit Bookmarks action from the menu to get a list of bookmarks. This is also the
place where you can export bookmarks to HTML or CSV.

50

Custom telemetries

There are two ways to add your own telemetries: Either you write a script in the JProfiler
UI to supply a numeric value or you select a numeric MBean attribute.

To add a custom telemetry, click on the Configure Telemetries tool bar button that is visible
in the "Telemetries" section. In a script telemetry, you have access to all classes that are
configured in the classpath of the current JProfiler session. If a value is not available directly,
add a static method to your application that you can call in this script.

The above example shows a call to a platform MBean. Graphing scalar values of MBeans
is more conveniently done with an MBean telemetry. Here, an MBean browser allows you
to select a suitable attribute. The attribute value must be numeric.

51

You can bundle several telemetry lines into a single telemetry. That's why the configuration
is split into two parts: the telemetry itself and the telemetry line. In the telemetry line, you
just edit the data source and the line caption, in the telemetry you can configure unit,
scale and stacking which apply to all contained lines.

In a stacked telemetry, the single telemetry lines are additive and an area graph can be
shown. The scale factor is useful to convert a value to a supported unit. For example, if the
data source reports kB, the problem is that there is no matching "kB" unit in JProfiler. If you
set the scale factor to -3, the values will be converted to bytes and by choosing "bytes"
as the unit for the telemetry, JProfiler will automatically display the appropriate aggregate
unit in the telemetry.

Custom telemetries are added at the end of the "Telemetries" section in the order in which
they are configured. To reorder them, drag them to the desired position in the overview.

52

Overhead considerations

At first sight, it would seem that telemetries consume memory linearly with time. However,
JProfiler consolidates older values and makes them progressively more coarse-grained
in order to limit the total amount of memory consumed per telemetry.

The CPU overhead of telemetries is limited by the fact that their values are only polled
once per second. For the standard telemetries, there is no additional overhead for this
data collection. For custom telemetries, the overhead is governed by the underlying script
or MBean.

53

CPU Profiling
When JProfiler measures the execution times of method calls together with their call stacks,
we call it "CPU profiling". This data is presented in a variety of ways. Depending on the
problem you are trying to solve, one or the other presentation will be most helpful. CPU
data is not recorded by default, you have to switch on CPU recording [p. 28] to capture
interesting use cases.

Call tree

Keeping track of all method calls and their call stacks would consume a considerable
amount of memory and could only be kept up for a short time until all memory is exhausted.
Also, it is not easy to intuitively grasp the number of method calls in a busy JVM. Usually,
that number is so great that locating and following traces is impossible.

Another aspect is that many performance problems only become clear if the collected
data is aggregated. In that way, you can tell how important method calls are with respect
to the entire activity in a certain time period. With single traces, you have no notion of the
relative importance of the data that you are looking at.

This is why JProfiler builds a cumulated tree of all observed call stacks, annotated with
the observed timings and invocation counts. The chronological aspect is eliminated and
only the total numbers are kept. Each node in the tree represents one call stack that was
observed at least once. Nodes have children that represent all the outgoing calls that
were seen at that call stack.

A

B

A

B

C

A

B

D

A: 7 ms

B: 6 ms

C: 3 ms

D: 1 ms

A

C

2 ms 1 ms 3 ms 1 ms

C: 1 ms

method invocations with call stacks call tree

The call tree is the first view in the "CPU views" section, and it's a good starting point when
you start CPU profiling, because the top-down view that follows method calls from the
starting points to the most granular end points is most easily understood. JProfiler sorts
children by their total time, so you can open the tree depth-first to analyze the part of the
tree that has the greatest performance impact.

54

While all measurements are performed for methods, JProfiler allows you to take a broader
perspective by aggregating the call tree on the class or package level. The aggregation
level selector also contains a "JEE/Spring components" mode. If your application uses JEE
or Spring, you can use this mode to see only JEE and Spring components on a class level.
Splitting nodes like URLs are retained in all aggregation levels.

Call tree filters

If methods from all classes are shown in the call tree, the tree is usually too deep to be
manageable. If your application is called by a framework, the top of the call tree will consist
of framework classes that you don't care about and your own classes will be deeply buried.
Calls into libraries will show their internal structure, possibly with hundreds of levels of
method calls that you are not familiar with and not in a position to influence.

The solution to this problem is to apply filters to the call tree, so that only some classes
are recorded. As a positive side-effect, less data has to be collected, and fewer classes
have to be instrumented, so the overhead is reduced.

By default, profiling sessions are configured with a list of excluded packages from
commonly used frameworks and libraries.

55

Of course this list is incomplete so it's much better that you delete it and define the
packages of interest yourself. In fact, the combination of instrumentation [p. 67] and the
default filters is so undesirable that JProfiler suggests changing it in the session startup
dialog.

The filter expressions are compared against the fully qualified class name, so com.mycorp.
matches classes in all nested packages, like com.mycorp.myapp.Application. There are
three types of filters, called "profiled", "compact" and "ignored". All methods in "profiled"
classes are measured. This is what you need for your own code.

56

In a class that is contained by a "compact" filter, only the first call into that class is
measured, but no further internal calls are shown. "Compact" is what you want for libraries,
including the JRE. For example, when calling hashMap.put(a, b) you probably want to
see HashMap.put() in the call tree, but not more than that - its inner workings should be
treated as opaque unless you are the developer of the map implementation.

Finally, "ignored" methods are not profiled at all. They may be undesirable to instrument
due to overhead considerations, or they may simply be distracting in the call tree, such
as internal Groovy methods that are inserted between dynamic calls.

Entering packages manually is error prone, so you can use the package browser. Before
you start the session, the package browser can only show you packages in the configured
class path which often does not cover all the classes that are actually loaded. At runtime,
the package browser will show you all loaded classes.

The configured list of filters is evaluated from top to bottom for each class. At each stage,
the current filter type may change if there is a match. It's important what kind of filter starts
off the list of filters. If you start with a "profiled" filter, the initial filter type of a class is
"compact", meaning that only explicit matches are profiled.

a.*

a.b.*

a.b.c.*

a.A a.b.B a.b.c.C
Default:

1

2

3

Result:

d.D

profiled class
compact filter

match

If you start it with a "compact" filter, the initial filter type of a class is "profiled". In this case,
all classes are profiled except for explicitly excluded classes.

57

a.*

a.b.*

a.b.c.*

a.A a.b.B a.b.c.C
Default:

1

2

3

Result:

d.D

profiled class
compact filter

match

Call tree times

To interpret the call tree correctly, it's important to understand the numbers that are
displayed on the call tree nodes. There are two times that are interesting for any node,
the total time and the self time. The self-time is the total time of the node minus the total
time in the nested nodes.

Usually, the self-time is small, except for compact-filtered classes. Most often, a
compact-filtered class is a leaf node and the total time is equal to the self-time because
there are no child nodes. Sometimes, a compact-filtered class will invoke a profiled class,
for example, via a callback or because it's the entry point of the call tree, like the run
method of the current thread. In that case, some unprofiled methods have consumed
time, but are not shown in the call tree. That time bubbles up to the first available ancestor
node in the call tree and contributes to the self-time of the compact-filtered class.

A: self time 1 ms

C: self time 3 ms

B: self time 2 ms

profiled class
compact filter

B: self time 6 msX: self time 3 ms

Y: self time 1 ms

actual call sequence filtered call sequence

The percentage bar in the call tree shows the total time, but the self-time portion is shown
with a different color. Methods are shown without their signatures unless two methods on
the same level are overloaded. There are various ways to customize the display of the call

58

tree nodes in the view settings dialog. For example, you may want to show self-times or
average times as text, always show method signatures or change the used time scale.
Also, the percentage calculation can be based on the parent time instead of the time for
the entire call tree.

Thread status

At the top of the call tree there are several view parameters that change the type and
scope of the displayed profiling data. By default, all threads are cumulated. JProfiler
maintains CPU data on a per-thread basis, and you can show single threads or thread
groups.

At all times, each thread has an associated thread status. If the thread is ready to process
bytecode instructions or is currently executing them on a CPU core, the thread status is
called "Runnable". That thread state is of interest when looking for performance bottlenecks,
so it is selected by default.

Alternatively, a thread may be waiting on a monitor, for example, by calling Object.wait()
or Thread.sleep() in which case the thread state is called "Waiting". A thread that is
blocked while trying to acquire a monitor, such as at the boundary of a synchronized
code block is in the "Blocking" state.

Finally, JProfiler adds a synthetic "Net I/O" state that keeps track of the times when a thread
is waiting for network data. This is important for analyzing servers and database drivers,
because that time can be relevant for performance analysis, such as for investigating
slow SQL queries.

59

If you are interested in wall-clock times, you have to select the thread status "All states"
and also select a single thread. Only then can you compare times with durations that you
have calculated with calls to System.currentTimeMillis() in your code.

If you want to shift selected methods to a different thread status, you can do so with a
method trigger and an "Override thread status" trigger action, or by using the ThreadStatus
class in the embedded [p. 169] or injected [p. 164] probe APIs.

Finding nodes in the call tree

There are two ways to search for text in the call tree. First, there is the quicksearch option
that is activated by invoking View->Find from the menu or by directly starting to type into
the call tree. Matches will be highlighted and search options are available after pressing
PageDown. With the ArrowUp and ArrowDown keys you can cycle through the different
matches.

Another way to search for methods, classes or packages is to use the view filter at the
bottom of the call tree. Here you can enter a comma-separated list of filter expressions.
Filter expressions that start with a "-" are like ignored filters. Expressions that start with a
"!" are like compact filters. All other expressions are like profiled filters. Just like for the filter
settings, the initial filter type determines if classes are included or excluded by default.

Clicking on the icon to the left of the view settings text field shows the view filter options.
By default, the matching mode is "Contains", but "Starts with" may be more appropriate
when searching for particular packages.

60

Flame graphs

Another way to view the call tree is as a flame graph. You can show the entire call tree or
a portion of it as a flame graph by invoking the associated call tree analysis [p. 191].

A flame graph shows the entire content of a call tree in one image. Calls originate at the
bottom of the flame graph and propagate towards the top. The children of each node
are arranged in the row directly above it. Child nodes are sorted alphabetically and are
centered on their parent node. Due to the self-time that is spent in each node, the "flames"
get progressively more narrow toward the top. More information about nodes is displayed
in the tool tip where you can mark text to copy it to the clipboard.

61

If the tool tip near the mouse cursor disturbs your analysis, you can lock it with the button
in its upper right corner and then move it to a convenient location with the gripper at the
top of the tool tip. The same button or a double click on the flame graph close the tool tip.

Flame graphs have a very high information density, so it may be necessary to narrow the
displayed content by focusing on selected nodes and their hierarchy of descendant nodes.
While you can zoom in on areas of interest, you can also set a new root node by
double-clicking on it or by using the context menu. When changing roots multiple times
in a row, you can move back again in the history of roots.

Another way to analyze flame graphs is to add colorizations based on class names,
package names or arbitrary search terms. Colorizations can be added from the context
menu and can be managed in the colorizations dialog. The first matching colorization is
used for each node. Colorizations are persisted across profiling sessions and are used
globally for all sessions and snapshots.

In addition to colorizations, you can use the quick search functionality to find nodes of
interest. With the cursor keys you can cycle through match results while the tooltip is being
displayed for the currently highlighted match.

Hot spots

If your application is running too slowly, you want to find the methods that take most of
the time. With the call tree, it is sometimes possible to find these methods directly, but
often that does not work because the call tree can be broad with a huge number of leaf
nodes.

62

In that case, you need the inverse of the call tree: A list of all methods sorted by their total
self time, cumulated from all different call stacks and with back traces that show how the
methods were called. In a hot spot tree, the leafs are the entry points, like the mainmethod
of the application or the run method of a thread. From the deepest nodes in the hot spot
tree, the call propagates upward to the top-level node.

The invocation counts and execution times in the backtraces do not refer to the method
nodes, but rather to the number of times that the top-level hot spot node was called along
this path. This is important to understand: At a cursory glance, you would expect the
information on a node to quantify calls to that node. However, in a hot spot tree, that
information shows the contribution of the node to the top-level node. So you have to read
the numbers like this: Along this inverted call stack, the top-level hot spot was called n
times with a total duration of t seconds.

Method A
Count 5

Method C
Count 3

Method C
Count 1

Method B
Count 2

Call Tree Hot spots

Method C
Count 4

Method A
Count 3

Method B
Count 1

backtraces

hot spot
invocation
Counts

inve
rsi

on

63

By default, the hot spots are calculated from self-time. You can also calculate them from
total time. This is not very useful for analyzing performance bottlenecks, but can be
interesting if you would like to see a list of all methods. The hot spot view only shows a
maximum number of methods to reduce overhead, so a method you are looking for may
not be displayed at all. In that case, use the view filters at the bottom to filter the package
or the class. Contrary to the call tree, the hot spot view filters only filter the top-level nodes.
The cutoff in the hot spot view is not applied globally, but with respect to the displayed
classes, so new nodes may appear after applying a filter.

Hot spots and filters

The notion of a hot spot is not absolute but depends on the call tree filters. If you have no
call tree filters at all, the biggest hot spots will most likely always be methods in the core
classes of the JRE, like string manipulation, I/O routines or collection operations. Such hot
spots would not be very useful, because you often don't directly control the invocations
of these methods and also have no way of speeding them up.

In order to be useful to you, a hot spot must either be a method in your own classes or a
method in a library class that you call directly. In terms of the call tree filters, your own
classes are in "profiled" filters and the library classes are in "compact" filters.

When solving performance problems, you may want to eliminate the library layer and
only look at your own classes. You can quickly switch to that perspective in the call tree
by selecting the Add to calling profiled class radio button in the hot spot options popup.

Call graph

Both in the call tree as well in the hot spots view each node can occur multiple times,
especially when calls are made recursively. In some situations, you are interested in a
method-centric statistics where each method only occurs once and all incoming and
outgoing calls are visible. Such a view is best displayed as a graph and in JProfiler, it is
called the call graph.

64

One drawback of graphs is that their visual density is lower than that of trees. This is why
JProfiler abbreviates package names by default and hides outgoing calls with less than
1% of the total time by default. As long as the node has an outgoing expansion icon, you
can click on it again to show all calls. In the view settings, you can configure this threshold
and turn off package abbreviation.

When expanding the call graph, it can get messy very quickly, especially if you backtrack
multiple times. Use the undo functionality to restore previous states of the graph. Just like
the call tree, the call graph offers quick search. By typing into the graph, you can start the
search.

The graph and the tree views each have their advantages and disadvantages, so you
may sometimes wish to switch from one view type to another. In interactive sessions, the
call tree and hot spots views show live data and are updated periodically. The call graph,
however, is calculated on request and does not change when you expand nodes. The
Show in Call Graph action in the call tree calculates a new call graph and shows the
selected method.

65

Switching from the graph to the call tree is not possible because the data is usually not
comparable anymore at a later time. However, the call graph offers call tree analyses
with its View->Analyze actions that can show you trees of cumulated outgoing calls and
backtraces for each selected node.

Beyond the basics

The ensemble of call tree, hot spots view and call graph has many advanced features
that are explained in detail in a different chapter [p. 173]. Also, there are other advanced
CPU views that are presented separately [p. 197].

66

Method Call Recording
Recording method calls is one of the most difficult tasks for a profiler, because it operates
under conflicting constraints: Results should to be accurate, complete and produce such
a small overhead that the conclusions you draw from the measured data do not become
incorrect. Unfortunately, there is no single type of measurement that fulfills all these
requirements for all types of applications. This is why JProfiler requires you to make a
decision on which method to use.

Sampling versus instrumentation

Measuring method calls can be done with two fundamentally different techniques called
"sampling" and "instrumentation", each of which has advantages and drawbacks: With
sampling, the current call stacks of threads are inspected periodically. With instrumentation,
the bytecode of selected classes is modified to trace method entry and exit.
Instrumentation measures all invocations and can produce invocation counts for all
methods.

When processing sampling data, the full sampling period (typically 5 ms) is attributed to
the sampled call stack. With a large number of samples, a statistically correct picture
emerges. The advantage of sampling is that it has a very low overhead because it happens
infrequently. No bytecode has to be modified, and the sampling period is much larger
than the typical duration of a method call. The downside is that you cannot determine
any method invocation counts. Additionally, short running methods that are called only
a few times might not show up at all. This does not matter if you are looking for performance
bottlenecks, but can be inconvenient if you are trying to understand the detailed runtime
characteristics of your code.

Method A: +5 ms

Method B: +5 ms

Method X: +5 ms

Method A: +5 ms

Method B: +5 ms

Method Y: +5 ms

timeT T + 5 ms

Instrumentation, on the other hand, can introduce a large overhead if many short-running
methods are instrumented. This instrumentation distorts the relative importance of
performance hot spots because of the inherent overhead of the time measurement, but
also because many methods that would otherwise be inlined by the hot spot compiler
must now remain separate method calls. For method calls that take a longer amount of
time, the overhead is insignificant. If you can find a good set of classes that mainly perform
high-level operations, instrumentation will add a very low overhead and can be preferable
to sampling. JProfiler's overhead hotspot detection can also improve the situation after
some runs. Additionally, the invocation count is often important information that makes
it much easier to see what is going on.

67

Method A

X: 3.5 ms Y: 4.5 ms

time in ms

Profiling agent

en
tr

y

en
tr

y

en
tr

y
ex

it

ex
it

ex
it

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Method B: 11 ms

calls

calls calls

Full sampling versus async sampling

JProfiler offers two different technical solutions for sampling: "Full sampling" is done with
a separate thread that pauses all threads in the JVM periodically and inspects their stack
traces. However, the JVM only pauses threads at certain "safe points" thereby introducing
a bias. If you have highly multi-threaded CPU bound code, the profiled distribution of
hotspots may be skewed. On the other hand, if code also performs significant I/O, this bias
will generally not be a problem.

To help with getting accurate numbers for highly CPU-bound code, JProfiler also offers
async sampling. With async sampling, a profiling signal handler is called on the running
threads themselves. The profiling agent then inspects the native stack and extracts the
Java stack frames. The main benefit is that there is no safe-point bias with this sampling
method, and the overhead for highly multi-threaded CPU-bound applications is lower.
However, only the "Running" thread state can be observed for the CPU views while "Waiting",
"Blocking" or "Net I/O" thread states cannot be measured in this way. Probe data is always
collected with bytecode instrumentation, so you will still get all thread states for JDBC and
similar data.

Async sampling suffers from truncated traces where only the end of the call stack is
available. This is why the call tree is often not as useful for async sampling as the hot spots
view. Async sampling is only supported on Linux and macOS.

Starting with Java 17, JProfiler can avoid using a global safe point for sampling on Hotspot
JVMs and operate full sampling with near-zero overhead. Compared to async sampling,
it still introduces some kind of safe point bias for single threads, but no longer the overhead
of a global safe point for all threads in the JVM. Considering the drawbacks of async
sampling, using full sampling is recommended for Java 17+.

68

time

Sampling thread

Thread 2

Thread 1

safe point biasFull sampling:

Async sampling:

Thread 2

Thread 1

T T + 5 ms

Choosing a method call recording type

Which method call recording type to use for profiling is an important decision and there
no right choice for all circumstances, so you need to make an informed decision. When
you create a new session, the session startup dialog will ask you which method call
recording type you want to use. At any later point in time you can change the method
call recording type in the session settings dialog.

As a simple guide, consider the following questions that test whether your application
falls into one of two clear categories on opposite sides of the spectrum:

69

• Is the profiled application I/O bound?
This is the case for many web applications that wait on REST service and JDBC database
calls most of the time. In that case, instrumentation will be the best option under the
condition that you carefully select your call tree filters to only include your own code.

• Is the profiled application heavily multi-threaded and CPU bound?
For example, this could be the case for a compiler, image processing application or a
web server that is running a load test. If you are profiling on Linux or macOS, you should
choose async sampling to get the most accurate CPU times in this case.

Otherwise, "Full sampling" is generally the most suitable option and is suggested as the
default for new sessions.

Native sampling

Because async sampling has access to the native stack, it can also perform native
sampling. By default, native sampling is not enabled because it introduces a lot of nodes
into call trees and shifts the focus of hot spot calculation to native code. If you do have a
performance problem in native code, you can choose async sampling and enable native
sampling in the session settings.

JProfiler resolves the path of the library that belongs to each native stack frame. On native
method nodes in the call tree, JProfiler shows the file name of the native library in square
brackets at the beginning.

70

With respect to the aggregation level, native libraries act like classes, so in the "classes"
aggregation level all subsequent calls within the same native library will be aggregated
into a single node. The "packages" aggregation level aggregates all subsequent native
method calls into a single node regardless of the native library.

To eliminate selected native libraries, you can remove a node [p. 182] from that native
library and choose to remove the entire class.

71

Memory Profiling
There are two ways of getting information about objects on the heap. On the one hand,
a profiling agent can track the allocation and the garbage collection of each object. In
JProfiler, this is called "allocation recording". It tells you where objects have been allocated
and can also be used to create statistics about temporary objects. On the other hand,
the profiling interface of the JVM allows the profiling agent to take a "heap snapshot" in
order to inspect all live objects together with their references. This information is required
to understand why objects cannot be garbage collected.

Both allocation recording and heap snapshots are expensive operations. Allocation
recording has a large impact on the runtime characteristics, because the java.lang.
Object constructor has to be instrumented and the garbage collector continuously has
to report to the profiling interface. This is why allocations are not recorded by default, and
you have to start and stop recording [p. 28] explicitly. Taking a heap snapshot is a one-time
operation. However, it can pause the JVM for several seconds and the analysis of the
acquired data may take a relatively long time, scaling with the size of the heap.

JProfiler splits its memory analysis into two view sections: The "Live memory" section
presents data that can be updated periodically whereas the "Heap walker" section shows
a static heap snapshot. Allocation recording is controlled in the "Live memory" section,
but the recorded data is also displayed by the heap walker.

The three most common problems that can be solved with memory profiling are: Finding
a memory leak [p. 216], reducing memory consumption and reducing the creation of
temporary objects. For the first two problems, you will mainly use the heap walker, mostly
by looking at who is holding on to the biggest objects in the JVM and where they were
created. For the last problem you can only rely on the live views that show recorded
allocations, because it involves objects that have already been garbage collected.

Tracking instance counts

To get an overview of what objects are on the heap, the "All objects" view shows you a
histogram of all classes and their instance counts. The data that is shown in this view is
not collected with allocation recording but by performing a mini-heap snapshot that only
calculates the instance counts. The larger the heap, the longer it takes to perform this
operation, so this view is not updated automatically with the current values.

72

When looking for a memory leak, you often want to compare instance counts over time.
To do that for all classes, you can use the differencing functionality of the view. When two
dumps of all objects are selected at the same time, a Difference column is inserted and
the histogram of the instance counts shows the baseline values at the time of the marking
in green color. When taking a new dump of all objects, the oldest selected dump will remain
selected and the difference with the new dump of all objects will be shown.

The dump selector shows time stamps when the dump was taken. By double-clicking on
a dump, you can add a label for easier identification. Dumps of all objects can also be

73

triggered with a trigger action [p. 28] or the Controller API, where a label can also be
specified.

The "Recorded objects" view, on the other hand, only shows the instance counts for objects
that have been allocated after you have started allocation recording. When you stop
allocation recording, no new allocations are added, but garbage collection continues to
be tracked. In this way, you can see what objects remain on the heap for a certain use
case. Note that objects may not be garbage collected for a long time. With the Run GC
tool bar button you can speed up this process. As with most views that are updated
dynamically a Freeze tool bar button is available to stop updating the displayed data.

With the Mark Current toolbar button, you can show a difference column with respect to
a selected baseline in the "Recorded objects" view as well. For selected classes, you can
also show a time-resolved graph with the Add Selection to Class Tracker action from the
context menu.

Allocation spots

When allocation recording is active, JProfiler takes note of the call stack each time an
object is allocated. It does not use the exact call stack, for example, from the stack-walking
API, because that would be prohibitively expensive. Instead, the same mechanism is used
that is configured for CPU profiling. This means that the call stack is filtered according to
the call tree filters [p. 54] and that the actual allocation spot can be in a method that is
not present in the call stack, because it is from an ignored or compact-filtered class.
However, these changes are intuitively easy to understand: A compact-filtered method
is responsible for all allocations that are made in further calls to compact-filtered classes.

If you use sampling, the allocation spots become approximate and may be confusing.
Unlike for time measurements, you often have a clear idea of where certain classes can
be allocated and where not. Because sampling paints a statistical rather than an exact
picture, you may see allocation spots that are seemingly impossible, such as java.util.
HashMap.get allocating one of your own classes. For any kind of analysis where exact
numbers and call stacks are important, it is recommended to use allocation recording
together with instrumentation.

Just like for CPU profiling, the allocation call stacks are presented as a call tree, only with
allocation counts and allocated memory rather than invocation counts and time. Unlike
for the CPU call tree, the allocation call tree is not displayed and updated automatically
because the calculation of the tree is more expensive. JProfiler can show you the allocation

74

tree not only for all objects, but also for a selected class or package. Together with other
options, this is configured in the options dialog that is shown after you ask JProfiler to
calculate an allocation tree from the current data.

A useful property of the CPU call tree is that you can follow the cumulated time from top
to bottom because each node contains the time that is spent in the child nodes. By default,
the allocation tree behaves in the same way, meaning that each node contains the
allocations that are made by the child nodes. Even if allocations are only performed by
leaf nodes deep down in the call tree, the numbers propagate up to the top. In this way,
you can always see which path is worth investigating when opening branches of the
allocation call tree. "Self-allocations" are those that are actually performed by a node and
not by its descendants. Like in the CPU call tree, the percentage bar shows them with a
different color.

In the allocation call tree, there are often a lot of nodes where no allocations are performed
at all, especially if you show allocations for a selected class. These nodes are only there
to show you the call stack leading to the node where the actual allocation has taken place.
Such nodes are called "bridge" nodes in JProfiler and are shown with a gray icon as you
can see in the screen shot above. In some cases, the cumulation of allocations can get
in the way and you only want to see the actual allocation spots. The view settings dialog
of the allocation tree offers an option to show uncumulated numbers for that purpose. If
activated, bridge nodes will always show zero allocations and have no percentage bar.

75

The allocation hot spots view is populated together with the allocation call tree and allows
you to directly focus on the methods that are responsible for creating the selected classes.
Like the recorded objects view, the allocation hot spots view supports marking the current
state and observing the differences over time. A difference column is added to the view
that shows how much the hot spots have changed since the time when the Mark Current
Values action was invoked. Because the allocation views are not updated periodically by
default, you have to click on the Calculate tool bar button to get a new data set that is
then compared to the baseline values. Auto-update is available in the options dialog but
not recommended for large heap sizes.

Allocation recording rate

Recording each and every allocation adds a significant overhead. In many cases, the
total numbers for allocations are not important and relative numbers are sufficient to
solve problems. That is why JProfiler only records every 10th allocation by default. This
reduces the overhead to roughly 1/10 compared to recording all allocations. If you would
like to record all allocations, or if even fewer allocations are sufficient for your purpose,
you can change the recording rate in the recorded objects view as well as the parameter
dialog of the allocation call tree and hot spot views.

76

The setting can also be found on the "Advanced Settings->Memory profiling" step of the
session settings dialog where it can be adjusted for offline profiling sessions.

The allocation recording rate influences the VM telemetries for "Recorded objects" and
"Recorded throughput" whose values will be measured at the configured fraction. When
comparing snapshots [p. 135], the allocation rate of the first snapshot will be reported, and
other snapshots will be scaled accordingly, if necessary.

Analyzing allocated classes

When calculating the allocation tree and allocation hot spot views, you have to specify
the class or package whose allocations you want to see up-front. This works well if you
already focused on particular classes, but is inconvenient when trying to find allocation
hot spots without any pre-conceptions. One way is to start to look at the "Recorded objects"
view and use the actions in the context menu for switching to the allocation tree or
allocation hot spot views for the selected class or package.

Another way is to start with the allocation tree or allocation hot spots for all classes and
use the Show classes action to show the classes for a selected allocation spot or allocation
hot spot.

77

The histogram of the allocated classes is shown as a call tree analysis [p. 191]. This action
also works from other call tree analyses.

The classes analysis view is static and is not updated when the allocation tree and hot
spot views are recalculated. The Reload Analysis action will first update the allocation tree
and then recalculate the current analysis view from the new data.

Analyzing garbage collected objects

Allocation recording cannot only show the live objects, but also keeps information on
garbage collected objects. This is useful when investigating temporary allocations.
Allocating a lot of temporary objects can produce significant overhead, so reducing the
allocation rate often improves performance considerably.

To show garbage collected objects in the recorded objects view, change the liveness
selector to either Garbage collected objects or Live and garbage collected objects. The

78

options dialog of the allocation call tree and allocation hot spot views has an equivalent
drop-down.

However, JProfiler does not collect allocation tree information for garbage-collected
objects by default, because the data for live objects only can be maintained with far less
overhead. When switching the liveness selector in the "Allocation Call Tree" or "Allocation
Hotspots" view to a mode that includes garbage collected objects, JProfiler suggests
changing the recording type. This is a change in the profiling settings, so all previously
recorded data will be cleared if you choose to apply the change immediately. If you would
like to change this setting in advance, you can do so in "Advanced Settings" -> "Memory
Profiling" in the session settings dialog.

Next stop: heap walker

Any more advanced type of question will involve references between objects. For example,
the sizes that are displayed in the recorded objects, allocation tree and allocation hot
spot views are shallow sizes. They just include the memory layout of the class, but not
any referenced classes. To see how heavy objects of a class really are, you often want to

79

know the retained size, meaning the amount of memory that would be freed if those
objects were removed from the heap.

This kind of information is not available in the live memory views, because it requires
enumerating all objects on the heap and performing expensive calculations. That job is
handled by the heap walker. To jump from a point of interest in the live memory views into
the heap walker, the Show in Heap Walker tool bar button can be used. It will take you to
the equivalent view in the heap walker.

If no heap snapshot is available, a new heap snapshot is created, otherwise JProfiler will
ask you whether to use the existing heap snapshot.

In any case, it is important to understand that the numbers in the live memory views and
in the heap walker will often be very different. Apart from the fact that the heap walker
shows a snapshot at a different point in time than the live memory views, it also eliminates
all unreferenced objects. Depending on the state of the garbage collector, unreferenced
objects can occupy a significant portion of the heap.

80

The Heap Walker
Heap snapshots

Any heap analysis that involves references between objects requires a heap snapshot,
because it is not possible to ask the JVM what the incoming references to an object are.
You have to iterate over the entire heap to answer that question. From that heap snapshot,
JProfiler creates an internal database that is optimized for producing the data required
for serving the views in the heap walker.

There are two sources of heap snapshots: JProfiler heap snapshots and HPROF/PHD heap
snapshots. JProfiler heap snapshots support all available features in the heap walker. The
profiling agent uses the profiling interface JVMTI to iterate over all references. If the profiled
JVM is running on a different machine, all information is transferred to the local machine
and further calculations are performed there. HPROF/PHD snapshots are created with a
built-in mechanism in the JVM and are written to disk in a standard format that JProfiler
can read. HotSpot JVMs can create HPROF snapshots, and Eclipse OpenJ9 JVMs provide
PHD snapshots.

On the overview page of the heap walker, you can choose if a JProfiler heap snapshot or
an HPROF/PHD heap snapshot should be created. By default, the JProfiler heap snapshot
is recommended. The HPROF/PHD heap snapshot is useful in special situations that are
discussed in another chapter [p. 208].

Selection steps

The heap walker consists of several views that show different aspects of a selected set of
objects. Right after you take the heap snapshot, you are looking at all objects on the heap.
Each view has navigation actions for turning some selected objects into the currentobject
set. The header area of the heap walker shows information on how many objects are
contained in the current object set.

81

Initially, you are looking at the "Classes" view which is similar to the "All objects" view in the
live memory section [p. 72]. By selecting a class and invoking Use->Selected Instances,
you create a new object set that only contains instances of that class. In the heap walker,
"using" always means creating a new object set.

For the new object set, showing the classes view of the heap walker would not be interesting,
because it would effectively just filter the table to the previously selected class. Instead,
JProfiler suggests another view with the "New object set" dialog. You can cancel this dialog
to discard the new object set and return to the previous view. The outgoing references
view is suggested, but you could also choose another view. This is just for the initially
displayed view, you can switch views in the view selector of the heap walker afterward.

The header area now tells you that there are two selection steps and includes links for
calculating the retained and deep sizes or for using all objects that are retained by the
current object set. The latter would add another selection step and suggest the classes
view because there would likely be multiple classes in that object set.

82

In the lower part of the heap walker, the selection steps up to this point are listed. Clicking
on the hyperlinks will take you back to any selection step. The first data set can also be
reached with the Go To Start button in the tool bar. The back and forward buttons in the
tool bar are useful if you need to backtrack in your analysis.

Classes view

The view selector at the top of the heap walker contains five views that show different
information for the current object set. The first one of those is the "Classes" view.

The classes view is similar to the "All objects" view in the live memory section and has an
aggregation level chooser that can group classes into packages. In addition, it can show
estimated retained sizes for classes. This is the amount of memory that would be freed if
all instances of a class were removed from the heap. If you click on the Calculate estimated
retained sizes hyperlink, a new Retained Size column is added. The displayed retained
sizes are estimated lower bounds, calculating the exact numbers would be too slow. If
you really need an exact number, select the class or package of interest and use the
Calculate retained and deep sizes hyperlink in the header of the new object set.

Based on your selection of one or more classes or packages, you can select the instances
themselves, the associated java.lang.Class objects, or all retained objects.
Double-clicking is the quickest selection mode and uses the selected instances. If multiple
selection modes are available, as in this case, a Use drop-down menu is shown above
the view.

83

When solving class loader-related problems, you often have to group instances by their
class loader. The Inspections tab offers a "Group by class loaders" inspection that is made
available on the classes view, because it is especially important in that context. If you
execute that analysis, a grouping table at the top shows all class loaders. Selecting a class
loader filters the data accordingly in the view below. The grouping table remains in place
when you switch to the other views of the heap walker until you perform another selection
step. Then, the class loader selection becomes part of that selection step.

Allocation recording views

The information where objects have been allocated can be important when narrowing
down suspects for a memory leak or when trying to reduce memory consumption. For
JProfiler heap snapshots, the "Allocations" view shows the allocation call tree and the
allocation hot spots for those objects where allocations have been recorded. Other objects
are grouped in the "unrecorded objects" node in the allocation call tree. For HPROF/PHD
snapshots, this view is not available.

Like in the classes view, you can select multiple nodes and use the Use Selected button
at the top to create a new selection step. In the "Allocation hot spots" view mode, you can

84

also select nodes in the back traces. This will only select objects in the associated top-level
hot spot that have been allocated on a call stack that ends with the selected back trace.

Another piece of information that JProfiler can save when recording allocations is the time
when an object was allocated. The "Time" view in the heap walker shows a histogram of
the allocation times for all recorded instances in the current object set. You can click and
drag to select one or multiple intervals and then create a new object set with the Use
Selected button.

For a more precise selection of a time interval, you can specify a range of bookmarks [p. 46].
All objects between the first and last selected bookmark will then be marked.

In addition to the time view, allocation times are displayed as a separate column in the
reference views. However, allocation time recording is not enabled by default. You can
switch it on directly in the time view or edit the setting in Advanced Settings -> Memory
Profiling in the session settings dialog.

Biggest objects view

The biggest objects view shows a list of the most important objects in in the current object
set. "Biggest" in this context means the objects that would free most memory if they were
removed from the heap. That size is called the retained size. In contrast, the deep size is
the total size of all objects that are reachable through strong references.

Each object can be expanded to show outgoing references to other objects that are
retained by this object. In this way, you can recursively expand the tree of retained objects
that would be garbage collected if one of the ancestors were to be removed. This kind of
tree is called a "dominator tree". The information displayed for each object in this tree is
similar to the outgoing reference view except that only dominating references are
displayed.

85

Not all dominated objects are directly referenced by their dominators. For example, consider
the references in the following figure:

GC root

dominates directly dominates directly

do
m

in
at

es
in

di
re

ct
ly

Object A

Object B2Object B1

Object C

Object A dominates objects B1 and B2, and it does not have a direct reference to object
C. Both B1 and B2 reference C. Neither B1 nor B2 dominates C, but A does. In this case, B1,
B2 and C are listed as direct children of A in the dominator tree, and C will not be listed a
child of B1 and B2. For B1 and B2, the field names in A by which they are held are displayed.
For C, "[transitive reference]" is displayed on the reference node.

At the left side of each reference node in the dominator tree, a size bar shows what
percentage of the retained size of the top-level object is still retained by the target object.
The numbers will decrease as you drill down further into the tree. In the view settings, you
can change the percentage base to the total heap size.

86

The dominator tree has a built-in cutoff that eliminates all objects that have a retained
size that is lower than 0.5% of the retained size of the parent object. This is to avoid
excessively long lists of small dominated objects that distract from the important objects.
If such a cutoff occurs, a special "cutoff" child node will be shown that notifies you about
the number of objects that are not shown on this level, their total retained size and the
maximum retained size of the single objects.

Instead of showing single objects, the dominator tree can also group biggest objects into
classes. The grouping drop-down at the top of the view contains a checkbox that activates
this display mode. In addition, you can add a class loader grouping at the top level. The
class loader grouping is applied after the biggest objects are calculated and shows who
loaded the classes of the biggest objects. If you want to analyze the biggest objects for
one particular class loader instead, you can use the "Group by class loader" inspection
first.

The view mode selector above the biggest objects view allows you to switch to a sunburst
diagram. The diagram is composed of a series of concentric segmented rings and shows
the entire content of the dominator tree up to a maximum depth in one single image.
References originate in the innermost ring and propagate towards the outer rim of the
circle. This visualization gives you a flattened perspective with high information density
that allows you to discover reference patterns and see large primitive and object arrays
at a glance through their special color coding.

If the current object set is the entire heap, the total circumference of the circle corresponds
to the used heap size. Because the biggest object view only shows objects that retain
more than 0.1% of the total heap, this means that a substantial sector will be empty,
corresponding to all objects that are not retained by those biggest objects.

87

Clicking on any ring segment sets a new root for the circle, thereby expanding the maximum
depth that you can see in the diagram. Clicking on the hollow center of the diagram
restores the previous root. If a new root has been set, the total circumference of the circle
corresponds to the retained size of the root object. An empty sector represents the self-size
of the root object and additional objects that are not present in the list of biggest retained
objects. If the current object set is not the entire heap, the total circumference of the circle
corresponds to the sum of all displayed biggest objects and no empty sector is shown.

88

More information about instances and their immediately retained objects is displayed on
the right side of the diagram when you hover over them with the mouse. When the mouse
is outside any ring segment, the list on the right side shows the biggest objects in the
innermost ring. Hovering over that list highlights the corresponding ring segments and
clicking on a list item sets a new root for the diagram. To create a new object set, you can
choose from the actions in the context menu, both on the ring segments as well on the
list items.

Reference views

Unlike the previous views, the reference views are only available if you have performed at
least one selection step. For the initial object set these views are not useful, because the
incoming and outgoing reference views show all individual objects and the merged
reference views can only be interpreted for a focused set of objects.

The outgoing references view is similar to the view that a debugger would show in an IDE.
When opening an object, you can see the primitive data and references to other objects.
Any reference type can be selected as a new object set, and you can select multiple
objects at once. Like in the classes view, you can select retained objects or associated
java.lang.Class objects. If the selected object is a standard collection, you can also
select all contained elements with a single action. For class loader objects, there is an
option to select all loaded instances.

89

Fields with null references are not shown by default because that information may be
distracting for a memory analysis. If you want to see all fields for debugging purposes,
you can change this behavior in the view settings.

Beside the simple selection of displayed instances, the outgoing references view has
powerful filtering capabilities [p. 212]. For live sessions, both outgoing and incoming
reference views have advanced manipulation and display functionality that is discussed
in the same chapter.

The incoming references view is the main tool for solving memory leaks. To find out why
an object is not garbage collected, the Show Paths To GC Root button will find reference
chains to garbage collector roots. The chapter on memory leaks [p. 216] has detailed
information on this important topic.

90

Merged references

Checking references for a lot of different objects can be tedious, so JProfiler can show you
the merged outgoing and incoming references of all objects in the current object set. By
default, the references are aggregated by classes. If instances of a class are referenced
by other instances of the same class, a special node is inserted that shows the original
instances plus the instances from these class-recursive references. This mechanism
automatically collapses internal reference chains in common data structures, such as in
a linked list.

You can also choose to show the merged references grouped by field. In that case, each
node is a reference type, such as a particular field of a class or the content of an array.
For standard collections, internal reference chains that would break cumulation are
compacted, so you see reference types like "map value of java.lang.HashMap". Unlike for
class aggregation, this mechanism only works for explicitly supported collections from
the standard library of the JRE.

In the "Merged outgoing references" view, the instance counts refer to the referenced
objects. In the "Merged incoming references" view, you see two instance counts on each
row. The first instance count shows how many instances in the current object set are
referenced along this path. The bar icon at the left side of the node visualizes this fraction.
The second instance count after the arrow icon refers to the objects that hold the references
to the parent node. When performing a selection step, you can choose whether you want
to select objects from the current object set that are referenced in the selected way or if
you are interested in the objects with the selected reference - the reference holders.

91

With the "Merged dominating references" view you can find out which references must be
removed so that some or all of the objects in the current object set can be garbage
collected. The dominating reference tree can be interpreted as the merged inverse of the
dominator tree in the biggest objects view, aggregated for classes. The reference arrows
may not express a direct reference between the two classes, but there may be other
classes in between that hold non-dominating references. In the case of multiple garbage
collector roots, no dominating references may exist for some or all objects in the current
object set.

By default, the "Merged dominating references" view shows incoming dominating references
and by opening the tree, you can reach the objects that are held by the GC roots.
Sometimes, the reference tree may lead to the same root objects along many different
paths. By choosing the "GC roots to objects" view mode in the drop-down at the top of the
view, you can see the reverse perspective where the roots are at the top level and the
objects in the current object set are in the leaf nodes. In that case, the references go from
the top level towards the leaf nodes. Which perspective is better depends on whether the
references you want to eliminate are close to the current object set or close to the GC
roots.

92

Inspections

The "Inspections" view does not show data by itself. It presents a number of heap analyses
that create new object sets according to rules that are not available in the other views.
For example, you may want to see all objects that are retained by a thread local. This
would be impossible to do in the reference views. Inspections are grouped into several
categories and explained in their descriptions.

An inspection can partition the calculated object set into groups. Groups are shown in a
table at the top of the heap walker. For example, the "Duplicate strings" inspection shows
the duplicate string values as groups. If you are in the reference view, you can then see
the java.lang.String instances with the selected string value below. Initially, the first
row in the group table is selected. By changing the selection, you change the current
object set. The Instance Count and Size columns of the group table tell you how large the
current object set will be when you select a row.

93

The group selection is not a separate selection step in the heap walker, but it becomes
part of the selection step made by the inspection. You can see the group selection in the
selection step pane at the bottom. When you change the group selection, the selection
step pane is updated immediately.

Each inspection that creates groups decides which groups are most important in the
context of the inspection. Because this does not always correspond to the natural sort
order of one of the other columns, the Priority column in the group table contains a numeric
value that enforces the sort order for the inspection.

Inspections can be expensive to calculate for large heaps, so the results are cached. In
this way, you can go back in the history and look at the results of previously calculated
inspections without waiting.

Heap walker graph

The most realistic representation of instances together with their references is a graph.
While the graph has a low visual density and is impractical for some types of analyses, it
still is the best way to visualize relationships between objects. For example, circular
references are difficult to interpret in a tree, but immediately evident in a graph. Also, it
may be beneficial to see incoming and outgoing references together, which is impossible
in a tree structure where you can see either one or the other.

The heap walker graph does not automatically show any objects from the current object
set, nor is it cleared when you change the current object set. You manually add selected
objects to the graph from the outgoing references view, the incoming references view or
the biggest objects view by selecting one or more instances and using the Show In Graph
action.

94

Package names in the graph are shortened by default. Like in the CPU call graph, you can
enable the full display in the view settings. References are painted as arrows. If you move
the mouse over the reference, a tooltip window will be displayed that shows details for
the particular reference. Instances that were manually added from the reference views
have a blue background. The more recently an instance has been added, the darker the
background color. Garbage collector roots have a red background and classes have a
yellow background.

By default, the reference graph only shows the direct incoming and outgoing references
of the current instance. You can expand the graph by double-clicking on any object. This
will expand either the direct incoming or the direct outgoing references for that object,
depending on the direction you're moving in. With the expansion controls on the left and
right sides of an instance, you can selectively open incoming and outgoing references. If
you need to backtrack, use the undo functionality to restore previous states of the graph,
so you don't get distracted by too many nodes. To trim the graph, there are actions for
removing all unconnected nodes or even for removing all objects.

Like in the incoming references view, the graph has a Show Path To GC Root button that
will expand one or more reference chains to a garbage collector root [p. 216] if available.

95

In addition, there is a Find Path Between Two Selected Nodes action that is active if two
instances are selected. It can search for directed and undirected paths and optionally
also along weak references. If a suitable path is found, it is shown in red.

Initial object set

When you take a heap snapshot, you can specify options that control the initial object
set. If you have recorded allocations, the Select recorded objects check box restricts the
initially displayed objects to those that have been recorded. The numbers will usually differ
from those in the live memory views, because unreferenced objects are removed by the
heap walker. Unrecorded objects are still present in the heap snapshot, they are just not
displayed in the initial object set. With further selection steps you can reach unrecorded
objects.

In addition, the heap walker performs a garbage collection and removes weakly referenced
objects, except for soft references. This is usually desirable because weakly referenced
objects are distracting when looking for memory leaks where only strongly referenced
objects are relevant. However, in those cases where you are interested in weakly referenced
objects, you can tell the heap walker to retain them. The four weak reference types in the
JVM are "soft", "weak", "phantom" and "finalizer" and you can choose which of them should
be sufficient for retaining an object in the heap snapshot.

If present, weakly referenced objects can be selected or removed from the current object
set by using the "Weak reference" inspections in the heap walker.

Marking the heap

Often you want to look at the objects that have been allocated for a particular use case.
While you could do this by starting and stopping allocation recording around that use
case, there is a much better way that has a lot less overhead and preserves the allocation
recording feature for other purposes: The Mark Heap action that is advertised on the heap
walker overview and that is also available in the Profiling menu or as a trigger action marks
all objects on the heap as "old". When you take the next heap snapshot, it is now clear
what the "new" objects should be.

96

If there was a previous heap snapshot or a mark heap invocation, the title area of the
heap walker shows the new instance count and two links titled Use new and Use old that
allow you to select either the instances that have been allocated since that point in time,
or the surviving instances that were allocated before. This information is available for each
object set, so you can drill down first and select new or old instances later on.

97

Thread Profiling
Using threads incorrectly can create many different kinds of problems. Too many active
threads can result in thread starvation, threads can block each other and impact the
liveness of your application or acquiring locks in the wrong order can lead to deadlocks.
In addition, information about threads is important for debugging purposes.

In JProfiler, thread profiling is split into two view sections: The "Threads" section deals with
the life-cycle of threads and with capturing thread dumps. The "Monitors & locks" section
offers functionality for analyzing the interaction of multiple threads.

Inspecting threads

The thread history view shows each thread as a colored row in a time-line where the color
indicates the recorded thread status. Threads are sorted by their creation time, by name
or by their thread group and can be filtered by name. You can also rearrange the order
of threads yourself via drag and drop. When monitor events have been recorded, you can
hover over parts of a thread where it was in the "Waiting" or "Blocked" state and see the
associated stack trace with a link into the monitor history view.

A tabular view of all threads is available in the thread monitor view. If CPU recording is
active while a thread is being created, JProfiler saves the name of the creating thread

98

and displays it in the table. At the bottom, the stack trace of the creating thread is shown.
For performance reasons, no actual stack trace is requested from the JVM, but the current
information from CPU recording is used. This means that the stack traces will only show
those classes that satisfy the filter settings for call tree collection.

If you enable the recording of estimated CPU times in the profiling settings, a CPU Time
column is added to the table. CPU time is only measured when you record CPU data.

Like most debuggers, JProfiler can also take thread dumps. The stack traces of thread
dumps are the full stack traces provided by the JVM and do not depend on CPU recording.
Different thread dumps can be compared in a diff viewer when you select two thread
dumps and click the Show Difference button. It is also possible to compare two threads
from a single thread dump by selecting them and choosing Show Difference from the
context menu.

99

Thread dumps can also be taken with the "Trigger thread dump" trigger action or via the
API.

Analyzing locking situations

Every Java object has an associated monitor that can be used for two synchronization
operations: A thread can wait on a monitor until another thread issues a notification on
it, or it can acquire a lock on a monitor, possibly blocking until another thread has given
up the ownership of the lock. In addition, Java offers classes in the java.util.concurrent.
lockspackage for implementing more advanced locking strategies. Locks in that package
do not use monitors of objects but a different native implementation.

JProfiler can record locking situations for both of the above mechanisms. In a locking
situation, there are one or multiple threads, a monitor or an instance of java.util.
concurrent.locks.Lock as well as a waiting or blocking operation that takes a certain
amount of time. These locking situations are presented in a tabular fashion in the monitor
history view, and visually in the locking history graph.

The locking history graph focuses on the entire set of relationships of all involved monitors
and threads rather than the duration of isolated monitor events. Threads and monitors

100

participating in a locking situation are painted as blue and gray rectangles, if they are
part of a deadlock, they are painted in red. Black arrows indicate ownership of a monitor,
yellow arrows extend from waiting threads to the associated monitors, while a dashed
red arrow indicates that a thread wants to acquire a monitor and is currently blocking.
Stack traces are available when hovering over blocking or waiting arrows if CPU data has
been recorded. Those tool tips contain hyperlinks that take you to the corresponding row
in the monitor history view.

The tabular monitor history view shows monitor events. They have a duration that is
displayed as a column, so you can find the most important events by sorting the table.
For any selected row in the tabular view, you can jump to the graph with the Show in Graph
action.

Each monitor event has an associated monitor. The Monitor Class column shows the class
name of the instance whose monitor is used, or "[raw monitor]" if no Java object is
associated with the monitor. In any case, monitors have a unique ID that is displayed in
a separate column, so you can correlate the usage of the same monitor over multiple
events. Each monitor event has a waiting thread that is performing the operation and
optionally an owning thread that is blocking the operation. If available, their stack traces
are shown in the lower part of the view.

If you have further questions about a monitor instance, the Show in Heap Walker action
in both monitor history view and locking history graph provides a link into the heap walker
and selects the monitor instance as a new object set.

101

Limiting the events of interest

One fundamental problem with analyzing monitor events is that applications may generate
monitor events at an extraordinary rate. That is why JProfiler has default thresholds for
waiting and blocking events below which events are immediately discarded. These
thresholds are defined in the view settings and can be increased in order to focus on
longer events.

To the recorded events, you can further apply filters. The monitor history view offers a
threshold, an event type and a text filter at the top of the view. The locking history graph
allows you to select a thread or a monitor of interest and only show locking situations that
involve the marked entities. Events of interest are shown with a different color in the time
line, and there is a secondary navigation bar to step through those events. If the current
event is not an event of interest, you can see how many events are between the current
event and the next event of interest in either direction.

In addition to locking situations where the selected thread or monitor are present, the
locking situations where it is removed from the graph are shown as well. This is because
each monitor event is defined by two such locking situations, one where an operation is
started and one where it has ended. This also means that a completely empty graph is
a valid locking situation that indicates that there are no more locks in the JVM.

102

Another strategy to reduce the number of events that need your attention is to cumulate
locking situations. In the locking history graph, there is a time line at the bottom that shows
all recorded events. Clicking and dragging in it selects a time range and data from all
contained events is shown in the locking graph above. In a cumulated graph, each arrow
can contain multiple events of the same type. In that case, the tool tip window shows the
number of events as well as the total time of all contained events. A drop-down list in the
tool tip window shows the time stamps and lets you switch between the different events.

Deadlock detection

The "Current locking graph" and the "Current monitors" views operate on a "monitor dump"
that is triggered with an action in the JProfiler UI. With a monitor dump, you can inspect
events that are still in progress. This includes deadlocks which are events that never finish
and cannot be shown in the history views.

Blocking operations are usually short-lived, but in the event of a deadlock, both views will
display a permanent view of the issue. In addition, the current locking graph shows the
threads and monitors that produce a deadlock in red, so you can spot such a problem
immediately.

Taking a new monitor dump will replace the data in the both views. You can also trigger
monitor dumps with the "Trigger monitor dump" trigger action or via the API.

Monitor usage statistics

To investigate blocking and waiting operations from a more elevated perspective, the
monitor statistics view calculates reports from the monitor recording data. You can group
monitor events by monitors, thread names, or classes of monitors and analyze cumulated
counts and durations for each row.

103

104

Probes
CPU and memory profiling are primarily concerned with objects and method calls, the
basic building blocks of an application on the JVM. For some technologies, a more
high-level approach is required that extracts semantic data from the running application
and displays it in the profiler.

The most prominent example for this is profiling calls to a database with JDBC. The call
tree shows when you use the JDBC API and how long those calls take. However, different
SQL statements may be executed for each call, and you have no idea which of those calls
are responsible for a performance bottleneck. Also, JDBC calls often originate from many
different places in your application and it is important to have a single view that shows
all database calls instead of having to search for them in the generic call tree.

To solve this problem, JProfiler offers a number of probes for important subsystems in the
JRE. Probes add instrumentation into specific classes to collect their data and display
them in dedicated views in the "Databases" and "JEE & Probes" view sections. In addition,
probes can annotate data into the call tree so you can see both generic CPU profiling as
well as high-level data at the same time.

If you are interested in getting more information about a technology that is not directly
supported by JProfiler, you can write your own probe [p. 164] for it. Some libraries, containers
or database drivers may ship with their own embedded probe [p. 169] that becomes visible
in JProfiler when they are used by your application.

Probe events

Because probes add overhead, they are not recorded by default, but you have to start
recording [p. 28] separately for each probe, either manually or automatically.

Depending on the capabilities of the probe, probe data is displayed in a number of views.
At the lowest level are probe events. Other views show data that cumulates probe events.
By default, probe events are not retained even when a probe is being recorded. When
single events become important, you can record them in the probe events view. For some
probes, like the file probe, this is generally not advisable because they usually generate
events at a high rate. Other probes, like the "HTTP server" probe or the JDBC probe may
generate events at a much lower rate and so recording single events may be appropriate.

105

Probe events capture a probe string from a variety of sources, including method
parameters, return values, the instrumented object and thrown exceptions. Probes may
collect data from multiple method calls, for example, like the JDBC probe that has to
intercept all setter calls for prepared statements in order to construct the actual SQL string.
The probe string is the basic information about the higher-level subsystem that is measured
by the probe. In addition, an event contains a start time, an optional duration, the
associated thread and a stack trace.

At the bottom the of the table, there is a special row that shows the total number of
displayed events and sums all numeric columns in the table. For the default columns, this
only includes the Duration column, Together with the filter selector above the table, you
can analyze the collected data for selected subsets of events. By default, the text filter
works on all text field columns, but you can choose a specific filter column from the
drop-down before the text field. Filter options are also available from the context menu,
for example, to filter all events with a duration larger than that of the selected event.

Other probe views also offer options to filter probe events: In the probe telemetries view
you can select a time range, in the probe call tree view you can filter events from the

106

selected call stack, the probe hot spots view offers a probe event filter based on the
selected back trace or hot spot and the control object and time line views offer actions
to filter probe events for the selected control object.

Stack traces of selected probe events are shown at the bottom. If multiple probe events
are selected, the stack traces are cumulated and shown either as a call tree, as probe
hot spots with back traces or as CPU hot spots with back traces.

Next to the stack trace views, histogram views for event durations and optionally for
recorded throughput are shown. You can select a duration range in these histograms with
the mouse in order to filter probe events in the table above.

Probes can record different kinds of activities and associate an event type with their probe
events. For example, the JDBC probe shows statements, prepared statements and batch
executions as event types with different colors.

107

To prevent excessive memory usage when single events are recorded, JProfiler consolidates
events. The event cap is configured in the profiling settings and applies to all probes. Only
the most recent events are retained, older events are discarded. This consolidation does
not affect the higher-level views.

Probe call tree and hot spots

Probe recording works closely together with CPU recording. Probe events are aggregated
into a probe call tree where the probe strings are the leaf nodes, called "payloads". Only
call stacks where a probe event has been created are included in that tree. The information
on the method nodes refers to the recorded payload names. For example, if an SQL
statement was executed 42 times at a particular call stack with a total time of 9000 ms,
this adds an event count of 42 and a time of 9000 ms to all ancestor call tree nodes. The
cumulation of all recorded payloads forms the call tree that shows you which call paths
consume most of the probe-specific time. The focus of the probe tree is the payloads, so
the view filter searches for payloads by default, although its context menu also offers a
mode to filter classes.

If CPU recording is switched off, the back traces will only contain a "No CPU data was
recorded" node. If CPU data was only partially recorded, there may be a mixture of these
nodes with actual back traces. Even if sampling is enabled, JProfiler records the exact call
traces for probe payloads by default. If you want to avoid this overhead, you can switch
it off in the profiling settings. There are several other tuning options for probe recording
that can be adjusted to increase data collection or reduce overhead.

108

Hot spots can be calculated from the probe call tree. The hot spot nodes are now payloads
and not method calls like in the CPU view section [p. 54]. This is often the most immediately
useful view of a probe. If CPU recording is active, you can open the top-level hot spots
and analyze the method backtraces, just like in the regular CPU hot spots view. The numbers
on the back trace nodes indicate how many probe events with what total duration were
measured along the call stack extending from the deepest node to the node just below
the hot spot.

Both probe call tree as well as probe hot spots view allow you to select a thread or thread
group, the thread status and an aggregation level for method nodes, just like in the
corresponding CPU views. When you come from the CPU views to compare data, it is
important to keep in mind that the default thread status in the probe views is "All states"
and not "Runnable" like in the CPU views. This is because a probe event often involves

109

external systems like database calls, socket operations or process executions where it is
important to look at the total time and not only on the time that the current JVM has spent
working on it.

Control objects

Many libraries that provide access to external resources give you a connection object
that you can use for interacting with the resource. For example, when starting a process,
the java.lang.Process object lets you read from the output streams and write to the
input stream. When working with JDBC, you need ajava.sql.Connectionobject to perform
SQL queries. The generic term that is used in JProfiler for this kind of object is "control
object".

Grouping the probe events with their control objects and showing their life cycle can help
you to better understand where a problem comes from. Also, creating control objects is
often expensive, so you want to make sure that your application does not create too many
and closes them properly. For this purpose, probes that support control objects have a
"Time line" and a "Control objects" view, where the latter may be named more specifically,
for example, "Connections" for the JDBC probe. When a control object is opened or closed,
the probe creates special probe events that are shown in the events view, so you can
inspect the associated stack traces.

In the time line view, each control object is shown as a bar whose coloring shows when
the control object was active. Probes can record different event types and the time line
is colored accordingly. This status information is not taken from the list of events, which
may be consolidated or not even available, but is sampled every 100 ms from the last
status. Control objects have a name that allows you to identify them. For example, the file
probe creates control objects with the file name while the JDBC probe shows the connection
string as the name of the control object.

The control objects view shows all control objects in tabular form. Both open and closed
control objects are present by default. You can use the controls at the top to restrict the
display to open or closed control objects only or to filter the contents of a particular column.
In addition to the basic life cycle data for control objects, the table shows data for the
cumulated activity of each control object, for example, the event count and the average
event duration.

Different probes show different columns here, the process probe, for example, shows
separate sets of columns for read and write events. This information is also available if

110

single event recording is disabled. Just like for the events view, the total row at the bottom
can be used together with filtering to get cumulated data on partial sets of control objects.

A probe can publish certain properties in a nested table. This is done to reduce the
information overload in the main table and give more space to table columns. If a nested
table is present, such as for the file and process probes, each row has an expansion handle
at the left side that opens a property-value table in place.

The time line, control objects view and the events view are connected with navigation
actions. For example, in the time line view, you can right-click a row and jump to each of
the other views so that only the data from the selected control object is displayed. This is
achieved by filtering the control object ID to the selected value.

Telemetries and tracker

From the cumulated data that is collected by a probe, several telemetries are recorded.
For any probe, the number of probe events per second and some average measure for
probe events like the average duration or the throughput of an I/O operation are available.
For probes with control objects, the number of open control objects is also a canonical
telemetry. Each probe can add additional telemetries, for example, the JPA probe shows
separate telemetries for query counts and entity operation counts.

111

The hot spots view and the control objects view show cumulated data that can be
interesting to track over time. These special telemetries are recorded with the probe
tracker. The easiest way to set up tracking is to add new telemetries with the Add Selection
to Tracker action from the hot spots or control object views. In both cases, you have to
choose if you want to track times or counts. When tracking control objects, the telemetry
is a stacked area graph for all different probe event types. For tracked hot spots, the
tracked times are split into the different thread states.

Probe telemetries can be added to the "Telemetries" section [p. 46] in order to compare
them to system telemetries or to custom telemetries. You then also have control over
probe recording with the context menu actions in the telemetry overview.

JDBC and JPA

The JDBC and JPA probes work hand in hand. In the events view of the JPA probe, you can
expand single events to see the associated JDBC events if the JDBC probe was recorded
along with the JPA probe.

112

Similarly, the hot spots view adds a special "JDBC calls" node to all hot spots that contains
the JDBC calls that were triggered by the JPA operation. Some JPA operations are
asynchronous and are not executed immediately, but at some arbitrary later point in time
when the session is flushed. When looking for performance problems, the stack trace of
that flush is not helpful, so JProfiler remembers the stack traces of where existing entities
have been acquired or where new entities have been persisted and ties them to the probe
events. In that case, the back traces of the hot spot are contained inside a node that is
labeled "Deferred operations", otherwise a "Direct operations" node is inserted.

Other probes like the MongoDB probe support both direct and asynchronous operations.
Asynchronous operations are not executed on the current thread but somewhere else,
either on one or multiple other threads in the same JVM or in another process. For such
probes, the back traces in the hot spots are sorted into "Direct operations" and "Async
operation" container nodes.

A special problem in the JDBC probe is that you can only get good hot spots if literal data
like IDs is not included in the SQL strings. This is automatically the case if prepared
statements are used, but not if regular statements are executed. In the latter case, you
will likely get a list of hot spots, where most queries are executed just once. As a remedy,
JProfiler offers a non-default option in the JDBC probe configuration for replacing literals
in unprepared statements. For debugging purposes, you may still want to see the literals

113

in the events view. Deactivating that option reduces memory overhead, because JProfiler
will not have to cache so many different strings.

On the other hand, JProfiler collects the parameters for prepared statements and shows
a complete SQL string without placeholders in the events view. Again, this is useful when
debugging, but if you do not need it, you can switch it off in the probe settings in order to
conserve memory.

JDBC connection leaks

The JDBC probe has a "Connection leaks" view that shows open virtual database
connections that have not been returned to their database pool. This only affects virtual
connections that are created by a pooled database source. Virtual connections block a
physical connection until they are closed.

There are two types of leak candidates, "unclosed" connections and "unclosed collected"
connections. Both types are virtual connections where the connection objects that have
been handed out by the database pool are still on the heap, but close() has not been

114

called on them. "Unclosed collected" connections have been garbage collected and are
definite connection leaks.

"Unclosed" connection objects are still on the heap. The greater the Open Since duration,
the more likely such a virtual connection is a leak candidate. A virtual connection is
considered as a potential leak when it has been open for more than 10 seconds. However,
close() may still be called on it, and then the entry in the "Connection leaks" view would
be removed.

The connection leaks table includes a Class Name column that shows the name of the
connection class. This will tell you which type of pool has created the connection. JProfiler
explicitly supports a large number of database drivers and connection pools and knows
which classes are virtual and physical connections. For unknown pools or database drivers,
JProfiler may mistake a physical connection for a virtual one. Since physical connections
are often long-lived, it would then show up in the "Connection leaks" view. In this case, the
class name of the connection object will help you to identify it as a false positive.

By default, when you start probe recording, the connection leak analysis is not enabled.
There is a separate recording button in the connection leaks view whose state corresponds
to the Record open virtual connections for connection leak analysis check box in the JDBC
probe settings. Just like for event recording, the state of the button is persistent, so if you
start the analysis once, it will automatically be started for the next probe recording session.

Payload data in the call tree

When looking at the CPU call tree, it is interesting to see where probes have recorded
payload data. That data may help you to interpret the measured CPU times. That is why
many probes add cross-links into the CPU call tree. For example, the class loader probe
can show you where class loading has been triggered. This is otherwise not visible in the
call tree and can add unexpected overhead. A database call that is otherwise opaque in
the call tree view can be further analyzed in the corresponding probe with a single click.
This even works for call tree analyses where the analysis is automatically repeated in the
context of the probe call tree view when you click on the probe link.

115

Another possibility is to show the payload information inline directly in the CPU call tree.
All relevant probes have an Annotate in call tree option in their configuration for that
purpose. In that case, no links into the probe call tree are available. Each probe has its
own payload container node. Events with the same payload names are aggregated, and
the number of invocations and total times are displayed. Payload names are consolidated
on a per-call stack basis, with the oldest entries being aggregated into an "[earlier calls]"
node. The maximum number of recorded payload names per call stack is configurable
in the profiling settings.

Call tree splitting

Some probes do not use their probe strings to annotate payload data into the call tree.
Rather, they split the call tree for each different probe string. This is especially useful for
server-type probes, where you want to see the call tree separately for each different type
of incoming request. The "HTTP server" probe intercepts URLs and gives you fine grained
control over what parts of the URL should be used for splitting the call tree. By default, it
only uses the request URI path without any parameters.

116

For more flexibility, you can define a script that determines the split string. In the script,
you get the current javax.servlet.http.HttpServletRequest as a parameter and
return the desired string.

What's more, you are not limited to a single splitting level, but can define multiple nested
splittings. For example, you can split by the request URI path first and then by the user
name that is extracted from the HTTP session object. Or, you can group requests by their
request method before splitting by the request URI.

117

By using nested splittings, you can see separate data for each level in the call tree. When
looking at the call tree, a level might get in the way and you would find yourself in need
of eliminating it from the "HTTP server" probe configuration. More conveniently and without
loss of recorded data, you can temporarily merge and unmerge splitting levels in the call
tree on the fly by using the context menu on the corresponding splitting nodes.

Splitting the call tree can cause considerable memory overhead, so it should be used
carefully. To avoid memory overload, JProfiler caps the maximum number of splits. If the
splitting cap for a particular split level has been reached, a special "[capped nodes]"
splitting node is added with a hyperlink to reset the cap counter. If the default cap is too
low for your purposes, you can increase it in the profiling settings.

118

Garbage Collector Analysis
Understanding and analyzing the runtime characteristics of the garbage collector (GC)
is important for several reasons. Firstly, GC pauses can directly impact the responsiveness
of your application. By understanding how the garbage collector is performing, you can
optimize its settings to reduce these pauses. In general, frequent long GC cycles may
indicate that the heap is too small, or that too many temporary objects are being created.

With the help of the garbage collector probe you can solve these problems and make
more informed decisions when tuning your JVM settings, such as selecting the appropriate
garbage collector, heap size, or other JVM parameters.

The garbage collector probe has different views than the other probes and also uses a
different data source. It does not obtain its data from the profiling interface of the JVM
but uses JFR streaming to analyze GC-related events from the JDK flight recorder (1).
Because of the dependency on JFR event streaming, the GC probe is only available when
you profile Java 17 or higher on a Hotspot JVM. When you open JFR snapshots [p. 223], the
exact same probe is available, regardless of the used Java version.

Garbage collections view

The main view in the garbage collector probe is the "Garbage collections" table. It shows
all recorded garbage collections as rows with their most important metrics as columns.

The "Cause" column shows you why a garbage collection was triggered. For example, a
call to System.gc() triggered a full garbage collection. You can see that from the
associated "G1Full" value in the "Collector" column. It also caused a substantial pause of
20 ms which is why it is generally not a good idea to call System.gc(). Other causes trigger
the collection of the young generation space ("G1New") or the old GC collection of the G1
collector ("G1Old") that cleans up unreferenced objects in the old generation. You can see
that the old GC collections consistently take longer than the young generation collections
although the young generation collections collect more objects.

Collected references with special GC handling are shown as "final", "weak", "soft" and
"phantom" references in separate columns.

The reason there are separate columns for the longest pause and the sum of pauses is
that each garbage collection is composed of multiple phases that produce separate
pauses. Also, the "Duration" of a garbage collection is not equal to the sum of pauses,
(1) https://en.wikipedia.org/wiki/JDK_Flight_Recorder

119

https://en.wikipedia.org/wiki/JDK_Flight_Recorder

because a garbage collection only partially pauses the JVM while it is executing. You can
see that the "G1Old" collections in the screenshot only pause for about a fifth of their
duration.

To inspect the various phases of a garbage collection, you can toggle the tree icon in the
"GC ID" column.

In the screenshot above, a mixed GC collection of the G1 collector ("G1Old") was expanded.
You can see that most of the time is spent in "Class Unloading", which does not pause the
JVM. On the right, you can see further statistics for the garbage collection. Here, the used
heap stayed the same while the used metaspace went up by 0.1%.

The phases of each collector are different. In the screenshot above, a full collection is
shown. It spends a lot of time marking live objects in the entire heap. At the end of the
collection, the used heap was reduced by 15.7%, while the metaspace remained the same.

While analyzing garbage collections, filtering is an important tool to compare different
subsets of garbage collections. At the top of the table, there is a filter selector that lets
you choose any column and configure a corresponding filter. An easier way to see similar
garbage collections is to use the context menu on the table and select a filter condition
based on the column values in the selected row.

120

You can add multiple filters to narrow down the garbage collections of interests. Active
filters are shown as labels at the top of the table. It is also possible to add filters from the
nested GC phases tables.

Telemetries

The GC probe produces a number of telemetries which are available in the "Telemetries"
probe view.

121

If you are interested in minimizing GC pauses, the "Longest pause" telemetry at the top
will be the most interesting one. You can drag along the time axis of the telemetry to select
the corresponding garbage collections in the "Garbage Collections" view. For better vertical
resolution, you can select a single telemetry from the drop-down at the top or by clicking
on the name of the telemetry.

In the screenshot above you can see the sum of pauses over time. JProfiler presents
summable measurements by building a histogram of the recorded data. The bin width
depends on the available horizontal space, so histogram bins will change depending on
the zoom level and, if "scale to fit" is enabled, depending on the width of the window. What
stays the same is the total area under all histogram bins.

The heap and metaspace telemetries are based on the statistics that you can see when
expanding a garbage collection. This means that the data is not regularly sampled like
for the memory telemetries in a full profiling session. If no garbage collection occurs during
a time period, there will be no data. For a JVM with little allocation activity, there can be
long stretches along the time axis where the graph is just interpolated between two
garbage collections.

Each of these telemetries has two data lines: "Before GC" and "After GC". The differences
are typically large for the "Used Heap" telemetry. At each time, you can see how much
work the garbage collection has performed by comparing the values of the two data lines.

122

You can look at the tooltip to get the precise values. For the "Committed heap" telemetry
and the metaspace telemetries, the differences between both lines will often be small.

If you are analyzing a JFR snapshot [p. 223], the same data from the jdk.GCHeapSummary
JFR event type is also used in the "Memory" telemetry in the telemetry section. In that case,
however, both the "Before GC" and "After GC" values are shown in the same data line and
data is not aggregated to a once per-second granularity as in the GC probe telemetries,
so the graph will look different.

GC Summary

The GC summary shows you measurements that are aggregated over the entire recording
period. Each measurement provides the number of garbage collections, as well as the
average, maximum and the total values. The most important data at the top are the
"Pause times" that directly affect the liveness of your application.

The other top-level category shows the total times of all collections which is then split into
two subcategories for young and old collections.

GC Configuration

When you tune your garbage collector, you may want to inspect the common properties
that can either be set explicitly or that are set implicitly by the garbage collector itself.

123

These properties are common to all garbage collectors and help you understand the
differences between garbage collectors.

GC Flags

Finally, the GC-specific flags give you an idea what properties of a garbage collector can
be tuned and lets you check their actual values.

The "Origin" column shows you how the flag was set. "Default" values have not been modified
from the standard settings while "Ergonomic" flags have been adjusted automatically by
the garbage collector. If you set specific GC flags on the command line, they will be
reported as "Command line" in origin.

124

MBean Browser
Many application servers and frameworks such as Apache Camel (1) use JMX to expose a
number of MBeans for configuration and monitoring purposes. The JVM itself also publishes
a number of platform MXBeans (2) that present interesting information around the low-level
operations in the JVM.

JProfiler includes an MBean browser that shows all registered MBeans in the profiled VM.
The remote management level of JMX for accessing MBean servers is not required, because
the JProfiler agent is already running in-process and has access to all registered MBean
servers.

JProfiler supports the type system of Open MBeans. Besides defining a number of simple
types, Open MBeans can define complex data types that do not involve custom classes.
Also, arrays and tables are available as data structures. With MXBeans, JMX offers an
easy way to create Open MBeans automatically from Java classes. For example, the
MBeans provided by the JVM are MXBeans.

While MBeans have no hierarchy, JProfiler organizes them into a tree by taking the object
domain name up to the first colon as the first tree level and using all properties as
recursively nested levels. The property value is shown first with the property key in brackets
at the end. The type property is prioritized to appear right below the top-level node.

Attributes

At the top level of the tree table showing the MBean content, you see the MBean attributes.

The following data structures are shown as nested rows:

• Arrays
Elements of primitive arrays and object arrays are shown in nested rows with the index
as the key name.

• Composite data
All items in a composite data type are shown as nested rows. Each item can be an
arbitrary type, so nesting can continue to an arbitrary depth.

(1) https://camel.apache.org/camel-jmx.html
(2) https://docs.oracle.com/javase/7/docs/technotes/guides/management/mxbeans.html

125

https://camel.apache.org/camel-jmx.html
https://docs.oracle.com/javase/7/docs/technotes/guides/management/mxbeans.html

• Tabular data
Most frequently you will encounter tabular data in MXBeans where instances of java.
util.Map are mapped to a tabular data type with one key column and one value
column. If the type of the key is a simple type, the map is shown "inline", and each
key-value pair is shown as a nested row. If the key has a complex type, a level of "map
entry" elements with nested key and value entries is inserted. This is also the case for
the general tabular type with composite keys and multiple values.

Optionally, MBean attributes can be editable in which case an edit icon will be displayed
next to their value and the Edit Value action becomes active. Composite and tabular types
cannot be edited in the MBean browser, but arrays or simple types are editable.

If a value is nullable, such as an array, the editor has a checkbox to choose the null state.

Array elements are separated by semicolons. One trailing semicolon can be ignored, so
1 and 1; are equivalent. A missing value before a semicolon will be treated as a null value
for object arrays. For string arrays, you can create empty elements with double quotes
("") and elements that contain semicolons by quoting the entire element. Double quotes
in string elements must be doubled. For example, entering a string array value of

"Test";"";;"embedded "" quote";"A;B";;

creates the string array

new String[] {"Test", "", null, "embedded \" quote", "A;B", null}

JProfiler can create custom telemetries from numeric MBean attribute values. When you
define an MBean telemetry line [p. 46] for a custom telemetry, an MBean attribute browser
will be shown that lets you choose an attribute that provides the telemetry data. When
you are already working in the MBean Browser, the Add Telemetry For Value action in the
context menu provides a convenient way to create a new custom telemetry.

126

A telemetry can also track nested values in composite data or tabular data with simple
keys and single values. When you chose the nested row, a value path is built where path
components are separated by forward slashes.

Operations

In addition to inspecting and modifying MBean attributes, you can invoke MBean operations
and check their return values. MBean operations are methods on the MBean interface
that are not setters or getters.

The return value of an operation may have a composite, tabular or array type, so a new
window with a content similar to the MBean attribute tree table is shown. For a simple
return type, there is only one row named "Return value". For other types, the "Return value"
is the root element into which the result is added.

127

MBean operations can have one or more arguments. When you enter them, the same
rules and restrictions apply as when editing an MBean attribute.

MBean snapshots

In addition to viewing the live values of MBeans, you can also take snapshots of their
current state. Each new snapshot will be added as a separate view in the MBean view
section and can be assigned a custom label. When the snapshot is taken, only those
MBeans that are displayed according to the current filter are included. In this way, you
can focus on specific MBeans and reduce the overhead of querying MBeans that are not
relevant for your purpose.

When saving a snapshot in the JProfiler UI, all MBean snapshots are saved as well, while
the live MBean view will not be saved. For offline profiling [p. 130], you can use the Controller
API or the "Save MBean snapshot" trigger action to take MBean snapshots programmatically.

128

Both the controller API and the trigger action support an optional label that is shown in
the view selector as well as an optional regular expression to filter the included MBeans.

129

Offline Profiling
There are two fundamentally different ways to profile an application with JProfiler: By
default, you profile with the JProfiler GUI attached. The JProfiler GUI provides you with
buttons to start and stop recording and shows you all recorded profiling data.

There are situations where you would like to profile without the JProfiler GUI and analyze
the results later on. For this scenario, JProfiler offers offline profiling. Offline profiling allows
you to start the profiled application with the profiling agent but without the need to connect
with a JProfiler GUI.

However, offline profiling still requires some actions to be performed. At least one snapshot
has to be saved, otherwise no profiling data will be available for analysis later on. Also, to
see CPU or allocation data, you have to start recording at some point. Similarly, if you wish
to be able to use the heap walker in the saved snapshot, you have to trigger a heap dump.

Profiling API

The first solution to this problem is the controller API. With the API, you can programmatically
invoke all profiling actions in your code. In the api/samples/offline directory, there is a
runnable example that shows you how to use the controller API in practice. Execute ../
gradlew in that directory to compile and run it and study the Gradle build file build.
gradle to understand how the test program is invoked.

The Controller API is the main interface for managing profiling actions at run time. It is
contained in bin/agent.jar in your JProfiler installation or as a Maven dependency with
the coordinates

group: com.jprofiler
artifact: jprofiler-probe-injected
version: <JProfiler version>

and the repository

https://maven.ej-technologies.com/repository

If the profiling API is used during a normal execution of your application, the API calls will
just quietly do nothing.

The drawback of this approach is that you have to add the JProfiler agent library to the
class path of your application during development, add profiling instructions to your
source code and recompile your code each time you make a change to the programmatic
profiling actions.

Triggers

With triggers [p. 28], you can specify all profiling actions in the JProfiler GUI without
modifying your source code. Triggers are saved in the JProfiler config file. The config file
and the session ID are passed to the profiling agent on the command line when you start
with offline profiling enabled, so the profiling agent can read those trigger definitions.

130

In contrast to the profiling API, where you add API calls to your source code, triggers are
activated when a certain event occurs in the JVM. For example, instead of adding an API
call for a certain profiling action at the beginning or at the end of a method, you can use
a method invocation trigger. As another use case, instead of creating your own timer
thread to periodically save a snapshot, you can use a timer trigger.

Each trigger has a list of actions that are performed when the associated event occurs.
Some of these actions correspond to profiling actions in the controller API. In addition,
there are other actions that go beyond the controller functionality such as the action to
print method calls with parameters and return values or the action to invoke interceptor
scripts for a method.

Configuring offline profiling

If you have configured a launched session in JProfiler, you can convert it to an offline
session by invoking Session->Conversion Wizards->Convert Application Session To Offline
from the main menu. This will create a start script with the appropriate VM parameters
and take the profiling settings from the same session that you use in the JProfiler UI. If you
want to move the invocation to another computer, you have to use Session->Export Session

131

Settings to export the session to a config file and make sure that the VM parameter in the
start script references that file.

When profiling an application server with the integration wizards, there is always a start
script or config file that is being modified so that the VM parameters for profiling are
inserted into the Java invocation. All integration wizards have a "Profile offline" option on
the "Startup" step in order to configure the application server for offline profiling instead
of interactive profiling.

You may want to pass the VM parameter yourself to a Java call, for example, if you have
a start script that is not handled by the integration wizards. That VM parameter has the
format

-agentpath:<path to jprofilerti library>=offline,id=<ID>[,config=<path>]

and is available from the [Generic application] wizard.

Passing offlineas a library parameter enables offline profiling. In this case, a connection
with the JProfiler GUI is not possible. The session parameter determines which session
from the config file should be used for the profiling settings. The ID of a session can be

132

seen in the top right corner of the Application settings tab in the session settings dialog.
The optional config parameter points to the config file. This is a file that you can export
by invoking Session->Export Session Settings. If you omit the parameter, the standard
config file will be used. That file is located in the .jprofiler15directory in your user home
directory.

Offline profiling with Gradle and Ant

When you start offline profiling from Gradle or Ant, you can use the corresponding JProfiler
plugins to make your work easier. A typical usage of the Gradle task for profiling tests is
shown below:

plugins {
id 'com.jprofiler' version 'X.Y.Z'
id 'java'

}

jprofiler {
installDir = file('/opt/jprofiler')

}

task run(type: com.jprofiler.gradle.TestProfile) {
offline = true
configFile = file("path/to/jprofiler_config.xml")
sessionId = 1234

}

The com.jprofiler.gradle.JavaProfile task profiles any Java class in the same way
that you execute it with the standard JavaExec task. If you use some other method of
launching your JVM that is not directly supported by JProfiler, the com.jprofiler.gradle.
SetAgentPathProperty task can write the required VM parameter to a property. It is added
by default when applying the JProfiler plugin, so you can simply write:

setAgentPathProperty {
propertyName = 'agentPathProperty'
offline = true
configFile = file("path/to/jprofiler_config.xml")
sessionId = 1234

}

and then use agentPathProperty as a project property reference elsewhere after the
task has been executed. The features of all Gradle tasks and the corresponding Ant tasks
are documented in detail in separate chapters [p. 254].

Enabling offline profiling for running JVMs

With the command line utility bin/jpenable, you can start offline profiling in any running
JVM with a version of 8 or higher. Just like for the VM parameter, you have to specify an
offline switch, a session ID and an optional config file:

jpenable --offline --id=12344 --config=/path/to/jprofiler_config.xml

With an invocation like this, you have to select a process from a list of running JVMs. With
the additional arguments --pid=<PID> --noinput other you can automate the process
so that it requires no user input at all.

133

On the other hand, when enabling offline profiling on the fly, it may be necessary to
manually start some recordings or to save a snapshot. This is possible with the bin/
jpcontroller command line tool.

If the profiling agent is only loaded, but no profiling settings have been applied, no recording
actions can be switched on and so jpcontrollerwill not be able to connect. This includes
the case where you enable profiling with jpenable, but without the offline parameter.
If you enable offline mode, the profiling settings are specified and jpcontroller can be
used.

More information on the jpenable and jpcontroller executables is available in the
command line reference [p. 254].

134

Comparing Snapshots
Comparing the runtime characteristics of your current application against a previous
version is a common quality assurance technique for preventing performance regressions.
It also can be helpful for solving performance problems within the scope of a single profiling
session, where you may want to compare two different use cases and find out why one
is slower than the other. In both cases, you save snapshots with the recorded data of
interest and use the snapshot comparison functionality in JProfiler by invoking
Session->Compare Snapshots in New Window from the menu or clicking the Compare
Multiple Snapshots button on the Open Snapshots tab of the start center.

Selecting snapshots

Comparisons are created and viewed in a separate top-level window. First, you add a
number of snapshots in the snapshot selector. Then you can create comparisons from
two or more of the listed snapshots by selecting the snapshots of interest and clicking on
a comparison tool bar button. The order of the snapshot files in the list is significant because
all comparisons will assume that snapshots further down in the list have been recorded
at a later time. Apart from arranging snapshots manually, you can sort them by name or
creation time.

Unlike for the views in JProfiler's main window, the comparison views have fixed view
parameters that are shown at the top instead of drop-down lists that let you adjust the
parameters on the fly. All comparisons show wizards for collecting the parameters for the
comparison, and you can perform the same comparison multiple times with the same
parameters. The wizards remember their parameters from previous invocations, so you
don't have to repeat the configuration if you compare several sets of snapshots. At any

135

point, you can shortcut the wizard with the Finish button or jump to another step by clicking
on the step in the index.

When a comparison is active, the snapshots that were analyzed are shown with number
prefixes. For comparisons that work with two snapshots, the displayed differences are the
measurements from snapshot 2 minus the measurements from snapshot 1.

For the CPU comparisons, you can use the same snapshot as the first and second snapshot
and select different threads or thread groups in the wizard.

Comparisons with tables

The simplest comparison is the "Objects" memory comparison. It can compare data from
the "All objects", "Recorded objects" or the "Classes" view of the heap walker. The columns
in the comparison show differences for instance counts and size, but only the Instances
Count column shows the bidirectional bar chart where increases are painted in red and
to the right, while decreases are painted in green and to the left.

136

In the view settings dialog you can choose whether you want this bar chart to display
absolute changes or percentages. The other value is displayed in parentheses. This setting
also determines how the column is sorted.

The measurement in the first data column is called the primary measure, and you can
switch it from the default instance counts to shallow sizes in the view settings.

137

The context menu of the table gives you a shortcut into the other memory comparisons
with the same comparison parameters and for the selected class.

Like the objects comparison, CPU hot spot, probe hot spot and allocation hot spot
comparisons are shown in a similar table.

Comparisons with trees

For each of the CPU call tree, the allocation call tree and the probe call tree you can
calculate another tree that shows the differences between the selected snapshots. In
contrast to the regular call tree views, the inline bar diagram now displays the change,
either in red for increases or in green for decreases.

138

Depending on the task at hand, it may make it easier for you if you only see call stacks
that are present in both snapshot files and that have changed from one snapshot file to
the other. You can change this behavior in the view settings dialog.

For the CPU and probe call tree comparisons it may be interesting to compare the average
times instead of the total times. This is an option on the "View parameters" step of the
wizard.

139

Telemetry comparisons

For telemetry comparisons you can compare more than two snapshots at the same time.
If you don't select any snapshots in the snapshot selector, the wizard will assume that you
want to compare all of them. Telemetry comparisons do not have a time axis but show
the numbered selected snapshots as an ordinal x-axis instead. The tool tips contain the
full name of the snapshot.

The comparison extracts one number from each snapshot. Because telemetry data is
time-resolved, there are multiple ways to do so. The "comparison type" step of the wizard
gives you the option to use the value when the snapshot was saved, calculate the
maximum value or find the value at a selected bookmark.

140

141

IDE Integrations
When you profile your application, the methods and classes that come up in JProfiler's
views often lead to questions that can only be answered by looking their source code.
While JProfiler provides a built-in source code viewer for that purpose, it has limited
functionality. Also, when a problem is found, the next move is usually to edit the offending
code. Ideally, there should be a direct path from the profiling views in JProfiler to the IDE,
so you can inspect and improve code without any manual lookups.

Installing IDE integrations

JProfiler offers IDE integrations for IntelliJ IDEA, eclipse and NetBeans. To install an IDE plugin,
invoke Session->IDE Integrations from the main menu. The plugin installation for IntelliJ
IDEA is performed with the plugin management in the IDE, for other IDEs the plugin is
installed directly be JProfiler. The installer also offers this action to make it easy to update
the IDE plugin along with the JProfiler installation. The integration wizard connects the
plugin with the current installation directory of JProfiler. In the IDE plugin settings, you can
change the used version of JProfiler at any time. The protocol between the plugin and the
JProfiler GUI is backwards compatible and can work with older versions of JProfiler as well.

The IntelliJ IDEA integration can also be installed from the plugin manager. In that case,
the plugin will ask you for the location of the JProfiler executable when you profile for the
first time.

On different platforms, the JProfiler executable is located in different directories. On
Windows, it's bin\jprofiler.exe, on Linux or Unix bin/jprofiler and on macOS there
is a special helper shell script Contents/Resources/app/bin/macos/jprofiler.sh in
the JProfiler application bundle for the IDE integrations.

Source code navigation

Everywhere a class name or a method name is shown in JProfiler, the context menu
contains a Show Source action.

142

If the session was not started from the IDE, the built-in source code viewer is shown that
uses line number tables in the compiled class files to find methods. A source file can only
be found if its root directory or a containing ZIP file is configured in the application settings

Together with the source code display, a bytecode viewer based on the jclasslib bytecode
viewer (1) shows the structure of the compiled class file.

(1) https://github.com/ingokegel/jclasslib

143

https://github.com/ingokegel/jclasslib
https://github.com/ingokegel/jclasslib

If the session is launched from the IDE, the integrated source code viewer is not used and
the Show Source action defers to the IDE plugin. The IDE integrations support launched
profiling sessions, opening saved snapshots as well as attaching to running JVMs.

For live profiling sessions, you start the profiled application for the IDE similarly to running
or debugging it. The JProfiler plugin will then insert the VM parameter for profiling and
connect a JProfiler window to it. JProfiler is running as a separate process and is started
by the plugin if required. Source code navigation requests from JProfiler are sent to the
associated project in the IDE. JProfiler and the IDE plugin cooperate to make window
switching seamless without blinking task bar entries, just as if you were dealing with a
single process.

When starting the session, the "Session startup" dialog lets you configure all profiling
settings. The configured profiling settings that are used for a launched session are
remembered by JProfiler on a per-project or on a per-run-configuration basis, depending
on the IDE integrations. When a session is profiled for the first time, the IDE plugin
automatically determines a list of profiled packages based on the topmost classes in the
package hierarchy of your source files. At any later point, you can go to the filter settings
step in the session settings dialog and use the reset button to perform this calculation
again.

For snapshots, the IDE integration is set up by opening a snapshot file from within the IDE
with the File->Open action or by double-clicking on it in the project window. Source code
navigation from JProfiler will then be directed into the current project. Finally, the IDE plugin
adds an Attach to JVM action to the IDE that lets you select a running JVM and get source
code navigation into the IDE, similar to the mechanism for snapshots.

Sometimes you may want to switch to the IDE without a particular class or method in
mind. For that purpose, the tool bar in the JProfiler window has an Activate IDE button that
is shown for profiling sessions that are opened by an IDE integration. The action is bound
to the F11 key, just like the JProfiler activation action in the IDE, so you can switch back
and forth between the IDE and JProfiler with the same key binding.

144

IntelliJ IDEA integration

To profile your application from IntelliJ IDEA, choose one of the profiling commands in the
Run menu, or click on the drop-down menu next to the run or debug actions in the main
tool bar to choose the "Profile with JProfiler" action. JProfiler can profile most run IDEA
configuration types, including application servers.

The JProfiler plugin adds additional settings to run configurations which are not
immediately visible. To access these settings, select the "Profile" option in the "Modify
options" dropdown. All other profiling settings can be configured in the startup dialog of
the JProfiler window.

145

Once the profiling session is started, the output appears in a separate JProfiler tool window.
That tool window displays the console output like the regular run tool window, along with
a "JProfiler" tab that can be used after you connect with the JProfiler UI:

The JProfiler tool window is also shown when you open a JProfiler snapshot in IntelliJ IDEA
or when you attach to a running JVM with the "Attach to JVM with JProfiler" action.

The "JProfiler" tab contains actions to start and stop data recording for CPU data, allocation
data and probe events. Additionally, an action allows you to switch to the JProfiler window.
The JProfiler window includes a similar action for switching back to the IDEA window so
that it becomes convenient to work with the two separate windows. Precise source code
navigation from JProfiler into IntelliJ IDEA is implemented for Java and Kotlin.

Profiling information is typically displayed in the JProfiler window, but the CPU graph data
is also integrated in the IntelliJ IDEA UI because it makes sense to show this data directly
in the source code. Use the "Apply graph" action in IntelliJ IDEA or generate a CPU graph
in JProfiler to display CPU data within IntelliJ IDEA. To configure advanced parameters like
thread selection or to use the call tree root, call tree removal and call tree view filter settings
from the call tree view, you should generate the graph in the JProfiler window.

Once the CPU data has been applied, the "JProfiler" tab displays a list of recorded methods.
Double-clicking on a method will take you to the source code. In the gutter of the source
code editor, arrows for incoming and outgoing calls are added.

146

Clicking on a gutter icon displays the incoming or outgoing methods in a popup window,
along with a bar chart showing the recorded times. Clicking on rows in the popup will
navigate to the corresponding methods.

Also, the total recorded time and the invocation count for the target method will be shown
at the bottom of the popup. The "Show in JProfiler" drop down in the bottom-right corner
of the popup provides context-dependent navigation actions into the JProfiler UI. You can
show the selected node or the corresponding call tree analysis in the method graph. For
outgoing calls, the "Cumulated outgoing calls" analysis and for the incoming calls the
"Backtraces" analysis is offered.

147

The same navigation actions are also available in the context menu of the method table
in the "JProfiler" tab:

The JProfiler plugin provides a toolbar quick action for the "Attach to JVM with JProfiler"
action that you can add to the main toolbar. With that action you can attach to a process
that is already running and still get source code navigation from the JProfiler UI into IntelliJ
IDEA as well as inline CPU graph data in source code editors:

This is how the action button looks like once it has been added:

The key bindings for all actions in JProfiler can be customized in the "Keymap" settings in
IntelliJ IDEA. Given the limited availability of non-conflicting keyboard shortcuts, the
navigation actions from the source code editor to the JProfiler UI are chained shortcuts
where you first hit Ctrl-Alt-Shift-Oand then another key to select the navigation action.
If you frequently use this functionality, you may want to assign simpler keyboard shortcuts.

148

On the Tools->JProfiler page of the IDE settings, you can adjust the used JProfiler executable
and whether you always want to open a new window in JProfiler for new profiling sessions.

Eclipse integration

The eclipse plugin can profile most common launch configuration types including test
run configurations and WTP run configurations. The eclipse plugin only works with the full
eclipse SDKs and not with partial installations of the eclipse framework.

To profile your application from eclipse, choose one of the profiling commands in the Run
menu or click on the corresponding toolbar button. The profile commands are equivalent
to the debug and run commands in eclipse and are part of eclipse's infrastructure, except
for the Run->Attach JProfiler to JVM menu item which is added by the JProfiler plugin.

149

If the menu item Run->Profile ... does not exist in the Java perspective, enable the "Profile"
actions for this perspective under Window->Perspective->Customize Perspective by
bringing the Action Set Availability tab to front and selecting the Profile checkbox.

Several JProfiler-related settings including the location of the JProfiler executable can be
adjusted in eclipse under Window->Preferences->JProfiler.

VS Code integration

The VS Code extension adds an actionEnable Profiling with JProfiler. When invoked,
the debug and run actions will start profiling for Java launch configurations. JProfiler will
be started, and the session startup dialog where you can configure profiling settings. The
application will be started after the session startup dialog is confirmed.

150

With the Disable Profiling with JProfiler action, the default behavior for run and
debug actions is restored. Notifications about the changes in the profiling mode are shown
in VS Code as toast messages in the bottom-right corner of the editor. Both Enable
Profiling with JProfiler and Disable Profiling with JProfiler have the same
default keybinding, so it can be used to toggle the profiling mode.

To profile an already running JVM, use the Attach to a Running JVM with JProfiler
action.

Source navigation actions in JProfiler will show the corresponding source code in VS Code.
To get source navigation into VS Code for a JProfiler snapshot, open the snapshot from
within VS Code with File->Open.

NetBeans integration

In NetBeans, you can profile standard, free form and Maven projects that use the exec
Maven plugin. To profile your application from NetBeans, choose one of the profiling
commands in the Run menu or click on the corresponding toolbar button. For Maven
projects that start an application in another way and for Gradle projects, start the project
normally and use the Profile->Attach JProfiler To A Running JVM action in the menu.

For free form projects, you have to debug your application once before trying to profile it,
because the required filenbproject/ide-targets.xml is set up by the debug action.
JProfiler will add a target named "profile-jprofiler" to it with the same contents as the
debug target and will try to modify the VM parameters as needed. If you have problems
profiling a free form project, check the implementation of this target.

You can profile web applications with the integrated Tomcat or with any other Tomcat
server configured in NetBeans. When your main project is a web project, selecting Profile
main project with JProfiler starts the Tomcat server with profiling enabled.

If you use NetBeans with the bundled GlassFish Server and your main project is set up to
use a GlassFish Server, selecting Profile main project with JProfiler starts the application
server with profiling enabled.

The location of the JProfiler executable and the policy for opening new JProfiler windows
can be adjusted under Miscellaneous->JProfiler in the options dialog.

151

152

A Custom Probes

A.1 Probe Concepts
To develop a custom probe for JProfiler, you should be aware of some basic concepts
and terminology. The common basis of all of JProfiler's probes is that they intercept specific
methods and use the intercepted method parameters and other data sources to build a
string with interesting information that you would want to see in the JProfiler UI.

The initial problem when defining a probe is how to specify the intercepted methods and
get an environment where you can use the method parameters and other relevant objects
for building the string. In JProfiler, there are three different ways to do that:

• A script probe [p. 160] is completely defined in the JProfiler UI. You can right-click a
method in the call tree, choose the script probe action and enter an expression for the
string in a built-in code editor. This is great for experimenting with probes, but only
exposes a very limited segment of the capabilities of custom probes.

• The embeddedprobe [p. 169] API can be called from your own code. If you write a library,
a database driver or a server, you can ship probes with your product. Anybody who
profiles your product with JProfiler, will get your probes added automatically to the
JProfiler UI.

• With the injected probe [p. 164] API, you can write probes for 3rd party software in your
IDE using the full capability of JProfiler's probe system. The API makes use of annotations
to define the interceptions and to inject method parameters and other useful objects.

Profiled JVM

JProfiler UI

Script
probe

Profiled application

Profiling
agent

Embedded
probe

Injected
probe

The next question is: what should JProfiler do with the string that you have created? There
are two different strategies available: payload creation or call tree splitting.

Payload creation

The string that is built by a probe can be used to create a probe event. The event has a
description that is set to that string, a duration that is equal to the invocation time of the
intercepted method, as well as an associated call stack. At their corresponding call stacks,

153

probe descriptions and timings are cumulated and saved as payloads into the call tree.
While events are consolidated after a certain maximum number, the cumulated payloads
in the call tree show the total numbers for the entire recording period. If both CPU data
and your probe are being recorded, the probe call tree view will show the merged call
stacks with the payload strings as leaf nodes and the CPU call tree view will contain
annotated links into the probe call tree view.

Method 1

Method 2

Payloads
Payload A, count 3, time 600 ms
Payload B, count 2, time 300 ms

Method 3

Payload A, time 200 ms
Payload A, time 100 ms
Payload A, time 300 ms
Payload B, time 100 ms
Payload B, time 200 ms

Call tree with annotated payloadsProbe Events

...

chronological cumulated

Just like for CPU data, payloads can be shown in a call tree or in a hot spots view. The hot
spots show which payloads are responsible for most of the expended time, and the back
traces show you which parts of your code are responsible for creating these payloads. In
order to get a good list of hot spots, the payload strings should not contain any unique
IDs or timestamps, because if every payload string is different, there will be no cumulation
and no clear distribution of hot spots. For example, in the case of a prepared JDBC
statement, the parameters should not be included in the payload string.

Script probes create payloads automatically from the return value of the configured script.
Injected probes are similar, they return the payload description from an interception
handler method annotated with PayloadInterception either as a string or as a Payload
object for advanced functionality. Embedded probes, on the other hand, create payloads
by calling Payload.exit with the payload description as an argument, where the time
between Payload.enter and Payload.exit is recorded as the probe event duration.

Payload creation is most useful if you're recording calls to services that happen at different
call sites. A typical example is a database driver where the payload string is some form
of query string or command. The probe takes the perspective of the call site, where the
work that is measured is performed by another software component.

Call tree splitting

The probe can also take the perspective of the execution site. In that case, it is not important
how the intercepted method is called, but rather what method calls are executed after it.
A typical example is a probe for a servlet container where the extracted string is a URL.

More important than creating payloads is now the ability to split the call tree for each
distinct string that is built by the probe. For each such string, a splitting node will be inserted
into the call tree that contains the cumulated call tree of all corresponding invocations.
Where otherwise there would be just one cumulated call tree, now there is a set of splitting
nodes segmenting the call tree into different parts that can be analyzed separately.

154

Method 1, 1 inv., 1400 ms

Method 2, 3 inv., 200 ms
Method 3, 1 inv., 400 ms

Method 2, 1 inv., 700 ms
Method 3, 2 inv., 100 ms

Split string A

Split string B

Call tree with splitsCall tree without splits

Method 1, 1 inv., 1400 ms
Method 2, 4 inv., 900 ms
Method 3, 3 inv., 500 ms

Multiple probes can produce nested splits. A single probe by default produces only one
split level, unless it has been configured as reentrant which is not supported for script
probes.

In the JProfiler UI, call tree splitting is not bundled with the script probe feature, but is a
separate feature [p. 187]called "Split methods". They just split the call tree without creating
payloads, so no probe view with name and description is required. Injected probes return
the split string from an interception handler method annotated with SplitInterception,
while embedded probes call Split.enter with the split string.

Telemetries

Custom probes have two default telemetries: The event frequency and the average event
duration. Injected and embedded probes support additional telemetries that are created
with annotated methods in the probe configuration classes. In the JProfiler UI, script

155

telemetries are independent from the script probe feature and are found in the "Telemetries"
section, under the Configure Telemetries button in the tool bar.

Telemetry methods are polled once per second. In the Telemetry annotation, you can
configure the unit and a scale factor. With the line attribute, multiple telemetries can be
combined into a single telemetry view. With the stackedattribute of the TelemetryFormat
you can make the lines additive and show them as a stacked line graph. The
telemetry-related APIs in the embedded and injected probes are equivalent but only
applicable for their respective probe types.

Control objects

Sometimes it is interesting to tie probe events to associated long-lived objects that are
called "control objects" in JProfiler. For example, in a database probe, that role is taken by
the physical connection that executes a query. Such control objects can be opened and
closed with the embedded API and the injected probe API which generate corresponding
events in the probe events view. When a probe event is created, the control object can
be specified, so that the probe event contributes to the statistics that is shown in the
"Control objects" view of the probe.

156

Control objects have display names that have to be specified when they are opened. If a
new control object is used when creating a probe event, the probe has to provide a name
resolver in its configuration.

In addition, probes can define custom event types via an enum class. When the probe
event is created, one of those types can be specified and shows up in the events view
where you can filter for single event types. More importantly, the timeline view of the probe
that shows control objects as lines on a time axis is colored according to the event type.
For a probe without custom event types, the coloring shows the idle state where no events
are recorded and the default event state for the duration of probe events. With custom
types, you can differentiate states, for example, "read" and "write".

157

Recording

Like for all probes, custom probes do not record data by default, but you have to enable
and disable recording as necessary. While you can use the manual start/stop action in
the probe view, it is often necessary to switch on probe recording at the beginning. Because
JProfiler does not know about custom probes in advance, the recording profiles have a
Custom probes check box that applies to all custom probes.

Similarly, you can choose All custom probes for the trigger actions that start and stop
probe recording.

158

For programmatic recording, you can call Controller.
startProbeRecording(Controller.PROBE_NAME_ALL_CUSTOM, ProbeRecordingOptions.
EVENTS) to record all custom probes, or pass the class name of the probe in order to be
more specific.

159

A.2 Script Probes
Developing a custom probe in your IDE requires a clear understanding of the interception
point and the benefits that the probe will provide. With script probes, on the other hand,
you can quickly define simple probes directly in the JProfiler GUI and experiment without
having to learn any API. Unlike embedded or injected custom probes, script probes can
be redefined during a running profiling session, leading to a fast edit-compile-test loop.

Defining script probes

A script probe is defined by selecting an intercepted method and entering a script that
returns the payload string for the probe. Multiple such method-script pairs can be bundled
in a single probe.

The script probe configuration is accessed in the session settings. This is the place to
create and delete script probes as well as for saving your script probes to a set that can
be imported by other profiling sessions.

Each script probe needs a name and optionally a description. The name is used to add
a probe view to JProfiler's view selector in the "JEE & Probes" section. The description is
shown in the header of the probe view and should be a short explanation of its purpose.

For selecting a method you have multiple options, including selecting a class from the
configured classpath or selecting a class from the profiled classes if the profiling session
is already running. In the second step, you can then select a method from the selected
class.

160

A much easier way to select the intercepted method is from the call tree view. In the
context menu, the Intercept Method With Script Probe action will ask you if you want to
create a new probe or add an interception to an existing probe.

Probe scripts

In the script editor, you have access to all parameters of the intercepted method as well
as the object on which the method was called. If you need access to the return value of
the intercepted method or any thrown exceptions, you have to write an embedded or
injected probe.

In this environment, your script can construct the payload string, either as an expression
or as a sequence of statements with a return statement. The simplest version of such a
script simply returns parameter.toString() for one parameter or String.
valueOf(parameter) for a parameter with a primitive type. If it returns null, no payload
will be created.

If you record CPU and probe data at the same time, the call tree view in the CPU section
will show links into the probe view at the appropriate call stacks. Alternatively, you can

161

select to show the payload strings inline in the CPU call tree view. The "Payload
interceptions->Call tree annotations" step of the probe wizard contains this option.

One more parameter that is available to the script is the script context, an object of type
com.jprofiler.api.agent.ScriptContext that allows you to store data between
invocations of any script that is defined for the current probe. For example, let's suppose
that the intercepted method A only sees objects that have no good text representation,
but the association between object and display name could be obtained by intercepting
method B. Then you could intercept method B in the same probe and save the
object-to-text association directly to the script context. In method A you would then get
that display text from the script context and use it to build the payload string.

162

Intercepting method A:

· object c
· name n

scriptContext.putObject(c,n);
return null;

Timed intercepting method B:

· object c

return scriptContext.getObject(c);

1

2

If these kinds of concerns get too complex, you should consider switching to the embedded
or injected probe APIs.

Missing capabilities

Script probes are designed to facilitate an easy entry to custom probe development, but
they are missing a couple of capabilities from the full probe system that you should be
aware of:

• Script probes cannot do call tree splitting. In the JProfiler UI this is a separate feature
as explained in the custom probes concepts [p. 153]. Embedded and injected probes
offer call tree splitting functionality directly.

• Script probes cannot create control objects or create custom probe event types. This
is only possible with embedded or injected probes.

• Script probes cannot access return values or thrown exceptions, unlike embedded and
injected probes.

• Script probes cannot handle reentrant interceptions. If a method is called recursively,
only the first call into it is intercepted. Embedded and injected probes offer you
fine-grained control over reentrant behavior.

• It is not possible to bundle telemetries other than default telemetries into the probe
view. Instead, you can use the script telemetry feature as shown in the custom probes
concepts. [p. 153]

163

A.3 Injected Probes
Similarly to script probes, injected probes define interception handlers for selected methods.
However, injected probes are developed outside the JProfiler GUI in your IDE and rely on
the injected probe API that is provided by JProfiler. The API is licensed under the permissive
Apache License, version 2.0, making it easy to distribute the associated artifacts.

The best way to get started with injected probes is to study the example in the api/
samples/simple-injected-probe directory of your JProfiler installation. Execute ../
gradlew in that directory to compile and run it. The gradle build file build.gradle contains
further information about the sample. The example in api/samples/
advanced-injected-probe shows more features of the probe system, including control
objects.

Development environment

The probe API that you need for developing an injected probe is contained in the single
artifact with maven coordinates

group: com.jprofiler
artifact: jprofiler-probe-injected
version: <JProfiler version>

where the JProfiler version corresponding to this manual is 15.0.

Jar, source and javadoc artifacts are published to the repository at

https://maven.ej-technologies.com/repository

You can either add the probe API to your development class path with a build tool like
Gradle or Maven, or use the JAR file

api/jprofiler-probe-injected.jar

in the JProfiler installation.

To browse the Javadoc, go to

api/javadoc/index.html

That javadoc combines the javadoc for all APIs that are published by JProfiler. The overview
for thecom.jprofiler.api.probe.injectedpackage is a good starting point for exploring
the API.

Probe structure

An injected probe is a class annotated with com.jprofiler.api.probe.injected.Probe.
The attributes of that annotation expose configuration options for the entire probe. For
example, if you create a lot of probe events that are not interesting for individual inspection,
the events attribute allows you to disable the probe events view and reduce overhead.

164

@Probe(name = "Foo", description = "Shows foo server requests", events = "false")
public class FooProbe {

...
}

To the probe class, you add specially annotated static methods in order to define
interception handlers. The PayloadInterception annotation creates payloads while the
SplitInterception annotation splits the call tree. The return value of the handler is used
as the payload or the split string, depending on the annotation. Like for script probes, if
you return null, the interception has no effect. Timing information is automatically
calculated for the intercepted method.

@Probe(name = "FooBar")
public class FooProbe {

@PayloadInterception(
invokeOn = InvocationType.ENTER,
method = @MethodSpec(className = "com.bar.Database",

methodName = "processQuery",
parameterTypes = {"com.bar.Query"},
returnType = "void"))

public static String fooRequest(@Parameter(0) Query query) {
return query.getVerbose();

}

@SplitInterception(
method = @MethodSpec(className = "com.foo.Server",

methodName = "handleRequest",
parameterTypes = {"com.foo.Request"},
returnType = "void"))

public static String barQuery(@Parameter(0) Request request) {
return request.getPath();

}
}

As you can see in the above example, both annotations have a methodattribute for defining
the intercepted methods with a MethodSpec. In contrast to script probes, the MethodSpec
can have an empty class name, so all methods with a particular signature are intercepted,
regardless of the class name. Alternatively, you can use the subtypes attribute of the
MethodSpec to intercept entire class hierarchies.

Unlike for script probes where all parameters are available automatically, the handler
methods declare parameters to request values of interest. Each parameter is annotated
with an annotation from the com.jprofiler.api.probe.injected.parameterpackage,
so the profiling agent knows which object or primitive value has to be passed to the
method. For example, annotating a parameter of the handler method with @Parameter(0)
injects the first parameter of the intercepted method.

Method parameters of the intercepted method are available for all interception types.
Payload interceptions can access the return value with@ReturnValueor a thrown exception
with @ExceptionValue if you tell the profiling agent to intercept the exit rather than the
entry of the method. This is done with the invokeOnattribute of the PayloadInterception
annotation.

In contrast to script probes, injected probes handlers can be called for recursive invocations
of the intercepted method if you set the reentrantattribute of the interception annotation
to true. With a parameter of type ProbeContext in your handler method, you can control

165

the probe's behavior for nested invocations by calling ProbeContext.getOuterPayload()
or ProbeContext.restartTiming().

Advanced interceptions

Sometimes a single interception is not sufficient to collect all necessary information for
building the probe string. For that purpose, your probe can contain an arbitrary number
of interception handlers annotated with Interception that do not create payloads or
splits. Information can be stored in static fields of your probe class. For thread safety in a
multi-threaded environment, you should use ThreadLocal instances for storing reference
types and the atomic numeric types from the java.util.concurrent.atomic package
for maintaining counters.

Under some circumstances, you need interceptions for both method entry and method
exit. A common case is if you maintain state variables like inMethodCall that modify the
behavior of another interception. You can set inMethodCall to true in the entry
interception, which is the default interception type. Now you define another static method
directly below that interception and annotate it with @AdditionalInterception(invokeOn
= InvocationType.EXIT). The intercepted method is taken from the interception handler
above, so you do not have to specify it again. In the method body, you can set your
inMethodCall variable to false.

...

private static final ThreadLocal<Boolean> inMethodCall =
ThreadLocal.withInitial(() -> Boolean.FALSE);

@Interception(
invokeOn = InvocationType.ENTER,
method = @MethodSpec(className = "com.foo.Server",

methodName = "internalCall",
parameterTypes = {"com.foo.Request"},
returnType = "void"))

public static void guardEnter() {
inMethodCall.set(Boolean.TRUE);

}

@AdditionalInterception(InvocationType.EXIT)
public static void guardExit() {

inMethodCall.set(Boolean.FALSE);
}

@SplitInterception(
method = @MethodSpec(className = "com.foo.Server",

methodName = "handleRequest",
parameterTypes = {"com.foo.Request"},
returnType = "void"),

reentrant = true)
public static String splitRequest(@Parameter(0) Request request) {

if (!inMethodCall.get()) {
return request.getPath();

} else {
return null;

}
}

...

166

You can see a working example of this use case in api/samples/
advanced-injected-probe/src/main/java/AdvancedAwtEventProbe.java.

Control objects

The control objects view is not visible unless the controlObjects attribute of the Probe
annotation is set to true. For working with control objects, you have to obtain a
ProbeContext by declaring a parameter of that type in your handler method. The sample
code below shows how to open a control object and associate it with a probe event.

@Probe(name = "Foo", controlObjects = true, customTypes = MyEventTypes.class)
public class FooProbe {

@Interception(
invokeOn = InvocationType.EXIT,
method = @MethodSpec(className = "com.foo.ConnectionPool",

methodName = "createConnection",
parameterTypes = {},
returnType = "com.foo.Connection"))

public static void openConnection(ProbeContext pc, @ReturnValue Connection c) {
pc.openControlObject(c, c.getId());

}

@PayloadInterception(
invokeOn = InvocationType.EXIT,
method = @MethodSpec(className = "com.foo.ConnectionPool",

methodName = "createConnection",
parameterTypes = {"com.foo.Query", "com.foo.Connection"},
returnType = "com.foo.Connection"))

public static Payload handleQuery(
ProbeContext pc, @Parameter(0) Query query, @Parameter(1) Connection c) {
return pc.createPayload(query.getVerbose(), c, MyEventTypes.QUERY);

}

...

}

Control objects have a defined lifetime, and the probe view records their open and close
times in the timeline and the control objects view. If possible, you should open and close
control objects explicitly by calling ProbeContext.openControlObject() and
ProbeContext.closeControlObject(). Otherwise you have to declare a static method
annotated with @ControlObjectName that resolves the display names of control objects.

Probe events can be associated with control objects if your handler method returns
instances of Payload instead of String. The ProbeContext.createPayload() method
takes a control object and a probe event type. The enum with the allowed event types
has to be registered with the customTypes attribute of the Probe annotation.

Control objects have to be specified at the start of the time measurement which
corresponds to the method entry. In some cases, the name of payload string will only be
available at method exit because it depends on the return value or other interceptions.
In that case, you can use ProbeContext.createPayloadWithDeferredName() to create
a payload object without a name. Define an interception handler annotated with
@AdditionalInterception(invokeOn = InvocationType.EXIT) right below and return
a String from that method, it will then automatically be used as the payload string.

167

Overriding the thread state

When measuring execution times for database drivers or native connectors to external
resources, it sometimes becomes necessary to tell JProfiler to put some methods into a
different thread state. For example, it is useful to have database calls in the "Net I/O" thread
state. If the communication mechanism does not use the standard Java I/O facilities, but
some native mechanism, this will not automatically be the case.

With a pair of ThreadState.NETIO.enter() and ThreadState.exit() calls, the profiling
agent adjusts the thread state accordingly.

...

@Interception(invokeOn = InvocationType.ENTER, method = ...)
public static void enterMethod(ProbeContext probeContext, @ThisValue JComponent
component) {

ThreadState.NETIO.enter();
}

@AdditionalInterception(InvocationType.EXIT)
public static void exitMethod() {

ThreadState.exit();
}

...

Deployment

There are two ways to deploy injected probes, depending on whether you want to put
them on the classpath or not. With the VM parameter

-Djprofiler.probeClassPath=...

a separate probe class path is set up by the profiling agent. The probe classpath can
contain directories and class files, separated with ';' on Windows and ':' on other platforms.
The profiling agent will scan the probe classpath and find all probe definitions.

If it's easier for you to place the probe classes on the classpath, you can set the VM
parameter

-Djprofiler.customProbes=...

to a comma-separated list of fully qualified class names. For each of these class names,
the profiling agent will try to load an injected probe.

168

A.4 Embedded Probes
If you control the source code of the software component that is the target of your probe,
you should write an embedded probe instead of an injected probe.

Most of the initial effort when writing an injected probe goes into specifying the intercepted
methods and selecting the injected objects as method parameters for the handler method.
With embedded probes, this is not necessary because you can call the embedded probe
API directly from the monitored methods. Another advantage of embedded probes is that
deployment is automatic. Probes ship together with your software and appear in the
JProfiler UI when the application is profiled. The only dependency you have to ship is a
small JAR file licensed under the Apache 2.0 License that mainly consists of empty method
bodies serving as hooks for the profiling agent.

Development environment

The development environment is the same as for injected probes, with the difference that
the artifact name is jprofiler-probe-embedded instead of jprofiler-probe-injected
and that you ship the JAR file with your application instead of developing the probe in a
separate project. The probe API that you need for adding an embedded probe to your
software component is contained in the single JAR artifact. In the javadoc, start with the
package overview for com.jprofiler.api.probe.embedded when you explore the API.

Just like for injected probes, there are two examples for embedded probes as well. In api/
samples/simple-embedded-probe, there is an example that gets you started with writing
an embedded probe. Execute ../gradlew in that directory to compile and run it and study
the gradle build file build.gradle to understand the execution environment. For more
features, including control objects, go to the example in api/samples/
advanced-embedded-probe.

Payload probes

Similar to injected probes, you still need a probe class for configuration purposes. The
probe class must extend com.jprofiler.api.probe.embedded.PayloadProbe or com.
jprofiler.api.probe.embedded.SplitProbe, depending on whether your probe collects
payloads or splits the call tree. With the injected probe API, you use different annotations
on the handler methods for payload collection and splitting. The embedded probe API,
on the other hand, has no handler methods and needs to shift this configuration to the
probe class itself.

public class FooPayloadProbe extends PayloadProbe {
@Override
public String getName() {

return "Foo queries";
}

@Override
public String getDescription() {

return "Records foo queries";
}

}

Whereas injected probes use annotations for configuration, you configure embedded
probes by overriding methods from the base class of the probe. For a payload probe, the
only abstract method is getName(), all other methods have a default implementation
that you can override if required. For example, if you want to disable the events view to
reduce overhead, you can override isEvents() to return false.

169

For collecting payloads and measuring their associated timing you use a pair of Payload.
enter() and Payload.exit() calls

public void measuredCall(String query) {
Payload.enter(FooPayloadProbe.class);
try {

performWork();
} finally {

Payload.exit(query);
}

}

The Payload.enter() call receives the probe class as an argument, so the profiling agent
knows which probe is the target of the call, the Payload.exit() call is automatically
associated with the same probe and receives the payload string as an argument. If you
miss an exit call, the call tree would be broken, so this should always be done in a finally
clause of a try block.

If the measured code block does not produce any value, you can call the Payload.execute
method instead which takes the payload string and a Runnable. With Java 8+, lambdas
or method references make this method invocation very concise.

public void measuredCall(String query) {
Payload.execute(FooPayloadProbe.class, query, this::performWork);

}

The payload string must be known in advance in that case. There is also a version of
execute that takes a Callable.

public QueryResult measuredCall(String query) throws Exception {
return Payload.execute(PayloadProbe.class, query, () -> query.execute());

}

The problem with the signatures that take a Callable is that Callable.call() throws a
checked Exception and so you have to either catch it or declare it on the containing
method.

Control objects

Payload probes can open and close control objects by calling the appropriate methods
in the Payload class. They are associated with probe events by passing them to a version
of the Payload.enter() or Payload.execute() methods that take a control object and
a custom event type.

public void measuredCall(String query, Connection connection) {
Payload.enter(FooPayloadProbe.class, connection, MyEventTypes.QUERY);
try {

performWork();
} finally {

Payload.exit(query);
}

}

The control object view must be explicitly enabled in the probe configuration, and custom
event types must be registered in the probe class as well.

170

public class FooPayloadProbe extends PayloadProbe {
@Override
public String getName() {

return "Foo queries";
}

@Override
public String getDescription() {

return "Records foo queries";
}

@Override
public boolean isControlObjects() {

return true;
}

@Override
public Class<? extends Enum> getCustomTypes() {

return Connection.class;
}

}

If you do not explicitly open and close your control objects, the probe class must override
getControlObjectName in order to resolve display names for all control objects.

Split probes

The split probe base class has no abstract methods, because it can be used to just split
the call tree without adding a probe view. In that case, the minimal probe definition is just

public class FooSplitProbe extends SplitProbe {}

One important configuration for split probes is whether they should be reentrant. By default,
only the top-level call is split. If you would like to split recursive calls as well, override
isReentrant() to return true. Split probes can also create a probe view and publish the
split strings as payloads if you override isPayloads() to return true in the probe class.

To perform a split, make a pair of calls to Split.enter() and Split.exit().

public void splitMethod(String parameter) {
Split.enter(FooSplitProbe.class, parameter);
try {

performWork(parameter);
} finally {

Split.exit();
}

}

Contrary to to payload collection, the split string has to be passed to the Split.enter()
method together with the probe class. Again, it is important that Split.exit() is called
reliably, so it should be in a finally clause of a try block. Split also offers execute()
methods with Runnable and Callable arguments that perform the split with a single call.

Telemetries

It is particularly convenient to publish telemetries for embedded probes, because being
in the same classpath you can directly access all static methods in your application. Just
like for injected probes, annotate static public methods in your probe configuration class

171

with @Telemetry and return a numeric value. See the chapter on probe concepts [p. 153]
for more information. The @Telemetry annotations of the embedded and the injected
probe APIs are equivalent, they are just in different packages.

Another parallel functionality between embedded and injected probe API is the ability to
modify the thread state with the ThreadState class. Again, the class is present in both
APIs with different packages.

Deployment

There are no special steps necessary to enable embedded probes when profiling with the
JProfiler UI. However, the probe will only be registered when the first call into Payload or
Split is made. Only at that point will the associated probe view be created in JProfiler. If
you prefer the probe view to be visible from the beginning, as is the case for built-in and
injected probes, you can call

PayloadProbe.register(FooPayloadProbe.class);

for payload probes and

SplitProbe.register(FooSplitProbe.class);

for split probes.

You may be considering whether to call the methods of Payload and Split conditionally,
maybe controlled by a command line switch in order to minimize overhead. However, this
is generally not necessary because the method bodies are empty. Without the profiling
agent attached, no overhead is incurred apart from the construction of the payload string.
Considering that probe events should not be generated on a microscopic scale, they will
be created relatively rarely, so that building the payload string should be a comparatively
insignificant effort.

Another concern for containers may be that you do not want to expose external
dependencies on the class path. A user of your container could also use the embedded
probe API which would lead to a conflict. In that case, you can shade the embedded probe
API into your own package. JProfiler will still recognize the shaded package and instrument
the API classes correctly. If build-time shading is not practical, you can extract the source
archive and make the classes part of your project.

172

B Call Tree Features In Detail

B.1 Auto-Tuning And Ignored Methods
If the method call recording type is set to instrumentation, all methods of profiled classes
are instrumented. This creates significant overhead for methods that have very short
execution times. If such methods are called very frequently, the measured time of those
methods will be far too high. Also, due to the instrumentation, the hot spot compiler might
be prevented from optimizing them. In extreme cases, such methods become the dominant
hot spots, although this is not true for an uninstrumented run. An example is the method
of an XML parser that reads the next character. Such a method returns very quickly, but
may be invoked millions of times in a short time span.

This problem is not present when the method call recording type is set to sampling.
However, sampling does not provide invocation counts, only shows longer method calls,
and several views do not have their full functionality when sampling is used.

To alleviate the problem with instrumentation, JProfiler has a mechanism called
auto-tuning. From time to time, the profiling agent checks for methods with high
instrumentation overhead and transmits them to the JProfiler GUI. In the status bar, an
entry alerting to the presence of overhead hot spots will be shown.

You can click on that status bar entry to review the detected overhead hot spots and
choose to accept them into the list of ignored methods. These ignored methods will then
not be instrumented. When a session is terminated, the same dialog is shown.

After you apply the new profiling settings, all ignored methods will be missing in the call
tree. Their execution time will be added to the self-time of the calling method. If later on

173

you find that some ignored methods are indispensable in the profiling views, you can
remove them in the Ignored Methods tab in the session settings.

The default configuration for ignored methods includes the call site classes for Groovy
that are used for the dynamic method dispatch, but make it difficult to follow the actual
call chain.

If you want to manually add ignored methods, you can do so in the session settings, but
a much easier way is to select a method in the call tree and invoke the Ignore Method
action from the context menu.

In the filter settings, you can also ignore entire classes or packages by setting the type of
the filter entry to "Ignored". The Add Filter From Selection menu contains actions that
depend on the selected node and suggest ignoring the class or packages up to the
top-level package. Depending on whether the selected node is compact-profiled or
profiled, you also see actions for changing the filter to the opposite type.

174

In case you don't want to see any messages about auto-tuning, you can disable it in the
profiling settings. Also, you can configure the criteria for determining an overhead hot
spot. A method is considered an overhead hot spot if both of the following conditions are
met:

• The total time of all its invocations exceeds a threshold in per mille of the entire total
time in the thread

• Its average time is lower than an absolute threshold in microseconds

175

B.2 Async And Remote Request Tracking
Asynchronous execution of tasks is a common practice, both in plain Java code and even
more so with reactive frameworks. Code that is adjacent in your source file is now executed
on two or more different threads. For debugging and profiling, these thread changes
present two problems: On the one hand, it is not clear how expensive an invoked operation
is. On the other hand, an expensive operation cannot be traced back to the code that
caused its execution.

JProfiler provides different solutions to this problem depending on whether the call stays
in the same JVM or not. If the async execution takes place in the same JVM that invokes
it, the "Inline Async Executions" call tree analysis [p. 191] calculates a single call tree that
contains both call sites as well as execution sites. If a request to a remote JVM is made,
the call tree [p. 54] contains hyperlinks to call sites and execution sites, so you can
seamlessly navigate both ways between different JProfiler top-level windows that show
profiling sessions for the involved JVMs.

Enabling Async And Remote Request Tracking

Async mechanisms can be implemented in various ways, and the semantics of starting
tasks on a separate thread or in a different JVM cannot be detected in a generic way.
JProfiler explicitly supports several common asynchronous and remote request
technologies. You can enable or disable them in the request tracking settings. By default,
request tracking is not enabled. It is also possible to configure request tracking in the
session startup dialog that is shown directly before a session is started.

In JProfiler's main window, the status bar indicates if some async and remote request
tracking types are enabled and gives you a shortcut to the configuration dialog.

JProfiler detects if an async request tracking type that is not activated is used in the profiled
JVM and shows you a notification icon next to the async and remote request tracking
icon in the status bar. By clicking on the notification icon, you can activate the detected

176

tracking types. Async and remote request tracking can produce substantial overhead
and should only be activated if necessary.

Async Tracking

If at least one async tracking type is activated, the call tree and hot spot views for CPU,
allocation and probe recording show information about all activated tracking types
together with a button that calculates the "Inline Async Executions" call tree analysis. In
the result views of that analysis, the call tree of all async executions is connected with the
call sites by way of an "async execution" node. By default, the async execution
measurements are not added to the ancestor nodes in the call tree. Because it is
sometimes useful to see aggregated values, a checkbox at the top of the analysis allows
you to do that where appropriate.

The simplest way to offload a task on another thread is to start a new thread. With JProfiler,
you can follow a thread from its creation to the execution site by activating the "Thread
start" request tracking type. However, threads are heavy-weight objects and are usually
reused for repeated invocations, so this request tracking type is more useful for debugging
purposes.

The most important and generic way to start tasks on other threads uses executors in the
java.util.concurrentpackage. Executors are also the basis for many higher-level third
party libraries that deal with asynchronous execution. By supporting executors, JProfiler
supports a whole class of libraries that deal with multi-threaded and parallel programming.

Apart from the generic cases above, JProfiler also supports two GUI toolkits for the JVM:
AWT and SWT. Both toolkits are single-threaded, which means that there is one special
event dispatch thread that can manipulate GUI widgets and perform drawing operations.
In order not to block the GUI, long-running tasks have to be performed on background
threads. However, background threads often need to update the GUI to indicate progress
or completion. This is done with special methods that schedule a Runnable to be executed
on the event dispatch thread.

In GUI programming, you often have to follow multiple thread changes in order to connect
cause and effect: The user initiates an action on the event dispatch thread, which in turn
starts a background operation via an executor. After completion, that executor pushes

177

an operation to the event dispatch thread. If that last operation creates a performance
problem, it's two thread changes away from the originating event.

Finally, JProfiler supports Kotlin coroutines (1), Kotlin's multi-threading solution that is
implemented for all Kotlin backends. The async execution itself is the point where a
coroutine is launched. The dispatching mechanism of Kotlin coroutines is flexible and can
actually involve starting on the current thread, in which case the "async execution" node
has an inline part that is then reported separately in the text of the node.

Suspending methods can interrupt the execution which is then possibly resumed on
different threads. Methods where suspension was detected have an additional "suspend"
icon with a tooltip that shows the number of actual calls versus the semantic invocations
of the method. Kotlin coroutines can be suspended deliberately, but because they are not
bound to threads, the waiting time will not appear anywhere in the call tree. To see the
total time taken until a coroutine execution is finished, a "suspended" time node is added
below the "async execution" node that captures the entire suspension time for the coroutine.
Depending on whether you are interested in the CPU time or in the wall clock time of async
executions, you can add or remove those nodes on the fly with the "Show suspended
times" check box at the top of the analysis.

Tracking unprofiled call site

By default, both executor and Kotlin coroutine tracking only track async executions where
the call site is in a profiled class. This is because frameworks and libraries can use these
async mechanisms in a way that is not directly related to the execution of your own code,
and the added call and execution sites would just add overhead and distraction. However,
there are use cases for tracking unprofiled call sites. For example, a framework can start
a Kotlin coroutine on which your own code is then executed.

If such call sites in unprofiled classes are detected, the tracking information in the call
tree and hot spot views shows a corresponding notification message. In live sessions, you

(1) https://kotlinlang.org/docs/reference/coroutines.html

178

https://kotlinlang.org/docs/reference/coroutines.html

can switch on tracking for unprofiled call sites separately for executor and Kotlin coroutine
tracking directly from those views. These options can be changed at any time on the "CPU
profiling" step of the session settings dialog.

It is important to understand that Kotlin coroutines can only be tracked when their launch
happened while CPU recording was active. If you start CPU recording later on, the async
executions from Kotlin coroutines cannot be inlined. JProfiler will notify you just like for the
detection of call sites in unprofiled classes. If you need to profile long-lived coroutines
that are started at the beginning of the application, then using the attach mode is not an
option. In that case, launch the JVM with the -agentpath VM parameter [p. 12] and start
CPU recording at startup.

Remote Request Tracking

For selected communication protocols, JProfiler is able to insert meta-data and track
requests across JVM boundaries. The supported technologies are:

• HTTP: HttpURLConnection, java.net.http.HttpClient, Apache Http Client 4.x, Apache Async
Http Client 4.x, OkHttp 3.9+ on the client side, any Servlet-API implementation or Jetty
without Servlets on the server side

• Additional support for async JAX-RS calls for Jersey Async Client 2.x, RestEasy Async
Client 3.x, Cxf Async Client 3.1.1+

• Web services: JAX-WS-RI, Apache Axis2 and Apache CXF
• RMI
• gRPC
• Remote EJB calls: JBoss 7.1+ and Weblogic 11+

In order to be able to follow the request in JProfiler you have to profile both VMs and open
them at the same time in separate JProfiler top-level windows. This works with both live
sessions as well as with snapshots. If the target JVM is not currently open, or if CPU recording
was not active at the time of the remote call, clicking on a call site hyperlink will show an
error message.

When tracking remote requests, JProfiler makes call sites and execution sites explicit in
the call trees of the involved JVMs. A call site in JProfiler is the last profiled method call
before a recorded remote request is performed. It starts a task at an execution site that
is located in a different VM. JProfiler allows you to jump between call sites and execution
sites by using hyperlinks that are shown in the call tree view.

179

Call sites have the same identity with respect to remote request tracking for all threads.
This means that when you jump from call sites to execution sites and vice versa, there is
no thread-resolution and the jump always activates the "All thread groups" as well as the
"All thread states" thread status selection, so that the target is guaranteed to be part of
the displayed tree.

Call sites and execution sites are in a 1:n relationship. A call site can start remote tasks on
several execution sites, especially if they are in different remote VMs. In the same VM,
multiple execution sites for a single call site are less common because they would have
to occur at different call stacks. If a call site calls more than one execution site, you can
choose one of them in a dialog.

An execution site is a synthetic node in the call tree that contains all executions that were
started by one particular call site. The hyperlink in the execution site node takes you back
to that call site.

If the same call site invokes the same execution site repeatedly, the execution site will
show the merged call tree of all its invocations. If that is not desired, you can use the
exceptional methods [p. 197] feature to split the call tree further, as shown in the screen
shot below.

180

Unlike execution sites which are only referenced from a single call site, call sites themselves
can link to several execution sites. With the numeric ID of a call site, you can recognize the
same call site if you see it referenced from different execution sites. In addition, a call site
displays the ID of the remote VM. The ID of the profiled VM can be seen in the status bar.
It is not the unique ID that JProfiler manages internally, but a display ID that starts at one
and is incremented for each new profiled VM that is opened in JProfiler.

181

B.3 Viewing Parts Of The Call Tree
Call trees often contain too much information. When you want to reduce the displayed
detail, there are several possibilities: you can restrict the displayed data to one particular
subtree, remove all unwanted data, or use a more coarse-grained filter for displaying
method calls. All of these strategies are supported by JProfiler.

Setting call tree roots

If you profile a use case that consists of multiple tasks that run sequentially, each subtree
can be analyzed separately. Once you have found the entry point to such a subtask, the
surrounding call tree is only a distraction and the timing percentages in the subtree
inconveniently refer to the root of the entire call tree.

To focus on a particular subtree, JProfiler offers the Set As Root context action in the call
tree and the allocation call tree views.

After setting a call tree root, information about the selected root is shown at the top of the
view. A single scrollable label shows the last few stack elements leading up to the root
and a detail dialog with the entire stack of the call tree root can be displayed by clicking
on the Show More button.

182

When you use the set root action recursively, the call stack prefixes will simply be
concatenated. To go back to the previous call tree, you can either use the Back button of
the call tree history to undo one root change at a time, or the Reset Root And Show All
action in the context menu to go back to the original tree in a single step.

What is most important about changing the call tree root, is that the hot spots view will
show data that is calculated for the selected root only, and not for the entire tree. At the
top of the hot spots view, you will see the current call tree root just like in the call tree view
to remind of you the context of the displayed data.

Removing parts of the call tree

Sometimes it's helpful to see how the call tree would look like if a certain method was not
present. For example, this can be the case when you have to fix several performance
problems in one go, because you are working with a snapshot from a production system
that cannot be iterated quickly like in your development environment. After solving the

183

main performance problem, you then want to analyze the second one, but that can only
be seen clearly if the first one is eliminated from the tree.

Nodes in the call tree can be removed together with their subtrees by selecting them and
hitting the Delete key or by choosing Remove Selected Subtree from the context menu.
Times in ancestor nodes will be corrected accordingly as if the hidden nodes did not exist.

There are three removal modes. With the Remove all invocations mode, JProfiler searches
for all invocations of the selected method in the entire call tree and removes them together
with their entire subtrees. The Remove subtree only option only removes the selected
subtree. Finally, the Set self-time to zero leaves the selected node in the call tree bug sets
its self-time to zero. This is useful for container nodes like Thread.run that may include a
lot of time from unprofiled classes.

Just like for the Set As Root action, removed nodes influence the hot spots view. In this
way, you can check what the hot spots would look like if those methods were optimized
to the point of not being important contributions.

When you remove a node, the header area of both the call tree and the hot spots views
will show a line with the count of the removed nodes and a Restore Removed Subtrees
button. Clicking on that button will bring up a dialog where you can select removed
elements that should be shown again.

184

Call tree view filters

The third feature in the call that has an influence on the displayed data in the hot spots
view is the view filter. When you change your call tree filters, it has a large effect on the
calculated hot spots [p. 54]. To emphasize this interdependence with the call tree view,
the hot spots view shows the call tree view filter in a line above the view together with a
button to remove the additional filters.

Setting a call tree root, removing parts of the call tree and view filters can be used together,
with the limitation that view filters have to be set last. As soon as view filters are configured
in the call tree, the Set As Root and >Remove Selected Subtree actions do not work anymore.

Interaction with the call graph

Invoking the Show Graph action in either the call tree or the hot spots view will show a
graph that is limited to the same call tree root, does not include the removed methods
and uses the configured call tree view filters. At the top of the graph, the information about
these changes is displayed in a similar form as in the call tree.

185

When creating a new graph in the graph view itself, check boxes in the wizard let you
choose which of these call tree adjustment features should be taken into account for the
calculation of the call graph. Each check box is only visible if the corresponding feature
is currently used in the call tree view.

186

B.4 Splitting The Call Tree
Call trees are cumulated for repeated invocations of the same call stacks. This is necessary
because of memory overhead and the need for consolidating data in order to make it
understandable. However, sometimes you want to break the cumulation at selected points
so you can view parts of the call tree separately.

JProfiler has a concept of splitting the call tree with special nodes that are inserted into
the call stack and show semantic information that has been extracted from the method
invocation above the inserted node. These splitting nodes allow you to see additional
payload information directly inside the call tree and to analyze their contained subtrees
separately. Each splitting type can be merged and unmerged on the fly with the actions
in the context menu and has a cap on the total number of splitting nodes so that the
memory overhead is bounded.

Call tree splitting and probes

Probes [p. 105] can split the call tree according to the information that they collect at
selected methods of interest. For example, the "HTTP server" probe splits the call tree for
each different URL. The splitting in this case is highly configurable, so you can include only
the desired parts of the URL, some other information from the servlet context or even
produce multiple splitting levels.

If you write your own probe, you can split the call tree in the same way, with both the
embedded [p. 169] and the injected [p. 164] custom probe systems.

Splitting methods with scripts

The same splitting functionality that is available for probes can be used directly in the call
tree, with the Split Method With a Script action. In the screen shot below, we want to split
the call tree for a JMS message handler to see the handling of different types of messages
separately.

187

Instead of writing a probe, you just enter a script that returns a string. The string is used
for grouping the call tree at the selected method and is displayed in the splitting node. If
you return null, the current method invocation is not split and added to the call tree as
usual.

The script has access to a number of parameters. It is passed the class of the selected
method, the instance for non-static methods, as well as all method parameters. In addition,
you get a ScriptContext object that can be used to store data. If you need to recall some
values from previous invocations of the same script, you can invoke the getObject/
putObject and getLong/putLong methods in the context. For example, you may want to
split only the first time a particular value for method parameter is seen. You could then
use

188

if (scriptContext.getObject(text) != null) {
scriptContext.putObject(text);
return text;

} else {
return null;

}

as part of your splitting script.

Splitting nodes are inserted below the selected method. For the example in the screen
shot above, we now see the handling code for each JMS message destination separately.

The splitting location is bound to a method, not to the selected call stack. If the same
method is present somewhere else in the call tree, it will be split as well. If you use the
Merge splitting level action, all splits will be merged into a single node. That node gives
you a chance to unmerge the split again.

If you produce too many splits, a node labeled capped method splits will contain all further
split invocations, cumulated into a single tree. With the hyperlink in the node, you can reset

189

the cap counter and record some more splitting nodes. For a permanent increase in the
maximum number of splits, you can increase the cap in the profiling settings.

To edit split methods after you have created them, go to the session settings dialog. If you
don't need a particular split method anymore, but want to keep it for future use, you can
disable it with the checkbox in front of the script configuration. This is better than just
merging it in the call tree, because the recording overhead may be significant.

190

B.5 Call Tree Analyses
The call tree [p. 54] shows the actual call stacks that JProfiler has recorded. When analyzing
the call tree, there are a couple of transformations that can be applied to the call tree to
make it easier to interpret. These transformations can be time-consuming and change
the output format in a way that is incompatible with the functionality in the call tree view,
so new views with the results of the analyses are created.

To perform such an analysis, select a node in the call tree view and choose one of the call
tree analysis actions from the tool bar or the context menu.

A nested view will be created below the call tree view. If you invoke the same analysis
action again, the analysis will be replaced. To keep multiple analysis results at the same
time, you can pin the result view. In that case, the next analysis of the same type will create
a new view. For pinned views, a rename button is shown at the top of the view that can
be used to change the name that is displayed in the view selector on the left.

In live sessions, the result views are not updated together with the call tree and show data
from the time when the analysis was made. To re-calculate the analysis for the current
data, use the reload action. If the call tree itself has to be re-calculated, like in the allocation
tree with disabled auto-updates, the reload action takes care of that as well.

Call tree snapshots

The "Create Call Tree Snapshot" analysis simply creates a static copy of the current call
tree. This is useful for comparing different use cases without saving and opening JProfiler
snapshots. Also, it offers a way to work with a frozen copy of the call tree while it is still
being recorded.

191

The "Create Call Tree Snapshot" analysis is only available in the "Call tree" view in the "CPU
Views" section. If you pin the call tree snapshot view, you can have multiple call tree
snapshots at the same time. Unlike the other analyses, call tree snapshots are saved in
a JProfiler snapshot because they constitute separate sets of data.

In addition to the call tree analyses that are available for the call tree view, call tree
snapshots also have a "Calculate Hot Spots" action that calculates the hot spots of the
parent view, similar to the "Hot spots" view in the "CPU views" section. All analyses that are
accessible from views nested below a call tree snapshot view, work with data from their
parent call tree snapshot, rather than with data from the top level call tree view.

Collapsing recursions

A programming style that makes use of recursions leads to call trees that are difficult to
analyze. The "Collapse recursions" call tree analysis calculates a call tree where all
recursions are folded. The parent node of the current selection in the call tree serves as
the call tree root [p. 182] for the analysis. To analyze the entire call tree, select one of the
top-level nodes.

192

A recursion is detected when the same method was already called higher up in the call
stack. In that case, the subtree is removed from the call tree and stitched back to the first
invocation of that method. That node in the call tree is then prefixed with an icon whose
tool tip shows the number of recursions. Below that node, stacks from different depths are
merged. The number of merged stacks is shown in the tool tip as well. The total number
of collapsed recursions is shown in the header, above the information about call tree
parameters that were set for the original call tree.

For a simple recursion, the number of merged stacks is the number of recursions plus one.
So a node whose recursion tool tip shows "1 recursion" would contain a tree with nodes
that show "2 merged stacks" in their recursion tool tip. In more complex cases, recursions
are nested and produce overlapping merged call trees, so that the number of merged
stacks varies from stack depth to stack depth.

At the point where a subtree is removed from the call tree to be merged higher up, a
special "moved nodes" placeholder is inserted.

Analyzing cumulated outgoing calls

In the call tree, you can see the outgoing calls for a selected method, but only for one
particular call stack where that method has been invoked. The same method of interest
may have been invoked in different call stacks, and it's often useful to analyze a cumulated
call tree of all those invocations in order to get better statistics. The "Calculate cumulated
outgoing calls" analysis shows a call tree that sums all outgoing calls of a selected method,
regardless of how the method was invoked.

193

For the selected method, JProfiler collects all its top-level invocations without considering
recursive calls and cumulates them in the result tree. The header shows how many such
top-level call sites were summed in that process.

At the top of the view, there is a checkbox that allows you to collapse recursions in the
result tree, similar to the "Collapse recursions" analysis. If recursions are collapsed, the top
level node and the first level of outgoing calls show the same numbers as the method
call graph.

Calculating backtraces

The "Calculate backtraces" analysis complements the "Calculate cumulated outgoing
calls" analysis. Like the latter, it sums all top-level calls of the selected method without
considering recursive calls. However, instead of showing outgoing calls, it shows the back
traces that contribute to the invocations of the selected method. The call originates at
the deepest node and progresses toward the selected method at the top.

This analysis is similar to the hot spots view, only that by default it sums total times instead
of self-times for the selected method, and the hot spots view only shows methods whose
self-time is a significant fraction of the total time. At the top of the view there is a radio
button group labeled Summation mode that can be set to Self times. With that selection,

194

the summed values for the selected method match that of the default mode in the hot
spots view.

In the back traces, the invocation counts and times on the back trace nodes are only
related to the selected method. They show how much the invocations along that particular
call stack have contributed to the values of the selected method. Similar to the "Calculate
cumulated outgoing calls" analysis, you can collapse recursions and the first level in the
backtraces is equivalent to the incoming calls in the method call graph.

Call tree analyses in the call graph

In the call graph, each method is unique while in the call tree methods can occur in multiple
call stacks. For one selected method, the "Calculate cumulated outgoing calls" and the
"Calculate backtraces" analyses are a bridge between the viewpoints of the call tree and
the call graph. They put the selected method in the center and show the outgoing and
incoming calls as trees. With the Show Call Graph action, you can switch to the full graph
at any time.

Sometimes, you want to switch the perspective in the opposite direction and change from
graph to a tree view. When you are working in the call graph, you can show the cumulated
outgoing calls and the backtraces as trees for any selected node in the graph with the
same call tree analyses as in the call graph.

In the IntelliJ IDEA integration [p. 142], the call graph that is shown in the gutter of the editors
contains actions to show these trees directly.

Showing classes for allocations

A little bit different from the previous call tree analyses is the "Show classes" analysis in
the allocation call tree and the allocation hot spots views. It does not transform the call
tree to another tree, but shows a table with all allocated classes. The result view is similar
to the recorded objects view [p. 72], but restricted for a particular allocation spot.

195

In the analysis result views that show call trees, both the "Calculate cumulated outgoing
calls" and the "Calculate backtraces to selected method" analyses are available. Invoking
them creates new top-level analyses with independent parameters. Any call tree removals
from the previous analysis result view are not reflected in the new top-level analysis.

The Show Classes action, on the other hand, does not create a new top-level analysis
when used from a call tree analysis result view. Instead, it creates a nested analysis that
is two levels below the original view.

196

C Advanced CPU Analysis Views

C.1 Outlier Detection And Exceptional Method Recording
In some situations, it's not the average invocation time of a method that is a problem, but
rather that a method misbehaves every once in a while. In the call tree, all method
invocations are cumulated, so a frequently called method that takes 100 times as long as
expected once every 10000 invocations will not leave a distinct mark in the total times.

To tackle this problem, JProfiler offers the outlier detection view and the exceptional method
recording feature in the call tree.

Outlier detection view

The outlier detection view shows information about the call durations and invocation
counts of each method together with the maximum time that was measured for a single
call. The deviation of the maximum call time from the average time shows whether all
calls durations are in a narrow range or if there are significant outliers. The outlier coefficient
that is calculated as

(maximum time - average time) / average time

can help you to quantify methods in this respect. By default, the table is sorted such that
the methods with the highest outlier coefficient are at the top. Data in the outlier detection
view is available if CPU data has been recorded.

To avoid excessive clutter from methods that are only called a few times and from methods
that are extremely short running, lower thresholds for the maximum time and the invocation
count can be set in the view settings. By default, only methods with a maximum time of
more than 10 ms and an invocation count greater than 10 are shown in the outlier statistics.

Configuring exceptional method recording

Once you have identified a method that suffers from exceptional call durations, you can
add it as an exceptional method in the context menu. The same context menu action is
also available in the call tree view.

197

When you register a method for exceptional method recording, a few of the slowest
invocations will be retained separately in the call tree. The other invocations will be merged
into a single method node as usual. The number of separately retained invocations can
be configured in the profiling settings. By default, it is set to 5.

When discriminating slow method invocations, a certain thread state has to be used for
the time measurement. This cannot be the thread status selection in the CPU views,
because that is just a display option and not a recording option. By default, the wall clock
time is used, but a different thread status can be configured in the profiling settings. The
same thread state is used for the outlier detection view.

In the session settings, you can remove exceptional methods or add new ones without
the context of the call tree or the outlier detection view. Also, the exceptional method
configuration provides the option to add exceptional method definitions for well-known
systems, like the AWT and JavaFX event dispatch mechanisms where exceptionally
long-running events are a major problem.

198

Exceptional methods in the call tree

Exceptional method runs are displayed differently in the call tree view.

The split method nodes have modified icons and show additional text:

• [exceptional run]

Such a node contains an exceptionally slow method run. By definition, it will have an
invocation count of one. If many other method runs are slower later on, this node may
disappear and be added to the "merged exceptional runs" node depending on the
configured maximum number of separately recorded method runs.

• [merged exceptional runs]

Method invocations that do not qualify as exceptionally slow are merged into this node.
For any call stack, there can only be one such node per exceptional method.

• [current exceptional run]

199

If an invocation was in progress while the call tree view was transmitted to the JProfiler
GUI, it was not yet known whether the invocation was exceptionally slow or not. The
"current exceptional run" shows the separately maintained tree for the current invocation.
After the invocation completes, it will either be maintained as a separate "exceptional
run" node or be merged into the "merged exceptional runs" node.

Like for call tree splitting by probes [p. 105] and split methods [p. 187], an exceptional method
node has a Merge Splitting Level action in the context menu that lets you merge and
unmerge all invocations on the fly.

200

C.2 Complexity Analysis
The complexity analysis view allows you to investigate the algorithmic complexity of
selected methods depending on their method parameters.

To refresh the details on big O notation, an introduction to algorithmic complexity (1) and
a comparative guide to complexities for common algorithms (2) are recommended
readings.

First, you have to select one or more methods that should be monitored.

For each method, you can then enter a script whose return value of type long is used as
the complexity for the current method call. For example, if one of the method parameters
of type java.util.Collection is named inputs, the script could be inputs.size().

Complexity recording is independent of CPU recording. You can start and stop complexity
recording directly in the complexity analysis view or by using a recording profile or a trigger
action [p. 28]. After recording has been stopped, a graph with the results is displayed
plotting the complexities on the x-axis against the execution times on the y-axis. To reduce
memory requirements, JProfiler can combine different complexities and execution times
into common buckets. The drop-down at the top allows you to switch between the different
configured methods.

(1) https://rob-bell.net/2009/06/a-beginners-guide-to-big-o-notation/
(2) https://bigocheatsheet.com/

201

https://rob-bell.net/2009/06/a-beginners-guide-to-big-o-notation/
https://bigocheatsheet.com/

The graph is a bubble chart, where the size of each data point is proportional to the number
of measurements in it. If all measurements are distinct, you will see a regular scatter chart.
In the other extreme, if all method invocations have the same complexity and execution
time, you will see a single large circle.

If there are at least 3 data points, a curve fit with common complexities is shown. JProfiler
tries curve fits from several common complexities and initially shows you the best fit. The
drop-down for the curve fits allows you to show other curve fit models as well. The R2 value
embedded in the description of the curve fit shows you how good the fit is. The models in
the drop-down are sorted in descending order with respect to R2, so the best model is
always the first item.

Note that R2 can be negative, because it is just a notation and not really the square of
anything. Negative values indicate a fit that is worse than a fit with a constant line. The
constant line fit always has an R2 value of 0 and a perfect fit has a value of 1.

You can export the parameters of the currently displayed fit by choosing the "Properties"
option in the export dialog. For automated analysis in a quality assurance environment,
the command line export [p. 257] supports the properties format as well.

202

C.3 Call Tracer
Method call recording in the call tree cumulates calls with the same call stacks. Keeping
precise chronological information is usually not feasible because the memory requirements
are huge and the volume of the recorded data makes any interpretation quite difficult.

However, in limited circumstances, it makes sense to trace calls and keep the entire
chronological sequence. For example, you may want to analyze the precise interlacing of
method calls of several cooperating threads. A debugger cannot step through such a use
case. Alternatively, you would like to analyze a series of method invocations, but be able
to go back and forth and not just see them once like in the debugger. JProfiler provides
this functionality with the call tracer.

The call tracer has a separate recording action that can be activated in the call tracer
view, with a trigger [p. 28] or with the profiling API [p. 130]. To avoid problems with excessive
memory consumption, a cap is set on the maximum number of collected call traces. That
cap is configurable in the view settings. The rate of collected traces heavily depends on
your filter settings.

Call tracing only works when the method call recording type is set to instrumentation.
Sampling does not keep track of single method calls, so it is technically not possible to
collect call traces with sampling. Calls into compact-filtered classes are recorded in the
call tracer, just like in the call tree. If you just want to focus on your own classes, you can
exclude these calls in the view settings.

The traced method calls are displayed in a tree with three levels that make it easier to
skip related calls by collapsing them. The three groups are threads, packages and

classes. Each time the current value for any of these groups changes, a new grouping
node is created.

At the lowest level there are method entry and method exit nodes. Below the table
with the call traces, the stack trace of the currently selected method trace is shown. If call
traces into other methods have been recorded from the current method or if another
thread interrupts the current method, the entry and exit nodes for the that method will not
be adjacent. You can navigate on the method level only by using the Previous Method
and Next Method actions.

203

The timing that is displayed on the traces and all grouping nodes refers to the first trace
by default, but can be changed to show relative times since the previous node. If the
previous node is the parent node, that difference will be zero. Also available is the option
to show relative times with respect to the previous node of the same type.

Even with appropriate filters, a huge number of traces can be collected in a very short
time. To eliminate traces that are of no interest, the call tracer allows you to quickly trim
the displayed data. For example, certain threads might not be relevant or traces in certain
packages or classes might not be interesting. Also, recursive method invocations can
occupy a lot of space and you might want to eliminate those single methods only.

You can hide nodes by selecting them and pressing the delete key. All other instances
of the selected nodes and all associated child nodes will be hidden as well. At the top of
the view, you can see how many call traces out of all the recorded traces are still shown.
To show hidden nodes again, you can click on the Show Hidden tool bar button.

204

C.4 JavaScript XHR Origin Tracking
With JavaScript XHR origin tracking, you can split servlet invocations for different stack
traces in the browser during XMLHttpRequest (1) or Fetch (2) requests, so you can better
correlate the activity in the profiled JVM with actions in the browser. in the following, "XHR"
designates both the XMLHttpRequest and the Fetch mechanisms.

Browser plugin

To use this feature, you have to use Google Chrome (3) as the browser and install the
JProfiler origin tracker extension (4).

The Chrome extension adds a button with a JProfiler icon to the tool bar that starts
tracking. When you start tracking, the extension will intercept all XHR calls and report them
to a locally running JProfiler instance. As long as tracking has not been started, JProfiler
will show an information page that tells you how to set up JavaScript XHR origin tracking.

When tracking is activated, the JProfiler extension will ask you to reload the page. This is
necessary for adding instrumentation. If you choose to not reload the page, event detection
may not work.

(1) https://xhr.spec.whatwg.org/
(2) https://fetch.spec.whatwg.org/
(3) http://www.google.com/chrome/
(4) https://chrome.google.com/webstore/detail/jprofiler-origin-tracker/
mnicmpklpjkhohdbcdkflhochdfnmmbm

205

https://xhr.spec.whatwg.org/
https://fetch.spec.whatwg.org/
http://www.google.com/chrome/
https://chrome.google.com/webstore/detail/jprofiler-origin-tracker/mnicmpklpjkhohdbcdkflhochdfnmmbm

The tracking status is persistent on a per-domain basis. If you restart the browser while
tracking is active and visit the same URL, tracking will automatically be enabled, without
the need to reload the page.

JavaScript XHR tree

If the XHR calls are handled by a JVM that is profiled by an active profiling session in
JProfiler, the JavaScript XHR view will show a cumulated call tree of these calls. If the view
remains empty, you can switch the "Scope" at the top of the view to "All XHR calls" to check
if any XHR calls have been made.

Javascript call stack nodes include information on the source file and the line number.
The function where the XHR call is made has a special icon and adjacent hyperlink in
case the XHR call was handled by the profiled JVM. The hyperlink will take you to the
Javascript splitting node in the call tree view [p. 54] where you can see the server side
call tree that was responsible for handling requests of this type.

At the top of the tree you find browser event nodes that show event name and element
name together with important attributes that help you pin down the source of the event.
Not all requests have an associated event.

The extension is aware of several popular JavaScript frameworks and walks the ancestor
hierarchy between the target node of an event up to the node where the event listener is
located, looking for attributes that are suitable for display and splitting the call tree. Failing
to find framework-specific attributes, it stops at an id attribute. In the absence of an ID,
it searches for "control elements" like a, button or input. All failing, the element where the
event listener is registered will be shown.

In some cases, the automatic detection of interesting attributes may not be suitable and
you may prefer a different call tree splitting. For example, some frameworks assign
automatic IDs, but it would be more readable to group all elements together with a
semantic description of the action. To achieve a different call tree splitting, add the HTML
attribute

data-jprofiler="..."

to the target element or an element between the target and the location of the event
listener. The text in that attribute will be used for splitting and other attributes will be
ignored.

206

Call tree splitting

In the call tree view, XHR calls will split the call tree for each separate combination of
browser event and call stack. The splitting nodes show information about the browser
event. If no event is in progress, like in a call to setTimeout(), the last few stack frames
are displayed inline.

The "show more" hyperlink on these nodes opens the same detail dialog that is opened
by the View->Show Node Details action. For JavaScript splitting nodes, the detail dialog
does not show the text of the node, but the entire browser call stack. To inspect the call
stack of other JavaScript splitting nodes, leave the non-modal detail dialog open and
click on those nodes. The detail dialog will update its contents automatically.

207

D Heap Walker Features In Detail

D.1 HPROF And PHD Heap Snapshots
The HotSpot JVM and the Android Runtime both support heap snapshots in the HPROF
format, The IBM J9 JVM writes such snapshots in the PHD format. PHD files do not contain
garbage collector roots, so JProfiler simulates classes as roots. Finding class loader memory
leaks may be difficult with a PHD file.

Native heap snapshots can be saved without the profiling agent and incur a lower overhead
than JProfiler heap snapshots, because they are saved without the constraints of a general
purpose API. On the flip side, the native heap snapshots support less functionality than
JProfiler heap snapshots. For example, allocation recording information is not available,
so you cannot see where objects have been allocated. HPROF and PHD snapshots can be
opened in JProfiler withSession->Open Snapshot, just like you would open a JProfiler
snapshot. Only the heap walker will be available, all other sections will be grayed out.

In a live session, you can create and open an HPROF/PHD heap snapshot by invoking
Profiling->Save HPROF/PHD Heap Snapshot. For offline profiling [p. 130], there is a "Create
an HPROF heap dump" trigger action. It is usually used with the "Out of memory exception"
trigger to save an HPROF snapshot when an OutOfMemoryError is thrown.

This corresponds to the VM parameter (1)

-XX:+HeapDumpOnOutOfMemoryError

that is supported by HotSpot JVMs.

An alternative way to extract an HPROF heap dump from a running system is via the
command line tool jmap that is part of the JRE. Its invocation syntax

jmap -dump:live,format=b,file=<filename> <PID>

(1) http://docs.oracle.com/javase/9/troubleshoot/command-line-options1.htm#JSTGD592

208

http://docs.oracle.com/javase/9/troubleshoot/command-line-options1.htm#JSTGD592

is difficult to remember and requires you to use the jps executable to find out the PID first.
JProfiler ships with an interactive command line executable bin/jpdump that is much
more convenient. It lets you select a process, can connect to processes running as a
service on Windows, has no problems with mixed 32-bit/64-bit JVMs and auto-numbers
HPROF snapshot files. Execute it with the -help option to get more information.

Taking HPROF heap snapshots without loading the profiling agent is also supported in the
JProfiler GUI. When attaching to a process, locally or remotely, you always have the
possibility to just take an HPROF heap snapshot.

HPROF snapshots can contain thread dumps. When an HPROF snapshot was saved as a
consequence of an OutOfMemoryError, the thread dump may be able to convey what
part of the application was active at the time of the error. The thread that triggered the
error is marked with a special icon.

209

D.2 Minimizing Overhead In The Heap Walker
For small heaps, taking a heap snapshot takes a couple of seconds, but for very large
heaps, this can be a lengthy process. Insufficient free physical memory can make the
calculations a lot slower. For example, if the JVM has a 50 GB heap and you are analyzing
the heap dump on your local machine with only 5 GB of free physical memory, JProfiler
cannot hold certain indices in memory and the processing time increases
disproportionately.

Because JProfiler mainly uses native memory for the heap analysis, it is not recommended
to increase the -Xmx value in the bin/jprofiler.vmoptions file unless you have
experienced an OutOfMemoryError and JProfiler has instructed you to make such a
modification. Native memory will be used automatically if it is available. After the analysis
has completed and the internal database has been built, the native memory will be
released.

For a live snapshot, the analysis is calculated immediately after taking the heap dump.
When you save a snapshot, the analysis is saved to a directory with the suffix .analysis
next to the snapshot file. When you open the snapshot file, the heap walker will be available
very quickly. If you delete the .analysisdirectory, the calculation will be performed again
when the snapshot is opened, so if you send the snapshot to somebody else, you don't
have to send the analysis directory along with it.

If you want to save memory on disk or if the generated .analysis directories are
inconvenient, you can disable their creation in the general settings.

HPROF snapshots and JProfiler snapshots that were saved with offline profiling [p. 130] do
not have an .analysis directory next to them, because the analysis is performed by the
JProfiler UI and not by the profiling agent. If you do not want to wait for the calculation
when opening such snapshots, the jpanalyze command line executable can be used to
pre-analyze [p. 257] snapshots.

It is advisable to open snapshots from writable directories. When you open a snapshot
without an analysis, and its directory is not writable, a temporary location is used for the
analysis. The calculation then has to be repeated each time the snapshot is opened.

A big part of the analysis is the calculation of retained sizes. If the processing time is too
long and you don't need the retained sizes, you can disable their calculation in the overhead

210

options of the heap walker options dialog. In addition to retained sizes, the "Biggest objects"
view will not be available either in that case. Not recording primitive data makes the heap
snapshot smaller, but you will not be able to see them in the reference views. The same
options are presented when opening snapshots if you choose Customize analysis in the
file chooser dialog.

211

D.3 Filters And Live Interactions
When looking for objects of interest in the heap walker, you often arrive at an object set
that has too many instances of the same class in it. To further trim the object set according
to your particular focus, the selection criteria could then involve their properties or
references. For example, you may be interested in HTTP session objects that contain a
particular attribute. In the merged outgoing reference view of the heap walker you can
perform selection steps that involve chains of references for the entire object set.

However, the outgoing references view where you see individual objects offers much more
powerful functionality to make selection steps that constrain references and primitive
fields.

When you select a top-level object, a primitive value or a reference in the outgoing
references view, the Apply Filter->By Restricting The Selected Value action becomes
enabled. Depending on the selection, the filter value dialog offers different options.
Whatever options you configure, you always implicitly add the constraint that objects in
the new object set must have outgoing reference chains like the selected one. Filters
always work on the top-level objects by restricting the current set of objects into a possibly
smaller set.

Constraining primitive values works in both HPROF and JProfiler heap snapshots. For
reference types, you can ask JProfiler to filter non-null values, null values, and values of a
selected class. Filtering by the result of the toString() method is only available in live
sessions, except for java.lang.Stringand java.lang.Class objects where JProfiler can
figure this out by itself.

212

The most powerful filter types are those using code snippets. There are two fundamentally
different types of ways to filter objects:

In live sessions, JProfiler can run the filtering script in the profiled JVM and pass the actual
instances to your script. In the script editor that is shown by the Apply filter by running a
script on live objects, you can write an expression or a script that accesses properties
directly and whose boolean return value decides whether an instance should be retained
in the current object set or not.

Naturally, this feature can only work for live sessions, because JProfiler needs access to
the live objects. Another factor to consider is that an object may have been garbage
collected after the heap snapshot was taken. In that case, such an object would not be
included in the new object set when a code snippet filter is executed.

The second option that also works for snapshots, including HPROF and PDH snapshots, is
the Apply filter by running a script on dumped data action. Each instance will be passed
to your script as an instance of com.jprofiler.api.agent.heap.HeapObject. There are
several sub-interfaces that you can down-cast the parameter to, if applicable. Consult
the Javadoc for more information. For example, the com.jprofiler.api.agent.heap.

213

Instance interface is available if the object is an object instance and offers access to
field values. If the script operates on top-level objects and all objects in the current object
set are of the same type, the script parameter will automatically have a suitable subtype.

In these filter scripts, you also have access to all incoming and outgoing references through
the methods of the HeapObject parameter.

Note that PHD snapshots do not contain field information, so all instances are passed as
com.jprofiler.api.agent.heap.HeapObject or com.jprofiler.api.agent.heap.
ClassObject for such snapshots and field values can only be accessed through the
referencedObjects() method.

Apart from filters, there are two other features in the outgoing references view for interacting
with individual objects: The Show toString() Values action invokes the toString()method
on all objects that are currently visible in the view and shows them directly in the reference
nodes. The nodes can become very long and the text may be cut off. Using the Show Node
Details action from the context menu helps you to see the entire text.

214

A more general method of obtaining information from an object than calling the
toString()method is to run an arbitrary script that returns a string. The Run Script action
next to the Show toString() Values action allows you to do that when a top-level object
or a reference is selected. The result of the script execution is displayed in a separate
dialog.

215

D.4 Finding Memory Leaks
Distinguishing regular memory usage from a memory leak is often not quite simple.
However, both excessive memory usage and memory leaks have the same symptoms
and so they can be analyzed in the same way. The analysis proceeds in two steps: Locating
suspicious objects and finding out why those objects are still on the heap.

Finding new objects

When an application with a memory leak is running, it consumes more and more memory
over time. Detecting the growth of memory usage is best done with the VM telemetries
and the differencing functionality [p. 72] in the "All objects" and the "Recorded objects"
views. With these views, you can determine if you have a problem and how severe it is.
Sometimes, the difference column in the call histogram tables already gives you an idea
what the problem is.

Any deeper analysis of a memory leak requires the functionality in the heap walker. To
investigate a memory leak around a particular use case in detail, the "Mark heap"
functionality [p. 81] is best suited. It allows you to identify new objects that have remained
on the heap since a particular previous point in time. For these objects, you have to check
whether they are still legitimately on the heap or if a faulty reference keeps them alive
even though the object serves no further purpose.

Another way to isolate a set of objects that you are interested in is through allocation
recording. When taking a heap snapshot, you have the option to show all recorded objects.
However, you may not want to limit allocation recording to just a particular use case. Also,
allocation recording has a high overhead, so the Mark Heap action will have a
comparatively much smaller impact. Finally, the heap walker lets you select old and new

216

objects at any selection step with the Use new and Use old hyperlinks in the header if you
have marked the heap.

Analyzing the biggest objects

If a memory leak fills up the available heap, it will dwarf other types of memory usage in
the profiled application. In that case, you don't have to examine new objects, but simply
analyze what objects are most important.

Memory leaks can have a very slow rate and may not become dominant for a long time.
Profiling such a memory leak until it becomes visible may not be practicable. With the
built-in facility in the JVM to automatically save an HPROF snapshot [p. 208] when an
OutOfMemoryError is thrown, you can get a snapshot where the memory leak is more
important than the regular memory consumption. In fact, it's a good idea to always add

-XX:+HeapDumpOnOutOfMemoryError

to the VM parameters or production systems, so you have a way to analyze memory leaks
that may be hard to reproduce in development environments.

If the memory leak is dominant, the top objects in the "Biggest objects" view of the heap
walker will contain the memory that was retained by mistake. While the biggest objects
themselves may be legitimate objects, opening their dominator trees will lead to the
leaked objects. In simple situations, there is a single object that will contain most of the
heap. For example, if a map is used to cache objects and that cache is never cleared,
then the map will show up in the dominator tree of the biggest object.

217

Finding strong references chains from garbage collector roots

An object can only be a problem if it is strongly referenced. "Strongly referenced", means
that there is at least one chain of references from a garbage collector root to the object.
"Garbage collector" roots (in short GC roots) are special references in the JVM that the
garbage collector knows about.

To find a reference chain from a GC root, you can use the Show Path To GC Root actions
in the "Incoming references" view or in the heap walker graph. Such reference chains may
be very long in practice, so they can generally be interpreted more easily in the "Incoming
references" view. The references point from the bottom towards the object at the top level.
Only the reference chains that are the result of the search are expanded, other references
on the same levels are not visible until a node is closed and opened again or the Show
All Incoming References action in the context menu is invoked.

To get an explanation for types of GC roots and other terms that are used in the reference
nodes, use the tree legend.

When you select nodes in the tree, the non-modal tree legend highlights all used icons
and terms in the selected node. Clicking on a row in the dialog will show an explanation
at the bottom.

218

Important types of garbage collector roots are references from the stack, references
created by native code through JNI and resources like live threads and object monitors
that are currently being used. In addition, the JVM adds in a couple of "sticky" references
to keep important systems in place.

Classes and classloaders have a special circular reference scheme. Classes are garbage
collected together with their classloader when

• no class loaded by that classloader has any live instances
• the classloader itself is unreferenced except by its classes
• none of the java.lang.Class objects are referenced except in the context of the

classloader

219

In most circumstances, classes are the last step on the path to the GC root that you are
interested in. Classes are not GC roots by themselves. However, in all situations where no
custom classloaders are used, it is appropriate to treat them as such. This is JProfiler's
default mode when searching for garbage collector roots, but you can change it in the
path to root options dialog.

If you have problems interpreting the shortest path to a GC root, you can search for
additional paths. Searching for all paths to GC roots is not recommended in general
because it can produce a large number of paths.

In contrast to the live memory views, the heap walker never shows unreferenced objects.
However, the heap walker may not only show strongly referenced objects. By default, the
heap walker also retains objects that are only referenced by soft references, but eliminates
objects that are only referenced by weak, phantom or finalizer references. Because soft
references are not garbage collected unless the heap is exhausted, they are included
because otherwise you might not be able to explain large heap usages. In the options
dialog which is shown when you take a heap snapshot, you can adjust this behavior.

Having weakly referenced objects in the heap walker may be interesting for debugging
purposes. If you want to remove weakly referenced objects later on, you can use the
"Remove objects retained by weak references" inspection.

220

When searching for paths to GC roots, the reference types that were selected to retain
objects in the heap walker options dialog are taken into account. In that way, the path to
GC root search can always explain why an object was retained in the heap walker. In the
options dialog for the path to GC root search you can widen the acceptable reference
types to all weak references.

Eliminating entire object sets

Until now we have only looked at single objects. Often you will have many objects of the
same type that are part of a memory leak. In many cases, the analysis of a single object
will also be valid for the other objects in the current object set. For the more general case
where the objects of interest are referenced in different ways, the "Merged dominating
references" view will help you to find out which references are responsible for holding the
current object set on the heap.

221

Each node in the dominating reference tree tells you how many objects in the current
object set will be eligible for garbage collection if you eliminate that reference. Objects
that are referenced by multiple garbage collector roots may not have any dominating
incoming reference, so the view may only help you with a fraction of the objects, or it may
even be empty. In that case, you have to use the merged incoming reference view and
eliminate garbage collector roots one by one.

222

E JDK Flight Recorder (JFR)

E.1 Support For JDK Flight Recorder (JFR)
JDK Flight Recorder (JFR) (1) is a structured logging tool that records a broad range of
system-level events. Similar to the black box of an aircraft that continuously records flight
data for use in incident investigations, JFR continuously records a stream of events in the
JVM for use in diagnosing problems. The advantage of this approach is that it captures
chronologically detailed information about the system leading up to an incident. JFR is
designed to have a minimal impact on performance, and to be safe to run in production
environments over extended periods of time.

Starting with Java 17, JFR is also one of JProfiler's data sources. In addition to the native
agent that uses the profiling interface of the JVM, there are high-level systems in the JVM
that are of interest in a profiling context. One is the MBean system that provides data for
some telemetries in JProfiler, and the other is JFR that is used for the garbage collector
probe [p. 119]. For that purpose, you do not interact with JFR, but JProfiler handles JFR event
streaming transparently.

JFR integration in JProfiler

JProfiler fully integrates JFR recording [p. 225], so you can easily capture data from running
JVMs on the local machine or on remote machines where JFR recording was not configured.

When you open a JFR snapshot in the JProfiler UI, the available views and sections are
different from a regular profiling session. The centerpiece of the UI is the event
browser [p. 229]. All other views that are available for JFR views are explained in a separate
chapter [p. 236].

As you work with event types, while setting filters and viewing analyses, JProfiler will
occasionally have to rescan the JFR snapshot file. JFR snapshot files are potentially huge,
and it is not viable to hold all data in memory or to calculate all analyses upfront. Because
of this, it is not recommended to open JFR snapshots from network drives.

When opening very large JFR snapshots, you can speed up snapshot processing and
reduce memory usage by clicking on the "Customize analysis" check box in the file chooser
and excluding the event categories that are not required for your analysis. The available
event categories cover single probes and view sections. Event types for CPU views, memory
views and for the telemetry views are not optional and have to be loaded.

For example, if you are only interested in CPU data, you can exclude all probes and the
event browser. JProfiler aims to be the fastest JFR viewer and opens typical JFR snapshots
quickly, but JFR recordings are potentially unbounded and you could be confronted with
a snapshot that is tens of gigabytes in size where the opening speed may become an
issue.

Stack traces in JFR snapshots

One important feature of JFR is the ability to log the entire stack trace for a certain event
type in an efficient way. For such events types, you can toggle stack trace recording in
the JFR settings. Many JVM application event types, especially the ones that are concerned
with threads, have stack trace recording enabled by default.

JFR only collects stack traces up to a fixed depth, so long stack traces are truncated.
Truncated traces are not suitable for building an understandable call tree, so these traces
are shown below a specially marked node. With the

(1) https://en.wikipedia.org/wiki/JDK_Flight_Recorder

223

https://en.wikipedia.org/wiki/JDK_Flight_Recorder

-XX:FlightRecorderOptions=stackdepth=<nnnn>

VM parameter, you can increase the size of the collected traces in JFR and get rid of
truncated traces for your application.

224

E.2 Recording JFR Snapshots With JProfiler
Due to the benefits of running JFR in production JVMs with a minimal overhead and no
requirement to enable the profiling interface, JProfiler supports JFR recording directly in
the UI. While you can start JFR programmatically or by adding the -XX:
StartFlightRecording VM parameter on the command line, JProfiler helps you to start
and stop recordings for JVMs that are already running.

When you attach to a JVM with JProfiler, you can choose to start and stop JFR recordings
instead of loading the native profiling agent. With JProfiler's extensive remote connection
capabilities, you can, for example, start JFR recordings in JVMs that run in Docker or
Kubernetes containers without the need to modify a container.

Starting and stopping JFR recordings

On the "Quick attach" tab of the start center, select a JVM and click on the Start JFR button
at the bottom of the dialog. Locally running JVMs are shown in the screenshot, but the
same button is also available when you attach to a remote JVM.

In the JFR settings wizard, you can then select one of the event settings templates that
are transmitted from thelib/jfr directory of the JRE that is used by the selected process.
By default, there are two such templates, "default" and "profile", where "profile" records
more data and adds more overhead. If you create other files in that directory, you will be
able to select the corresponding templates in the wizard.

These template files contain the available events as well as configuration directives for
important high-levelsettings. Each of the high-level settings can be coupled to a number
of different events. This UI is dynamically generated based on the contents of the template
file. Switching between the different profiles will show you the different default values.
There are many more event types that are not included in this UI and which are only
configurable in the next step.

If you have already started a JFR recording for a JVM with the same set of event types,
JProfiler will offer you the option to use the last settings.

225

If you select that option, the high-level recording settings will not be available and you
can proceed to the next step to see the entire configuration and make further changes.

Another important setting on this step of the wizard is the maximum snapshot size. Due
to the nature of JFR recordings, the size of a snapshot can increase very quickly and might
fill up your entire hard disk. To avoid that, the maximum snapshot size constraint prevents
excessive storage utilization. When the maximum size is reached, older events will be
discarded while new events will continue to be recorded. This process is an automatic
mechanism of JFR.

In the next step of the wizard you can see a categorized tree of all event types with further
configuration for each event on the right side.

Events may have a setting for a period, a threshold and a flag whether to record a stack
trace for each event or not. Both periods and thresholds are settings with time units and
you can press the down key to get an auto-completion popup for the available units.
Periods also support the special values "everyChunk", "beginChunk" and "endChunk" that
are also available from the auto-completion popup. A "chunk" refers to a part of a JFR
recording which holds a contiguous set of event data and metadata and functions as the
basic unit of storage and data transport in a recording.

226

The more events are selected in the tree, the more data is being recorded. Some event
types generate huge amounts of data while some generate only few events.

Unlike the full profiling mode or the "Heap dump only" mode where you immediately see
some data in the UI, starting a JFR snapshot only modifies the background color of the
JVM in the table when it is not selected so you can see that JProfiler has started a recording.
When the JVM is selected, the text of the JFR button at the bottom now shows you that
recording will be stopped.

When you stop a JFR recording that was started by JProfiler, a JFR snapshot will be
transferred and opened in JProfiler. The snapshot is temporary and will be deleted when
you close the window. To save the snapshot to a permanent location, use the "Save
snapshot" action in the toolbar.

Terminated JVMs with JFR recordings

One mentioned use of JFR is to investigate the moments before a crash. In that case, the
JVM will not be available in the JVM table anymore to stop JFR recording and open the
JFR snapshot. If a JFR recording has been started in JProfiler and the JVM terminates before
you stop the recording, a special entry prefixed with "Terminated JFR:" will be added to the
JVM table. By double-clicking on that entry or using the "JFR" button, you can open the JFR
snapshot.

227

Once you open such an entry, it will be removed from the list. Just like for recordings that
are stopped manually, the opened JFR snapshot will be temporary and you have to save
it if you want to keep it for later analysis.

Showing externally started JFR recordings

In the example above, the JFR recording has been started and stopped in JProfiler. JFR
recordings that are started outside JProfiler can also be shown. Continuous JFR recordings
can easily be started with a VM parameter like

"-XX:StartFlightRecording=maxsize=500m=filename=$TEMP/myapp.jfr,name=Continuous
recording"

The indication via the special background color in the JVM table that a JFR recording is
running only refers to JFR recordings that were started in JProfiler. If you connect to a JVM
where a JFR recording has been started by other means, another dialog will be shown.

You can now choose to start a new recording in JProfiler or to dump an existing recording
and show the resulting JFR snapshot in JProfiler. Externally started JFR recordings have a
separate life cycle and will not be stopped by JProfiler.

228

E.3 The JFR Event Browser
The event browser shows all data that has been recorded in a JFR snapshot.

JFR organizes event types into hierarchical categories that make up the tree on the left
side of the event browser. You can select a single event type to show the recorded events.
By default, JProfiler shows all registered event types, even if no events were recorded for
them. Alternatively, you can choose to hide empty event categories in the view settings
dialog.

JFR events

Events are shown as rows in the main table with the columns depending on the selection
in the tree of event types.

The events in the table are sorted chronologically by default. To avoid overloading the UI,
only the first 10000 events are shown in the table. The analyses at the bottom are always
calculated from all events. If you set a filter, it will also check all events, not just the first
10000. This means that when setting a filter, events may show up in the table that were
previously not displayed.

229

You can also select multiple event types or entire categories. In that case, the union of
all selected events is shown in the table. Because each event type has its own set of
columns, only those columns that are common to all selected event types will be included.

The number of available analyses may also be reduced because analysis views are added
based on the available columns.

Column widths are adjusted automatically based on their actual content until you resize
a column. Then, the width of columns with the same content type will be fixed to your
selection and will not change automatically anymore until you clear the column widths
in the view settings dialog. Scales in columns with units like time or memory are also
calculated automatically for each cell. If you prefer to fix the scale of a column for better
comparability, the view settings dialog offers an option for each such column. In this case,
the setting is persisted separately for each selected event type.

230

There are several ways to filter events. At the top of the table, there is a filter selector that
allows you to filter in all text columns or to select a single column and configure a filter
that matches the column type.

Another way to filter is to select a row of interest and use the context menu to select a
specific filter based on the values in the selected row. The filter selector at the top will be
adjusted, so that it displays your selection. You can now choose another value and add
the filter again, it will then replace the previous filter for the same column. In general, each
filter type can only be present once and setting the same filter again will replace the
previous filter.

Stack traces

In JProfiler, the stack trace of a selected event is visible in the "Selection" tab of the split
pane below the event table.

231

If you select multiple events, the selection tab changes to a view that shows you either
the hot spots or the cumulated call tree calculated from the stack traces of the selected
events.

By default, event counts determine the percentages on the nodes in the call tree and hot
spots views. Some event types include other measurements that are suitable for this
purpose, such as a duration or allocated memory. If such measurements are available,
you can select them as the hot spot type from the second drop down in the selection tab.

232

The "Hot spots" and the "Call tree" views in the lower split pane contain the same views,
however, they are calculated for all events in the snapshot. Similar to the selection tab,
they also have a "hot spot type" drop down. In addition to showing all events, you can also
select a filter from these views. In the call tree view, selecting a particular call stack and
clicking on the Filter selected button will only show events with that call stack in the table
above. For the hot spots view, you can either select the hot spot at the top level or any
node in the back trace, so that only events will be shown whose stack trace ends with the
inverted call stack fragment to the selected node.

In the screenshot above, you can see that a node in the backtrace was selected as the
filter node. In addition to the regular call tree icon, it also includes a check mark. You can
remove filters with the tag label at the top or via the Remove filter button. The event count
in the table is equal to the number on the selected node. The hot spot tree still shows all
events without the filter that was set in the hot spot view.

This is a general feature of filters that are set from the analysis views: The analysis view
itself is calculated from all filtered events, but excluding the filter that was set in the
analysis view. This makes the analysis view more useful because you can see what part
of the total event set you have selected there.

233

Time line view

All JFR events have associated times, so every event type or set of event types has a time
line view that shows the chronological distribution of events.

To focus on a particular time range, you can drag along the time axis. In the above
example, we now have two filters: A filter from the backtrace of a hot spot and the filter
from the timeline view. Again, the time line view continues to show the entire time range
while other analysis views will now only show events from the selected time range.

The default display mode is logarithmic, so that regions of low event counts are still visible
against regions of high event counts. You can switch to linear mode by deselecting the
log button below the time line. By default, the entire time range is shown in the available
width, but you can switch to a variable time range and zoom and scroll just like in the
other telemetries in JProfiler. Also available are bookmarks where you can add a vertical
marker at selected time ranges. In that way, you can compare moments in time across
different event types.

Histogram views

All measurements that can be summed for multiple events, such as durations and
allocation sizes, are treated in a special way: First, the columns of these measurements
in the event table have a total value at the bottom. Second, the call tree and hot spot
analysis views offer a "hot spot type" drop-down to calculate their trees with these
measurements instead of event counts. Finally, for each such measurement, a histogram
analysis is added to the lower split panel.

234

Histograms show event counts on their vertical axis while the horizontal axis shows the
selected measurement and is divided into a number of bins, so that a distribution can be
calculated. Bin sizes and event counts are available from the tooltip.

The screenshot above shows how a filter has been set in the histogram. Just like for other
analysis views, the filter only applies to other analysis views, and the entire histogram is
still shown. As for the timeline view, the histogram has a logarithmic vertical axis by default.
Here, the selected events in the screenshot would not be visible with a linear axis.

235

E.4 Views In JFR Snapshots
Apart from the JFR event browser [p. 229], JProfiler uses some of the views that are available
for full profiling sessions and fills them with JFR data. This is possible because JFR collects
data for memory allocations and method executions. The main limitation is that the
recording rates are low, so getting enough data to see problematic hot spots can take a
long time.

Telemetries

With the exception of the "Recorded objects telemetry", all telemetries in full profiling
sessions are also available in JFR snapshots with some limitations in the displayed data.
The memory telemetry does not show GC-specific pools, the threads telemetry does not
show thread counts by thread state and the recorded throughput telemetry shows sizes
instead of object counts and does not show the objects that being freed.

The table below shows the event types that are used by the various telemetries and
whether they are enabled in both the "default" and the "profile" template.

Enabled in
profile

Event typesTelemetry

alljdk.GCHeapSummary,
jdk.MetaspaceSummary

Memory

profile onlyjdk.ObjectAllocationSample,
jdk.ObjectAllocationInNewTLAB,
jdk.ObjectAllocationOutsideTLAB

Recorded throughput

alljdk.GarbageCollectionGC activity

alljdk.ClassLoadingStatisticsClasses

alljdk.JavaThreadStatisticsThreads

alljdk.CPULoadCPU load

236

Memory views

In the "Memory" section, two different event types are used to populate the views with
data. The "Live objects" view shows you a statistical representation of all classes and
instance counts that remain on the heap after a full garbage collection. This data is only
available if the jdk.ObjectCount event is enabled, which is not the case for either of the
default JFR templates, because it comes with a significant overhead. You can also toggle
this setting in the high-level JFR configuration with the "Garbage collector" drop-down.
Prior to Java 17, this drop-down is labeled as "Memory profiling".

If the jdk.ObjectCount event was recorded more than once in the snapshot, the view will
show you the difference between the first and the last occurrences of the jdk.
ObjectCount event. In that way, you get a sense of how the numbers changed during the
recording time and may provide some indication of a memory leak. If these times do not
coincide with the start and end points of the snapshot recording, corresponding bookmarks
are added in the telemetry views. Only classes with a total object size above a fixed
threshold (usually 1% of the heap) are included.

For any serious investigation consider using a full profiling session [p. 72] or taking an
HPROF snapshot [p. 208].

The "Recorded objects" view as well as the allocation views show you data from the jdk.
ObjectAllocationSampleevent since Java 16 and the jdk.ObjectAllocationInNewTLAB
and jdk.ObjectAllocationOutsideTLAB events in earlier Java versions. The "Allocation
Profiling" drop-down in the high-level UI also provides a way to enable these event types.

Contrary to the "Live objects" view, they only show objects that were allocated while
recording was active. Allocations are sampled by JFR but the size is reported as an estimate
for the totalallocatedsize. Because of this discrepancy, the sizes reported by these views
do not correspond to the sample count multiplied by the average instance size. Otherwise,
these views have similar functionality to the memory views in full profiling session [p. 72].

CPU views

The "CPU views" include the call tree, the hot spots view as well as the call graph. Data in
the "Runnable" thread state is based on thejdk.ExecutionSampleevents that are recorded
by default in both standard JFR templates. However, the sampling rate is set to 20 ms by
default, which corresponds to the "Normal" option of the "Method sampling" setting in the
JFR high-level UI. Considering that JFR only samples a very small number of random

237

threads, getting sufficient data so that hot spots stand out sufficiently can take a very
long time. Consider lowering the period for the jdk.ExecutionSample if necessary. Keep
in mind that this can lead to very large snapshot sizes because JFR does not cumulate
data.

Due to the fact, that threads are sampled sporadically, it is not possible to estimate actual
execution times like in a full profiling session. Rather than times, the event counts are
shown in the call tree and the hot spots views. This is similar to async sampling [p. 67]
which has the same drawback. The other JFR thread states are "Waiting", "Blocking" and
"Socket and file I/O" and still measure times. Because of this discrepancy, the "All thread
states" mode is not available in the thread status selector.

Another consideration is that the non-runnable thread states are calculated from events
which have configurable minimum duration thresholds that are shown in the tool tip next
to the thread status selector. The actual total time of these thread states may be
significantly larger. The table with the event types used for assembling the thread states
is shown below:

Event typesThread state

jdk.ExecutionSampleRunnable

jdk.JavaMonitorWait, jdk.ThreadSleep, jdk.ThreadParkWaiting

jdk.JavaMonitorEnterBlocking

jdk.SocketRead, jdk.SocketWrite, jdk.FileRead, jdk.FileWriteSocket and file I/O

The functionality of the views is explained in the help topic on the CPU views [p. 54]. Note
that many features of full profiling sessions are not available in a JFR context.

Thread and monitor views

From the chronological method sampling data, the thread history view can be calculated,
including the tool tips that show stack traces for waiting and blocking times.

238

Thread dumps are a feature in both JFR and JProfiler and are shown in the same view. In
this case, the event browser is not a substitute because it has no way of showing the
structured content of the thread dump column of the jdk.ThreadDump event. In the thread
dumps view you can also compare different thread dumps [p. 98].

From the jdk.JavaMonitorWait, jdk.ThreadSleepand jdk.ThreadPark events, JProfiler
calculates a monitor history similar to the one of a full profiling session [p. 98], only without
the information on blocking threads. If you require that information for solving your problem,
please switch to a full profiling session. This also means that the locking graphs from the
full profiling session are not available for JFR snapshots. The monitor usage statistics that
shows aggregate information on waiting events is present and shows waiting times only.

239

Probes

Some of the JVM probes in a full profiling session have equivalent data sources in JFR
snapshots. Their main advantage compared to the event browser is that they combine
multiple related event types. The table below shows the available probes with the event
types that are used as their data sources.

Enabled in
profile

Event typesProbe

alljdk.SocketRead, jdk.SocketWriteSockets

alljdk.FileRead, jdk.FileWriteFiles

nonejdk.ClassLoad, jdk.ClassUnload, jdk.ClassDefineClasses

errors in both,
exceptions in
none

jdk.JavaErrorThrow, jdk.JavaExceptionThrowExceptions

alljdk.GarbageCollection, jdk.GCPhasePause,
jdk.YoungGarbageCollection,

Garbage
Collector

jdk.OldGarbageCollection, jdk.GCReferenceStatistics,
jdk.GCPhasePauseLevel<n>, jdk.GCHeapSummary,
jdk.MetaspaceSummary, jdk.GCHeapConfiguration,
jdk.GCConfiguration,
jdk.YoungGenerationConfiguration,
jdk.GCSurvivorConfiguration,
jdk.GCTLABConfiguration

Class loading has a separate check box in the high-level JFR UI that switches on all three
class loading events.

Each probe shows a number of views. In contrast to the event browser, the focus is on the
aggregated data and not on the single events. This is also how probes in JProfiler differ
conceptually from JFR data collection.

Except for the Garbage collector probe, all probes have the following views: The call tree
and hot spot views allow you to choose a single thread or a thread group as well as an

240

aggregation level. By default, all threads are shown and the aggregation level is set to
"Methods".

The telemetries view displays one or more telemetries from the recorded data with an
overview page that shows all of them at once. The full telemetry can be opened by clicking
on the telemetry name. By dragging along the time axis, you can select the corresponding
events in the events view.

The events view is similar to the one in the JFR browser. However, it shows multiple event
types corresponding to the underlying JFR events and offers a type selector. Filtering and
stack trace display for single and multiple selection are handled just as in the event
browser. Also, there are histogram views for time and memory measurements where you
can select ranges by dragging along the horizontal axis.

241

The garbage collector view is special, because full profiling sessions can show the exact
same information in profiling sessions with Java 17 or higher. When the garbage collector
probe in the JVM probe category is recorded, JFR streaming is used to obtain the necessary
data. See the chapter on garbage collector analysis [p. 119] for more information.

242

F Configuration In Detail

F.1 Trouble Shooting Connection Problems
When a profiling session cannot be established, the first thing to do is to have a look at
the terminal output of the profiled application or application server. For application servers,
the stderr stream is often written to a log file. This may be a separate log file and not the
main log file of the application server. For example, the Websphere application server
writes a native_stderr.log file where only the stderr output is included. Depending on
the content of the stderr output, the search for the problem takes different directions:

Connection problems

If stderr contains "Waiting for connection ...", the configuration of the profiled
application is ok. The problem might then be related to the following questions:

• Did you forget to start the "Attach to remote JVM" session in the JProfiler GUI on your
local machine? Unless the profiling agent is configured to start up immediately with
the "nowait" option, it will wait until the JProfiler GUI connects before letting the VM
continue to start up.

• Is the host name or the IP address configured correctly in the session settings?
• Did you configure a wrong communication port? The communication port has nothing

to do with HTTP or other standard port numbers and must not be the same as any port
that is already in use. For the profiled application, the communication port is defined
as an option for the profiling VM parameter. With the VM parameter -agentpath:<path
to jprofilerti library>=port=25000, a port of 25000 would be used.

• Do you try to connect to an agent with a direct connection that only listens on the
loopback interface? By default, the agent only listens on the loopback interface. You
can configure JProfiler to set up an SSH tunnel to the remote machine. If you don't require
encryption, you can also use the address=[IP address] option for the -agentpath
parameter.

• Is there a firewall between the local machine and the remote machine? There may be
firewalls for incoming as well as for outgoing connections or even firewalls on gateway
machines in the middle.

Port binding problems

If stderr contains an error message about not being able to bind a socket, the port is
already in use. In that case, check the following questions:

• Did you start the profiled application multiple times? Each profiled application needs
a separate communication port.

• Are there any zombie java processes of previous profiling runs that are blocking the
port?

• Is there a different application that is using the communication port?

If there are no lines in stderr that are prefixed with JProfiler> and your application or
application server starts up normally, the -agentpath:[path to jprofilerti library]
VM parameter has not been included in the Java call. You should find out which java call
in your startup script is actually executed and add the VM parameters there.

243

Attach problems

When attaching to a running JVM, you sometimes may not see the JVM of interest in the
list of all JVMs. To find the cause of this problem, it is important to understand how the
attach mechanism works. When a JVM is started, it writes a PID file into the the
hsperfdata_$USERdirectory in the temporary directory by which is it discovered. Only the
same user or an admin user can then attach to the JVM. JProfiler can help you to connect
to a JVM as an admin user.

On Windows, use the Show Services button to show all JVM service processes. JProfiler
installs a helper service that will run with the system account that can connect to services
running with system accounts as well as with a configured user account. The name of
that service is "JProfiler helper" and is installed when you click on that button. You have to
confirm the UAC prompt to allow the installation of the service. When JProfiler exits, the
service is uninstalled again.

On Linux, you can use the user switcher in the attach dialog to attach with the root account.
This user switcher is shown when profiling a local JVM as well as when attaching to a
remote Linux or macOS machine. For the remote attach case, you can also switch to a
different non-root user. If you have the root password, always switch to root rather than
to the actual user that runs the service.

If a JVM is not visible on Linux even though you think it should be, the problem is usually
connected with the temporary directory. One possibility is that the access rights for the
/tmp/hsperfdata_$USERdirectory are wrong. In that case, delete the directory and restart
the JVM. The process to be attached to must have write access to /tmp, otherwise attaching
is not support.

If you use systemd, the process you are interested in may have PrivateTmp=yes set in
its systemd service file. Then the pid file is written into a different location. JProfiler will
handle this if you change to the root user with the user switcher in the attach dialog or if
you use the CLI tools as root.

Automatic agent download for remote attach

For remote-attach, JProfiler requires the agent libraries for the remote target platform. If
they are not available locally, it will try to download them. This operation may fail if there
is a firewall that either blocks HTTPS connections to https://download.ej-technologies.
com or inspects SSL connections with a man-in-the-middle scheme to decrypt traffic. In
the latter case, the HTTPS connection will fail because JProfiler does not have the certificate
of the firewall.

JProfiler offers a manual workaround when an agent download error occurs. A dialog is
displayed that shows instructions for downloading the agent archive from the website
manually and locating the downloaded archive before continuing with the remote attach
operation.

244

Because agent files are cached, this is a one-time operation for each remote platform.
When JProfiler is updated, the agent changes and the downloads will have to be repeated.

245

F.2 Scripts In JProfiler
JProfiler's built-in script editor allows you to enter custom logic in various places in the
JProfiler GUI, including custom probe configuration, split methods, heap walker filters and
many more.

The box above the edit area shows the available parameters of the script as well as its
return type. By invoking Help->Show Javadoc Overview from the menu you can get more
information on classes from the com.jprofiler.api.* packages.

A number of packages can be used without using fully-qualified class names. Those
packages are:

• java.util.*
• java.io.*

You can put a number of import statements as the first lines in the text area in order to
avoid using fully qualified class names.

All scripts are passed an instance of com.jprofiler.api.agent.ScriptContext that
allows you to save state between successive invocations of the script.

To get the maximum editor functionality, it is recommended to configure a JDK in the
general settings. By default, the JRE that JProfiler runs with is used. In that case, code
completion does not offer parameter names and Javadoc for classes in the JRE.

246

Script types

Scripts can be expressions. An expression doesn't have a trailing semicolon and evaluates
to the required return type. For example,

object.toString().contains("test")

would work as a filter script in the outgoing reference view of the heap walker.

Alternatively, a script consists of a series of Java statements with a return statement of
the required return type as the last statement:

import java.lang.management.ManagementFactory;
return ManagementFactory.getRuntimeMXBean().getUptime();

The above example would work for a script telemetry. JProfiler automatically detects
whether you have entered an expression or a script.

If you want to reuse a script that you have entered previously, you can select it from the
script history. If you click on the Show History tool bar button, all previously used scripts
are shown. Scripts are organized by script signature, and the current script signature is
selected by default.

Code completion

Pressing CTRL-Space brings up a popup with code completion proposals. Also, typing a
dot (".") shows this popup after a delay if no other character is typed. The delay is
configurable in the editor settings. While the popup is being displayed, you can continue
to type or delete characters with Backspace and the popup will be updated accordingly.
"Camel-hump" completion is supported. For example, typing NPE and hitting CTRL-Space
will propose java.lang.NullPointerException among other classes. If you accept a
class that is not automatically imported, the fully qualified name will be inserted.

247

The auto-completion popup can suggest:

• variables and script parameters. Script parameters are displayed in bold font.
• packages, when typing an import statement
• classes
• fields, when the context is a class
• methods, when the context is a class or the parameter list of a method

Parameters with classes that are neither contained in the configured session class path
nor in the configured JDK are marked as [unresolved] and are changed to the generic
java.lang.Object type. To be able to call methods on such parameters and get code
completion for them, add the missing JAR files to the class path in the application settings.

Problem analysis

The code that you enter is analyzed on the fly and checked for errors and warning
conditions. Errors are shown as red underlines in the editor and red stripes in the right
gutter. Warnings such as an unused variable declaration are shown as a yellow
backgrounds in the editor and yellow stripes in the gutter. Hovering the mouse over an
error or warning in the editor as well as hovering the mouse over a stripe in the gutter area
displays the error or warning message.

The status indicator at the top of the right gutter is green if there are no warnings or errors
in the code, yellow if there are warnings and red if errors have been found. You can
configure the threshold for problem analysis in the editor settings.

248

If the gutter icon in the top right corner of the dialog is green, your script is going to compile
unless you have disabled error analysis in the editor settings. In some situations, you might
want to try the actual compilation. Choosing Code->Test Compile from the menu will
compile the script and display any errors in a separate dialog. Saving your script with the
OK button will not test the syntactic correctness of the script unless the script is used right
away.

Key bindings

Pressing SHIFT-F1 opens the browser at the Javadoc page that describes the element
at the cursor position. Javadoc for the Java runtime library can only be displayed if a JDK
with a valid Javadoc location is configured for the code editor in the general settings.

All key bindings in the Java code editor are configurable. Choose Settings->Key Map from
the window menu to display the key map editor. Key bindings are saved in the file $HOME/
.jprofiler15/editor_keymap.xml. This file only exists if the default key map has been
copied. When migrating a JProfiler installation to a different computer, you can copy this
file to preserve your key bindings.

249

F.3 Custom Help
If you have an internal website that provides additional guidance for users, you can add
an extra help button to the toolbar and the "Help" menu. To do that, add the following
properties to the .vmoptions file:

-Dcustom.help.url=https://www.internal.website.com
-Dcustom.help.toolBarText=Internal#help
-Dcustom.help.actionName=Show internal help

All three properties have to be defined to make the action visible in the UI. The custom.
help.toolBarTextproperty is the text that is displayed in the toolbar. It should be concise
and a second line can be added with a # separator as in the example above.

The location of the .vmoptions file is under <JProfiler installation directory>/bin/
jprofiler.vmoptions on Windows and Linux and /Applications/JProfiler.app/
Contents/vmoptions.txt on macOS. In addition, there are user-writable locations under
%USERPROFILE%\.jprofiler15\jprofiler.vmoptionson Windows,$HOME/.jprofiler15/
jprofiler.vmoptionson Linux and$HOME/Library/Preferences/jprofiler.vmoptions
on macOS.

250

F.4 Setting Profiling Settings At Startup
Before the profiling agent can start any recordings, the profiling settings have to be set.
This happens when you connect with the JProfiler UI. Under some circumstances, it is
required that the profiling agent knows the profiling settings at startup. The main use
cases are:

• Offline profiling
Triggers or the API are used to record data and save snapshots. The JProfiler GUI cannot
connect in this mode. See the help topic on offline profiling [p. 130] for more information.

• Profiling with jpcontroller on a headless machine
The command line utility jpcontroller [p. 254] can be used instead of the JProfiler GUI to
record data and save snapshots interactively or with a non-interactive command file.
However, jpcontroller has no facility for configuring profiling settings, so they have to
be set in advance.

• Remote attach to older OpenJ9 and IBM JVMs
Older OpenJ9 and IBM JVMs before 8u281, 11.0.11 and Java 17 do not have the ability to
redefine classes without endangering the stability of the profiled process, so profiling
settings have to be set at startup. The "Profiled JVM" step of the remote integration
wizard in JProfiler asks you about the type of the JVM, and if you select Older OpenJ9
and IBM JVMs there, the wizard will add the options discussed below.

In general, setting profiling settings at startup is the most efficient mode of operation,
because the least number of class redefinitions have to be performed. If the reduced
convenience is not a problem, it can be used for any kind of profiling session.

Setting profiling settings at startup

If you use an integration wizard, select the On a remote computer option on the "Local or
Remote" step and then the Apply configuration at startup option on the "Config
synchronization" step. The wizard will then add the same options as discussed in the
following paragraphs.

If you have added an -agentpath VM parameter to your start script to load the profiling
agent, the profiling settings can be set by adding

,config=<path to config file>,id=<session ID>

to the -agentpath parameter. A complete parameter will look like this:

-agentpath:/path/to/libjprofilerti.so=port=8849,nowait,config=/path/to/config,id=123

If you use jpenable to load the profiling agent after the process has been started, you
can choose offline mode in the interactive execution and specify config and ID there.
Alternatively, pass the --offline, --config and --id arguments for non-interactive
execution.

Preparing the config file

The referenced config file can be the config file of the JProfiler installation on the current
machine, in which case the config parameter does not have to be specified at all. The
JProfiler config file is located at $HOME/.jprofiler15/jprofiler_config.xml or

251

%USERPROFILE%\.jprofiler15\jprofiler_config.xmland is the default for the config
option of the -agentlib VM parameter.

Often, automated profiling should be performed on a different machine and referencing
the local JProfiler config file is not possible. You can then prepare a session with the profiling
settings in the JProfiler UI on your local machine, export it via Session->Export Session
Settings and transfer it to the machine where JProfiler is running on.

The session ID can be seen in the top-right corner of the "Application settings" tab of the
session settings dialog (see the screenshot below). If the exported file only contains one
session, the id parameter does not have to be specified.

Synchronizing the config file

After you have completed the initial setup, you may want to adjust profiling settings for
future profiling runs. This requires that the config file is copied to the remote machine each
time you make a modification.

Remote sessions in JProfiler have a "Config synchronization" feature that can automate
this process for you.

If the session is started via SSH, you can copy the config file via SSH directly to the remote
machine. Otherwise, you can still copy the config file to a local directory which may be
mounted on the remote machine. Finally, you can execute an arbitrary command, to copy
the config file by other means.

252

253

G Command Line Reference

G.1 Command Line Executables For Profiling
JProfiler includes a number of command line tools for setting up the profiling agent and
controlling profiling actions from the command line.

Loading the profiling agent into a running JVM

With the command line utility bin/jpenable, you can load the profiling agent into any
running JVM with a version of 6 or higher. With command line arguments, you can automate
the process so that it requires no user input. The supported arguments are:

Usage: jpenable [options]

jpenable starts the profiling agent in a selected local JVM, so you can connect
to it from a different computer. If the JProfiler GUI is running locally, you
can attach directly from the JProfiler GUI instead of running this executable.

* if no argument is given, jpenable attempts to discover local JVMs that
are not being profiled yet and asks for all the required input on the command
line.

* with the following arguments, you can partially or completely supply the
entire user input on the command line:

-d --pid=<PID> The PID of the JVM that should be profiled
-n --noinput Do not ask for user input under any circumstances
-h --help Show this help

--options=<OPT> Debugging options passed to the agent

GUI mode: (default)
-g --gui The JProfiler GUI will be used to attach to the JVM
-p --port=<nnnnn> The port on which the profiling agent should listen for

a connection from the JProfiler GUI
-a --address=<IP> The address the profiling agent should listen on. Without

this parameter, attaching is only possible from localhost.
Use 0.0.0.0 to listen on all addresses

Offline mode:
-o --offline The JVM will be profiled in offline mode
-c --config=<PATH> Path to the config file with the profiling settings
-i --id=<ID> ID of the session in the config file. Not required, if

the config file holds only a single session.

Note that the JVM has to be running as the same user as jpenable, otherwise
JProfiler cannot connect to it.
An exception are Windows services running under the local system account if you
list them interactively with jpenable.

Saving HPROF snapshots

If you just need a heap snapshot, consider using the bin/jpdump command line tool that
saves an HPROF snapshot [p. 208] without loading the profiling agent into the VM:

Usage: jpdump [options]

jpdump dumps the heap from a locally running JVM to a file.
Hotspot VMs produce HPROF files, OpenJ9 VMs PHD files.
HPROF and PHD files can then be opened in the JProfiler GUI.

254

* if no argument is given, jpdump lists all locally running JVMs.
* with the following arguments, you can partially or completely supply the

entire user input on the command line:

-p --pid=<PID> The PID of the JVM whose heap should be dumped
With a specified PID, no further questions will be asked.

-a --all Save all objects. If not specified, only live objects are
dumped

-f --file=<PATH> Path to the dump file. If not specified, the dump file
<VM name>.hprof is written in the current directory.
If the file already exists, a number is appended.

-h --help Show this help

Note that the JVM has to be running as the same user as jpdump, otherwise
JProfiler cannot connect to it.
An exception are Windows services running under the local system account if you
list them interactively with jpdump.

This has a lower overhead than loading the profiling agent and saving a JProfiler heap
snapshot. Also, because the profiling agent can never be unloaded, this method is suitable
for JVMs running in production.

Controlling the profiling agent

When you start the bin/jpcontroller executable without arguments, it attempts to
connect to a profiled JVM on the local machine. If multiple profiled JVMs were discovered,
you can select one from a list.

jpcontroller can only connect to JVMs where the profiling settings have been set, so it
does not work if the JVM was started with the "nowait" option for the -agentpath VM
parameter. That option is set when choosing the Startup immediately, connect later with
the JProfiler GUI radio button on the "Startup mode" screen of an integration wizard and
no JProfiler GUI has yet connected to the agent. Using jpenable without the --offline
argument also requires a connection from the JProfiler GUI before jpcontroller can
connect to the profiled process.

If you want to connect to a process on a remote computer, or if the JVM is not a HotSpot
JVM with a version of 6 or higher, you have to pass the VM parameter -Djprofiler.
jmxServerPort=[port] to the profiled JVM. An MBean server will be published on that
port, and you can specify the chosen port as an argument to jpcontroller. With the
additional VM parameter -Djprofiler.jmxPasswordFile=[file] you can specify a
properties file with key-value pairs of the form user password to set up authentication
(separated by spaces or tabs). Note that these VM parameters are overridden by the com.
sun.management.jmxremote.port VM parameter.

With the explicit setup of the JMX server, you can use the command line controller to
connect to a remote server by invoking jpcontroller host:port. If the remote computer
is only reachable via an IP address, you have to add -Djava.rmi.server.hostname=[IP
address] as a VM parameter to the remote VM.

By default, jpcontroller is an interactive command line utility, but you can also automate
profiling sessions with it without the need for manual input. An automated invocation
would pass [pid | host:port] to select a profiled JVM as well as the --non-interactive
argument. In addition, a list of commands is read, either from stdin or from a command
file that is specified with the --command-file argument. Each command starts on a new
line, lines that are blank or start with a "#" comment character are ignored.

255

Commands for this non-interactive mode are the same as the method names in the
JProfiler MBean (1). They require the same number of parameters, separated by spaces.
String must be surrounded by double quotes if they contain spaces. In addition, a sleep
<seconds> command is provided that pauses for a number of seconds. This allows you
to start recording, wait for some time and then save a snapshot to disk.

Note that the profiling settings have to be set in the profiling agent. This happens when
you connect with the JProfiler UI. If you never connect with the JProfiler UI, they have to set
them manually in the startup command or with jpenable, please see the help topic on
setting profiling settings at startup [p. 251] for more information.

The supported arguments of jpcontroller are shown below:

Usage: jpcontroller [options] [host:port | pid]

* if no argument is given, jpcontroller attempts to discover local JVMs that
are being profiled

* if a single number is specified, jpcontroller attempts to connect to the JVM
with process ID [pid]. If that JVM is not profiled, jpcontroller cannot
connect. In that case, use the jpenable utility first.

* otherwise, jpcontroller connects to "host:port", where port is the value
that has been specified in the VM parameter -Djprofiler.jmxServerPort=[port]
for the profiled JVM.

The following options are available:
-n --non-interactive Run an automated session where a list of commands

is read from stdin.
-f --command-file=<PATH> Read commands from a file instead of stdin. Only

applicable together with --non-interactive.

Syntax for non-interactive commands:
See the javadoc for RemoteControllerMBean (https://bit.ly/2DimDN5) for a
list of operations. Parameters are separated by spaces and must be quoted if
they contain spaces. For example:

addBookmark "Hello world"
startCPURecording true
startProbeRecording builtin.JdbcProbe true true
sleep 10
stopCPURecording
stopProbeRecording builtin.JdbcProbe
saveSnapshot /path/to/snapshot.jps

The sleep <seconds> command pauses for the specified number of seconds.
Empty lines and lines starting with # are ignored.

(1) https://www.ej-technologies.com/resources/jprofiler/help/api/javadoc/com/jprofiler/api/agent/mbean/
RemoteControllerMBean.html

256

https://www.ej-technologies.com/resources/jprofiler/help/api/javadoc/com/jprofiler/api/agent/mbean/RemoteControllerMBean.html

G.2 Command Line Executables For Working With Snapshots
When using offline profiling [p. 130] to save snapshots programmatically, it may also be
necessary to programmatically extract data or reports from those snapshots. JProfiler
offers two separate command line executables, one for exporting views from a snapshot
and one for comparing snapshots.

Exporting views from a snapshot

The executable bin/jpexport exports view data to various formats. If you execute it with
the -help option, you will get information on the available view names and view options.
For reasons of conciseness, duplicate help texts in the output below have been omitted.

Usage: jpexport "snapshot file" [global options]
"view name" [options] "output file"
"view name" [options] "output file" ...

where "snapshot file" is a snapshot file with one of the extensions:
.jps, .hprof, .hpz, .phd, .jfr

"view name" is one of the view names listed below
[options] is a list of options in the format -option=value
"output file" is the output file for the export

Global options:
-obfuscator=none|proguard|yguard

Deobfuscate for the selected obfuscator. Defaults to "none", for other
values the mappingFile option has to be specified.

-mappingfile=<file>
The mapping file for the selected obfuscator.

-outputdir=<output directory>
Base directory to be used when the output file for a view is a
relative file.

-ignoreerrors=true|false
Ignore errors that occur when options for a view cannot be set and
continue with the next view. The default value is "false", i.e., the
export is terminated, when the first error occurs.

-csvseparator=<separator character>
The field separator character for the CSV exports. Defaults to ','.

-bitmap=false|true
Where appropriate, export a bitmap image instead of SVG for the main
content. The default value is false.

Available view names and options:
* TelemetryHeap, TelemetryObjects, TelemetryThroughput, TelemetryGC,

TelemetryClasses, TelemetryThreads, TelemetryCPU
Options:
-format=html|csv

Determines the output format of the exported file. If not present, the
export format will be determined from the extension of the output
file.

-minwidth=<number of pixels>
Minimum width of the graph in pixels. The default value is 800.

-minheight=<number of pixels>
Minimum height of the graph in pixels. The default value is 600.

* Bookmarks, ThreadMonitor, CurrentMonitorUsage, MonitorUsageHistory
Options:
-format=html|csv

* AllObjects
Options:
-format=html|csv

257

-viewfilters=<comma-separated list>
Sets view filters for the export. If you set view filters, only the
specified packages and their sub-packages will be displayed by the
exported view.

-viewfiltermode=startswith|endswith|contains|equals
Sets the view filter mode. The default value is "contains".

-viewfilteroptions=casesensitive
Boolean options for the view filter. By default, no options are set.

-aggregation=class|package|component
Selects the aggregation level for the export. The default value is
classes.

-expandpackages=true|false
Expand package nodes in the package aggregation level to show
contained classes. The default value is "false". Has no effect for
other aggregation levels and with csv output format.

* RecordedObjects
like AllObjects, but with additional options:
-liveness=live|gc|all

Selects the liveness mode for the export, i.e., whether to display
live objects, garbage collected objects or both. The default value is
live objects.

* AllocationTree
Options:
-format=html|xml
-viewfilters=<comma-separated list>
-viewfiltermode=startswith|endswith|contains|equals
-viewfilteroptions=casesensitive
-aggregation=method|class|package|component

Selects the aggregation level for the export. The default value is
methods.

-class=<fully qualified class name>
Specifies the class for which the allocation data should be
calculated. If empty, allocations of all classes will be shown. Cannot
be used together with the package option.

-package=<fully qualified package name>
Specifies the package for which the allocation data should be
calculated. If empty, allocations of all packages will be shown.
Appending .** to the package name will select packages recursively.
Cannot be used together with the class option.

-liveness=live|gc|all

* AllocationHotSpots
Options:
-format=html|csv|xml
-viewfilters=<comma-separated list>
-viewfiltermode=startswith|endswith|contains|equals
-viewfilteroptions=casesensitive
-aggregation=method|class|package|component
-class=<fully qualified class name>
-package=<fully qualified package name>
-liveness=live|gc|all
-unprofiledclasses=separately|addtocalling

Selects if unprofiled classes should be shown separately or be added
to the calling class. The default value is to show unprofiled classes
separately.

-valuesummation=self|total
Determines how the times for hot spots are calculated. Defaults to
"self".

-expandbacktraces=true|false
Expand backtraces in HTML or XML format. The default value is "false".

* ClassTracker

258

like TelemetryHeap, but with additional options:
-class

The tracked class. If missing, the first tracked class is exported.

* CallTree
Options:
-format=html|xml
-viewfilters=<comma-separated list>
-viewfiltermode=startswith|endswith|contains|equals
-viewfilteroptions=casesensitive
-aggregation=method|class|package|component
-threadgroup=<name of thread group>

Selects the thread group for the export. If you specify "thread" as
well, the thread will only be searched in this thread group, otherwise
the entire thread group will be shown.

-thread=<name of thread>
Selects the thread for the export. By default, the call tree is merged
for all threads.

-threadstatus=all|running|waiting|blocking|netio
Selects the thread status for the export. The default value is
"running".

* HotSpots
Options:
-format=html|csv|xml
-viewfilters=<comma-separated list>
-viewfiltermode=startswith|endswith|contains|equals
-viewfilteroptions=casesensitive
-aggregation=method|class|package|component
-threadgroup=<name of thread group>
-thread=<name of thread>
-threadstatus=all|running|waiting|blocking|netio
-expandbacktraces=true|false
-unprofiledclasses=separately|addtocalling
-valuesummation=self|total

* OutlierDetection
Options:
-format=html|csv
-threadstatus=all|running|waiting|blocking|netio
-viewfilters=<comma-separated list>
-viewfiltermode=startswith|endswith|contains|equals
-viewfilteroptions=casesensitive

* Complexity
Options:
-format=html|csv|properties
-fit=best|constant|linear|quadratic|cubic|exponential|logarithmic|n_log_n

The fit that should be exported. The default value is "best". No curve
fitting data is exported to CSV.

-method=<method name>
The method name for which the complexity graph should be exported. If
not given, the first method will be exported. Otherwise, the first
method name that starts with the given text will be exported.

-width=<number of pixels>
-height=<number of pixels>

* ThreadHistory
like TelemetryHeap, but with changed options:
-format=html

* MonitorUsageStatistics
Options:
-format=html|csv

259

-type=monitors|threads|classes
Selects the entity for which the monitor statistics should be
calculated. The default value is "monitors".

* ProbeTimeLine
like ThreadHistory, but with additional options:
-probeid=<id>

The internal ID of the probe that should be exported. Run "jpexport
--listProbes" to list all available built-in probes and for an
explanation of custom probe names.

* ProbeControlObjects
Options:
-probeid=<id>
-format=html|csv

* ProbeCallTree
Options:
-probeid=<id>
-format=html|xml
-viewfilters=<comma-separated list>
-viewfiltermode=startswith|endswith|contains|equals|wildcard|regex
-viewfilteroptions=exclude,casesensitive
-aggregation=method|class|package|component
-threadgroup=<name of thread group>
-thread=<name of thread>
-threadstatus=all|running|waiting|blocking|netio

Selects the thread status for the export. The default value is "all".

* ProbeHotSpots
like ProbeCallTree, but with additional or changed options:
-format=html|csv|xml
-expandbacktraces=true|false

* ProbeTelemetry
like TelemetryHeap, but with additional options:
-probeid=<id>
-telemetrygroup

Sets the one-based index of the telemetry group that should be
exported. This refers to the entries that you see in the drop-down
list above the probe telemetry view. The default value is "1".

* ProbeEvents
Options:
-probeid=<id>
-format=html|csv|xml

* ProbeTracker
like TelemetryHeap, but with additional options:
-probeid=<id>
-index=<number>

Sets the zero-based index of the drop-down list that contains the
tracked elements. The default value is 0.

Comparing snapshots

The executable bin/jpcompare compares different snapshots [p. 135] and exports them
to HTML or a machine-readable format. Its -help output is reproduced below, again
without any duplicate explanations.

260

Usage: jpcompare "snapshot file"[,"snapshot file",...] [global options]
"comparison name" [options] "output file"
"comparison name" [options] "output file" ...

where "snapshot file" is a snapshot file with one of the extensions:
.jps, .hprof, .hpz, .phd, .jfr

"comparison name" is one of the comparison names listed below
[options] is a list of options in the format -option=value
"output file" is the output file for the export

Global options:
-outputdir=<output directory>

Base directory to be used when the output file for a comparison is a
relative file.

-ignoreerrors=true|false
Ignore errors that occur when options for a comparison cannot be set
and continue with the next comparison. The default value is "false",
i.e., the export is terminated, when the first error occurs.

-csvseparator=<separator character>
The field separator character for the CSV exports. Defaults to ','.

-bitmap=false|true
Where appropriate, export a bitmap image instead of SVG for the main
content. The default value is false.

-sortbytime=false|true
Sort the specified snapshot files by modification time. The default
value is false.

-listfile=<filename>
Read a file that contains the paths of the snapshot files, one
snapshot file per line.

Available comparison names and options:
* Objects

Options:
-format=html|csv

Determines the output format of the exported file. If not present, the
export format will be determined from the extension of the output
file.

-viewfilters=<comma-separated list>
Sets view filters for the export. If you set view filters, only the
specified packages and their sub-packages will be displayed by the
exported view.

-viewfiltermode=startswith|endswith|contains|equals
Sets the view filter mode. The default value is "contains".

-viewfilteroptions=casesensitive
Boolean options for the view filter. By default, no options are set.

-aggregation=class|package|component
Selects the aggregation level for the export. The default value is
classes.

-liveness=live|gc|all
Selects the liveness mode for the export, i.e., whether to display
live objects, garbage collected objects or both. The default value is
live objects.

-objects=recorded|heapwalker|all
Compare recorded objects, objects in the heap walker, or object counts
from all objects dumps. The default is recorded objects for .jps files
and heapwalker for HPROF/PHD files.

-dumpselection=first|last|label
The all objects dump that is used for calculating the comparison.
Default is the last value.

-label
If dumpselection is set to 'label', the name of the label for which
the comparison should be calculated.

* AllocationHotSpots

261

Options:
-format=html|csv
-viewfilters=<comma-separated list>
-viewfiltermode=startswith|endswith|contains|equals
-viewfilteroptions=casesensitive
-aggregation=method|class|package|component

Selects the aggregation level for the export. The default value is
methods.

-liveness=live|gc|all
-unprofiledclasses=separately|addtocalling

Selects if unprofiled classes should be shown separately or be added
to the calling class. The default value is to show unprofiled classes
separately.

-valuesummation=self|total
Determines how the times for hot spots are calculated. Defaults to
"self".

-classselection
Calculate the comparison for a specific class or package. Packages are
specified by appending '.*' for a single package or '.**' for
recursive packages. Specify a package with a wildcard, like
'java.awt.*'.

* AllocationTree
Options:
-format=html|xml
-viewfilters=<comma-separated list>
-viewfiltermode=startswith|endswith|contains|equals
-viewfilteroptions=casesensitive
-aggregation=method|class|package|component
-liveness=live|gc|all
-classselection

* HotSpots
Options:
-format=html|csv
-viewfilters=<comma-separated list>
-viewfiltermode=startswith|endswith|contains|equals
-viewfilteroptions=casesensitive
-firstthreadselection

Calculate the comparison for a specific thread or thread group.
Specify thread groups like 'group.*' and threads in specific thread
groups like 'group.thread'. Escape dots in thread names with
backslashes.

-secondthreadselection
Calculate the comparison for a specific thread or thread group. Only
available if 'firstthreadselection' is set. If empty, the same value
as for 'firstthreadselection' will be used. Specify thread groups like
'group.*' and threads in specific thread groups like 'group.thread'.
Escape dots in thread names with backslashes.

-threadstatus=all|running|waiting|blocking|netio
Selects the thread status for the export. The default value is
"running".

-aggregation=method|class|package|component
-differencecalculation=total|average

Selects the difference calculation method for call times. The default
value is total times.

-unprofiledclasses=separately|addtocalling
-valuesummation=self|total

* CallTree
Options:
-format=html|xml
-viewfilters=<comma-separated list>
-viewfiltermode=startswith|endswith|contains|equals

262

-viewfilteroptions=casesensitive
-firstthreadselection
-secondthreadselection
-threadstatus=all|running|waiting|blocking|netio
-aggregation=method|class|package|component
-differencecalculation=total|average

* TelemetryHeap
Options:
-format=html|csv
-minwidth=<number of pixels>

Minimum width of the graph in pixels. The default value is 800.
-minheight=<number of pixels>

Minimum height of the graph in pixels. The default value is 600.
-valuetype=current|maximum|bookmark

Type of the value that is calculated for each snapshot. Default is the
current value.

-bookmarkname
If valuetype is set to 'bookmark', the name of the bookmark for which
the value should be calculated.

-measurements=maximum,free,used
Measurements that are shown in the comparison graph. Concatenate
multiple values with commas. The default value is 'used'.

-memorytype=heap|nonheap
Type of the memory that should be analyzed. Default is 'heap'.

-memorypool
If a special memory pool should be analyzed, its name can be specified
with this parameter. The default is empty, i.e. no special memory
pool.

* TelemetryObjects
Options:
-format=html|csv
-minwidth=<number of pixels>
-minheight=<number of pixels>
-valuetype=current|maximum|bookmark
-bookmarkname
-measurements=total,nonarrays,arrays

Measurements that are shown in the comparison graph. Concatenate
multiple values with commas. The default value is 'total'.

* TelemetryClasses
like TelemetryObjects, but with changed options:
-measurements=total,filtered,unfiltered

* TelemetryThreads
like TelemetryObjects, but with changed options:
-measurements=total,runnable,blocked,netio,waiting

* ProbeHotSpots
Options:
-format=html|csv
-viewfilters=<comma-separated list>
-viewfiltermode=startswith|endswith|contains|equals|wildcard|regex
-viewfilteroptions=exclude,casesensitive
-firstthreadselection
-secondthreadselection
-threadstatus=all|running|waiting|blocking|netio
-aggregation=method|class|package|component
-differencecalculation=total|average
-probeid=<id>

The internal ID of the probe that should be exported. Run "jpexport
--listProbes" to list all available built-in probes and for an
explanation of custom probe names.

263

* ProbeCallTree
like ProbeHotSpots, but with changed options:
-format=html|xml

* ProbeTelemetry
like TelemetryObjects, but with additional or changed options:
-measurements

The one-based indices of the measurements in the telemetry group that
are shown in the comparison graph. Concatenate multiple values with
commas, like "1,2". The default value is to show all measurements.

-probeid=<id>
-telemetrygroup

Sets the one-based index of the telemetry group that should be
exported. This refers to the entries that you see in the drop-down
list above the probe telemetry view. The default value is "1".

Automatic output formats

Most views and comparisons support multiple output formats. By default, the output format
is deduced from the extension of the output file:

• .html
The view or comparison is exported as an HTML file. A directory namedjprofiler_images
will be created that contains images used in the HTML page.

• .csv

The data is exported as CSV data where the first line contains the column names.

When using Microsoft Excel, CSV is not a stable format. Microsoft Excel on Windows takes
the separator character from the regional settings. JProfiler uses a semicolon as the
separator in locales that use a comma as a decimal separator and a comma in locales
that use a dot as a decimal separator. If you need to override the CSV separator
character, you can do so by setting the global csvseparator option.

• .xml
The data is exported as XML. The data format is self-descriptive.

If you would like to use different extensions, you can use the format option to override the
choice of the output format.

Analyzing snapshots

If the generated snapshots have heap dumps in them, you can use the bin/jpanalyze
executable to prepare the heap dump analysis in advance [p. 81]. Opening the snapshot
in the JProfiler GUI will then be very fast. The usage information of the tool is shown below:

Usage: jpanalyze [options] "snapshot file" ["snapshot file" ...]

where "snapshot file" is a snapshot file with one of the extensions:
.jps, .hprof, .hpz, .phd, .jfr

[options] is a list of options in the format -option=value

Options:
-obfuscator=none|proguard|yguard

Deobfuscate for the selected obfuscator. Defaults to "none", for other
values the mappingFile option has to be specified.

264

-mappingfile=<file>
The mapping file for the selected obfuscator.

-removeunreferenced=true|false
If unreferenced or weakly referenced objects should be removed.

-retained=true|false
Calculate retained sizes (biggest objects). removeunreferenced will be
set to true.

-retainsoft=true|false
If unreferenced objects are removed, specifies if soft references
should be retained.

-retainweak=true|false
If unreferenced objects are removed, specifies if weak references
should be retained.

-retainphantom=true|false
If unreferenced objects are removed, specifies if phantom references
should be retained.

-retainfinalizer=true|false
If unreferenced objects are removed, specifies if finalizer references
should be retained.

The removeUnreferenced, the retained and all the retain* command line options
correspond to the options in the heap walker options dialog.

265

G.3 Gradle Tasks
JProfiler supports profiling from Gradle with special tasks. In addition. JProfiler offers a
number of command line executables for working with snapshots [p. 257] that have
corresponding Gradle tasks.

Using Gradle tasks

To make the JProfiler Gradle tasks available in a Gradle build file, you can use the plugins
block

plugins {
id 'com.jprofiler' version 'X.Y.Z'

}

If you do not want to use the Gradle plugin repository for this purpose, the Gradle plugin
is distributed in the file bin/gradle.jar.

Next, you have to tell the JProfiler Gradle plugin where JProfiler is installed.

jprofiler {
installDir = file('/path/to/jprofiler/home')

}

Profiling from Gradle

With tasks of type com.jprofiler.gradle.JavaProfile you can profile any Java process.
This class extends Gradle's built-in JavaExec, so you can use the same arguments for
configuring the process. For profiling tests, use tasks of type com.jprofiler.gradle.
TestProfile that extend the Gradle Test task.

Without any further configuration, both tasks start an interactive profiling session where
the profiling agent waits on the default port 8849 for a connection from the JProfiler GUI.
For offline profiling, you have to add a couple of attributes that are shown in the table
below.

RequiredDescriptionAttribute

No, offline
and nowait

Whether the profiling run should be in offline mode.offline

Whether profiling should start immediately or whether
the profiled JVM should wait for a connection from the
JProfiler GUI.

nowait cannot both
be true.

Required ifDefines the session ID from which profiling settings
should be taken. Has no effect if neither nowait nor

sessionId

• offline is
set

offline are set because in that case the profiling
session is selected in the GUI.

• nowait is set
for a 1.5 JVM

NoDefines the config file from which the profiling settings
should be read.

configFile

266

RequiredDescriptionAttribute

NoDefines the port number on which the profiling agent
should listen for a connection from the JProfiler GUI.

port

This must be the same as the port configured in the
remote session configuration. If not set or zero, the
default port (8849) will be used. Has no effect if
offline is set because in that case there is no
connection from the GUI.

NoIf you want to pass any additional library parameters
for tuning or debugging purposes, you can do that
with this attribute.

debugOptions

An example for profiling a Java class with a main method that is compiled by the
containing project is given below:

task run(type: com.jprofiler.gradle.JavaProfile) {
mainClass = 'com.mycorp.MyMainClass'
classpath sourceSets.main.runtimeClasspath
offline = true
sessionId = 80
configFile = file('path/to/jprofiler_config.xml')

}

You can see a runnable example of this task in the api/samples/offline sample project.
Unlike the standard JavaExec task, the JavaProfile task can also be started in the
background by calling createProcess()on it. See the api/samples/mbean sample project
for a demonstration of this feature.

If you need the VM parameter that is required for profiling, the com.jprofiler.gradle.
SetAgentpathProperty task will assign it to a property whose name is configured with
the propertyName attribute. Applying the JProfiler plugin automatically adds a task of this
type named setAgentPathProperty to your project. For getting the VM parameter that
would be used in the previous example, you can simply add

setAgentPathProperty {
propertyName = 'profilingVmParameter'
offline = true
sessionId = 80
configFile = file('path/to/jprofiler_config.xml')

}

to your project and add a dependency to setAgentPathProperty to some other task.
Then you can use the project property profilingVmParameter in the execution phase of
that task. When assigning the property to other task properties, surround its usage with a
doFirst {...} code block in order to make sure that you are in the Gradle execution
phase and not in the configuration phase.

Exporting data from snapshots

The com.jprofiler.gradle.Export task can be used to export views from a saved
snapshot and replicates the arguments of the bin/jpexport command line tool [p. 257].
It supports the following attributes:

267

RequiredDescriptionAttribute

YesThe path to the snapshot file. This must be a file with a
.jps extension.

snapshotFile

NoIgnore errors that occur when options for a view cannot
be set and continue with the next view. The default value

ignoreErrors

is false, meaning that the export is terminated when
the first error occurs.

NoThe field separator character for the CSV exports.
Defaults to ",".

csvSeparator

NoDeobfuscate class and method names for the selected
obfuscator. Defaults to "none", for other values the

obfuscator

mappingFile option has to be specified. One of none,
proguard or yguard.

Only if
obfuscator is

specified

The mapping file for the selected obfuscator. May only
be set if the obfuscator attribute is specified.

mappingFile

On the export task, you call the views method and pass a closure to it in which you call
view(name, file[, options]) one or multiple times. Each call to view produces one
output file. The name argument is the view name. For a list of available view names, please
see the help page on the jpexport command line executable [p. 257]. The argument file
is the output file, either an absolute file or a file relative to the project. Finally, the optional
options argument is a map with the export options for the selected view.

An example for using the export task is:

task export(type: com.jprofiler.gradle.Export) {
snapshotFile = file('snapshot.jps')
views {

view('CallTree', 'callTree.html')
view('HotSpots', 'hotSpots.html',

[threadStatus: 'all', expandBacktraces: 'true'])
}

}

Comparing snapshots

Like the bin/jpcompare command line tool [p. 257], the com.jprofiler.gradle.Compare
task can compare two or more snapshots. It attributes are:

RequiredDescriptionAttribute

YesThe snapshot files that should be compared. You can pass
any Iterable containing objects that gradle resolves to file
collections.

snapshotFiles

NoIf set to true all supplied snapshots files are sorted by their
file modification time, otherwise they are compared in the
order they were specified in the snapshotFiles attribute.

sortByTime

268

RequiredDescriptionAttribute

NoIgnore errors that occur when options for a comparison
cannot be set and continue with the next comparison. The

ignoreErrors

default value is false, meaning the export is terminated
when the first error occurs.

Just like exported views are defined for the Export task, the Compare task has a
comparisonsmethod where nested calls to comparison(name, file[, options])define
the comparisons that should be performed. The list of available comparison names is
available on the help page of the jpcompare command line executable [p. 257].

An example for using the compare task is:

task compare(type: com.jprofiler.gradle.Compare) {
snapshotFiles = files('snapshot1.jps', 'snapshot2.jps')
comparisons {

comparison('CallTree', 'callTree.html')
comparison('HotSpots', 'hotSpots.csv',

[valueSummation: 'total', format: 'csv'])
}

}

or, if you want to create a telemetry comparison for multiple snapshots:

task compare(type: com.jprofiler.gradle.Compare) {
snapshotFiles = fileTree(dir: 'snapshots', include: '*.jps')
sortByTime = true
comparisons {

comparison('TelemetryHeap', 'heap.html', [valueType: 'maximum'])
comparison('ProbeTelemetry', 'jdbc.html', [probeId: 'JdbcProbe'])

}
}

Analyzing heap snapshots

The gradle task com.jprofiler.gradle.Analyze has the same functionality as the bin/
jpanalyze command line tool [p. 257].

The task has a snapshotFiles attribute like the Compare task to specify the processed
snapshots and obfuscator and mappingfile attributes like the Export task for
deobfuscation. The attributes removeUnreferenced, retainSoft, retainWeak,
retainPhantom, retainFinalizer and retained correspond the arguments of the
command line tool.

An example for using the Analyze task is given below:

task analyze(type: com.jprofiler.gradle.Analyze) {
snapshotFiles = fileTree(dir: 'snapshots', include: '*.jps')
retainWeak = true
obfuscator = 'proguard'
mappingFile = file('obfuscation.txt')

}

269

G.4 Ant Tasks
The Ant (1) tasks provided by JProfiler are very similar to the Gradle tasks. This chapter
highlights the differences to the Gradle tasks and shows examples for each Ant task.

All Ant tasks are contained in the archive bin/ant.jar. In order to make a task available
to Ant, you must first insert a taskdef element that tells Ant where to find the task definition.
All examples below include that taskdef. It must occur only once per build file and can
appear anywhere on the level below the project element.

It is not possible to copy the ant.jar archive to thelib folder of your Ant distribution, you
have to reference a full installation of JProfiler in the task definition.

Profiling from Ant

The com.jprofiler.ant.ProfileTask is derived from the built-in Java task and supports
all its attributes and nested elements. The additional attributes are the same as for the
ProfileJava Gradle task [p. 266]. Ant attributes are case-insensitive and usually written
in lower case.

<taskdef name="profile"
classname="com.jprofiler.ant.ProfileTask"
classpath="<path to JProfiler installation>/bin/ant.jar"/>

<target name="profile">
<profile classname="MyMainClass" offline="true" sessionid="80">
<classpath>

<fileset dir="lib" includes="*.jar" />
</classpath>

</profile>
</target>

Exporting data from snapshots

With the com.jprofiler.ant.ExportTask you can export view from snapshots, just like
with the ExportGradle task [p. 266]. Views are specified differently than in the Gradle task:
they are nested directly below the task element and options are specified with nested
option elements.

<taskdef name="export"
classname="com.jprofiler.ant.ExportTask"
classpath="<path to JProfiler installation>/bin/ant.jar"/>

<target name="export">
<export snapshotfile="snapshots/test.jps">
<view name="CallTree" file="calltree.html"/>
<view name="HotSpots" file="hotspots.html">

<option name="expandbacktraces" value="true"/>
<option name="aggregation" value="class"/>

</view>
</export>

</target>

Comparing snapshots

The com.jprofiler.ant.CompareTask corresponds to the Compare Gradle task and
performs comparisons between two ore more snapshots. Like for the com.jprofiler.

(1) http://ant.apache.org

270

http://ant.apache.org

ant.ExportTask, comparisons are directly nested below the element and options are
nested for each comparison element. The snapshot files are specified with a nested file
set.

<taskdef name="compare"
classname="com.jprofiler.ant.CompareTask"
classpath="<path to JProfiler installation>/bin/ant.jar"/>

<target name="compare">
<compare sortbytime="true">
<fileset dir="snapshots">

<include name="*.jps" />
</fileset>
<comparison name="TelemetryHeap" file="heap.html"/>
<comparison name="TelemetryThreads" file="threads.html">

<option name="measurements" value="inactive,active"/>
<option name="valuetype" value="bookmark"/>
<option name="bookmarkname" value="test"/>

</comparison>
</compare>

</target>

Analyzing heap snapshots

Like the Analyze Gradle task, the equivalent com.jprofiler.ant.AnalyzeTask for Ant
prepares the heap snapshot analysis in snapshots that have been saved with offline
profiling for faster access in the GUI. The snapshots that should be processed are specified
with a nested file set.

<taskdef name="analyze"
classname="com.jprofiler.ant.AnalyzeTask"
classpath="<path to JProfiler installation>/bin/ant.jar"/>

<target name="analyze">
<analyze>
<fileset dir="snapshots" includes="*.jps" />

</analyze>
</target>

271

	Introduction
	Architecture
	Installing
	Profiling a JVM
	Recording data
	Snapshots
	Telemetries
	CPU profiling
	Method call recording
	Memory profiling
	The heap walker
	Thread profiling
	Probes
	GC analysis
	MBean browser
	Offline profiling
	Comparing snapshots
	IDE integrations
	Custom probes
	Probe concepts
	Script probes
	Injected probes
	Embedded probes

	Call tree features in detail
	Auto-tuning for instrumentation
	Async and remote request tracking
	Viewing parts of the call tree
	Splitting the call tree
	Call tree analyses

	Advanced CPU analysis views
	Outlier detection
	Complexity analysis
	Call tracer
	Javascript XHR

	Heap walker features in detail
	HPROF snapshots
	Minimizing overhead
	Filters and live interactions
	Finding memory leaks

	JDK Flight Recorder (JFR)
	JFR overview
	Recording JFR snapshots
	JFR event browser
	JFR views

	Configuration in detail
	Trouble shooting connection problems
	Scripts
	Custom help
	Profiling settings at startup

	Command line reference
	Executables for profiling
	Executables for snapshots
	Gradle tasks
	Ant tasks

