@Jtechnologies

White Paper: The Strategic Value of
JProfilerin Modern Software Development

Empowering Development Teams to Achieve Optimal Performance and Cost
Efficiency

© 2025 ej-technologies GmbH. All rights reserved.

Executive Summary

In the competitive landscape of software development, efficiency and performance are not
merely goals but prerequisites for success. JProfiler stands out as a comprehensive tool designed
to enhance development productivity, optimize resource allocation, and mitigate the risks
associated with production outages. This white paper explores the tangible benefits of investing
in JProfiler, drawing a comparison with free profiling tools, and demonstrating how JProfiler
justifies its cost through substantial time and money savings.

Introduction

Today's development environment demands the creation of robust and scalable applications
with rapid development cycles. At the same time, cost-effective resource management is a
principal focus for many organizations.

In this context, the choice of profiling tools becomes critical. The savings that organizations
realize through the use of profilers primarily come from three categories:

O Shortening development times

Lowering cloud costs

Reducing production Outages

We will examine these categories in detail and demonstrate how the savings quickly offset the
licensing costs for JProfiler.

While free-of-charge profiling tools could be used for this purpose, they only offer basic
capabilities. JProfiler provides a sophisticated suite of features designed to address a much
broader range of challenges. Below, we will discuss the comparisons with the corresponding
best-in-class tools that are free of charge.

Shortening Development Times

Focus on Business Logic

JProfiler empowers developers to concentrate on developing business logic rather than getting
bogged down by performance issues. This focus significantly accelerates the development
process, ensuring that projects meet their timelines without compromising on quality.

Without a profiling tool, pro-active optimization efforts during development and investigations
into the performance characteristics of certain operations through the modification of code
and the introduction of testing harnesses takes a considerable amount of time. With a profiling
tool, this recurring activity can be reduced to a small fraction: Optimization efforts are only
performed post-hoc on actual problems that are detected with JProfiler and not a priori on
hypothetical issues derived from logical reasoning.

Performance and Memory Optimization

By pinpointing performance bottlenecks and memory leaks precisely where they occur, JProfiler
ensures that optimization efforts are directed effectively, following the principle of addressing
the most critical issues first. The benefits of using JProfiler include:

+ Enhanced testing speed and more accessible profiling, thanks to its unparalleled integration
into IDEs and build systems, and its support for profiling on remote machines, Docker
containers and Kubernetes clusters.

+ Early detection of unexpected performance issues and memory leaks, significantly improving
the development process.

+ Rapididentification of the causes behind performance problems and memory leaks, enabled
by advanced data recording and analysis.

Example calculation for cost savings

We estimate a lower bound on these kinds of savings at an average of 30 minutes per developer
per week. Considering developer salaries in industrialized countries, this translates to a cost
saving of over $1,000 per developer per year. This alone amortizes the licensing cost of
JProfiler in the first year, regardless of whether the following cost-saving topics apply to your
production environment.

Lowering Cloud Costs

Optimizing Resource Usage

JProfiler aids in significantly reducing cloud expenses by enabling developers to optimize
resource usage efficiently. Its comprehensive analysis capabilities help in understanding
scalability issues, thereby facilitating the development of more efficient code that demands less
CPU and memory resources.

© Classes i Allocations .. Biggest Objects 3 References O Time 43¢ Inspections =, Graph
Current object set: 537,805 objects in 6,266 classes.
1 selection step, 31 MB shallow size

Group by class v Sunburst Diagram ¥ Q}

Q 1 instance of
org.springframework.beans.factory.support.DefaultListableBeanFactory
5,072 kB (15% of parent node, 15% of total heap)

Biggest objects:

© 2,101 kB (41.4%) ® 16 instances of java.util C: HashMap

©) 1,405 kB (27.7%) ™ 4805 instances of javatome =afloot R~sl-l

© 436 kB (8.6%) ™ 1 instance of org.springf Use Selected Objects 3

© 220 kB (4.3%) ® 116 instances of org.spri Use Selected java.lang.Class Objects
© 161kB(3.2%) ® 204 instances of org.spri
© 105kB (2.1%) ® 3 instances of org.spring L
© 83,992 bytes (1.7%) ® 1 instance of org.s Q Set As Root 4
© 80,712 bytes (1.6%) ® 1 instance of org.s} \
© 73,072 bytes (1.4%)
© 69,456 bytes (1.4%) B 1076 instances of java.lang.String
© 56,256 bytes (1.1%) ® 1 instance of org.springframework.orm.jpa.support.Persistence
© 45,424 bytes (0.9%) ™ 46 instances of org.springfi k.context. ion.Confi

)

)

)

)

Use Retained Objects

Q, Show Previous Root

® 1 instance of org.sy 4

© 27,968 bytes (0.6%)
© 22,400 bytes (0.4%
© 19,936 bytes (0.4%
€ 19,336 bytes (0.4%

W 27 instances of java.lang.reflect.Constructor
® 3 instances of java.util.LinkedHashSet
™ 26 instances of org.springf k.core. ion.Annotat

W 20 instances of org.springframework.beans.factory.support.Rc

i Classes W Object arrays ™ Primitive arrays = Smaller objects

With the extensive depth and breadth of JProfiler's features in the call tree and hot spot views,
and a regular usage of JProfiler in the development process our customers routinely achieve
significant reductions in CPU time by

+ Optimizing hotspots
« Improving inefficient code paths
+ Fixing algorithmic inefficiencies

With the help of the live memory views as well as the powerful feature set of JProfiler's heap
walker, our customers reduce memory usage by

+ Eliminating memory leaks
+ Reducing unnecessary object creation
+ Optimizing data structures

In total, we estimate that a development team using JProfiler can deliver applications that
consume 20%-50% less CPU time and 10% to 30% less memory.

Reducing Data Transfer Rates

By minimizing unnecessary data exchanges, JProfiler helps in cutting down data transfer costs,
which can be a significant portion of cloud expenses.

Insight into socket operations and HTTP connections becomes possible with JProfilers probes.
Probes provide insight into high-level systems and are not present in simpler profilers. Both
incoming and outgoing connections can be analyzed with JProfiler, For example:

« Incoming HTTP connections split the call tree with configurable granularity, so you can analyze
requests separately

« Qutgoing HTTP connections are shown in the views of the "HTTP client" probe, where
information like URL hot spots, telemetries and single requests are available.

+ The socket probe provides low-level information on data transfer and throughputs

Through the reduction of cacheable calls and the streamlining of communication in general,
reductions in data transfer of 10% to 30% are obtainable when using JProfiler.

The total impact on cloud costs by reducing CPU times, memory consumption and data transfer
is substantial. For organizations that have non-trivial cloud costs, these savings will massively
exceed the investment of purchasing JProfiler licenses for their developers.

Reducing Production Outages

Production outages with JVM-based applications can take many forms: Crashes due to a lack
of memory, unresponsive JVMs stuck in loops or deadlocks, single tasks or requests that don't
perform as expected, and many other problems. The common theme is that these issues are
not observable in development and staging environments and have to be investigated in the
production environment. Having JProfiler at your disposable in these situations can be the
difference between quick recovery and disaster.

In this respect, JProfiler's unique feature set stands out in three key areas: being able to attach
toJVMsin all circumstances, getting high-level information for finding the cause of the problem,
and analyzing post-mortem data from crashes.

Advanced Production Profiling

JProfiler's remote attach functionality allows for profiling in production environments without
introducing significant overhead. This capability is invaluable for diagnosing issues in real-time,
thus minimizing the duration and impact of production outages.

A key capability which is required for this purpose is attaching to JVMs on remote machines.
JProfiler supports "zero-configuration remote attach". We use this term because JProfiler

* Has a built-in SSH client that can be configured for multi-hop tunnels

+ Automatically detects remote platforms, procures the necessary native agent libraries, and
uploads them to the remote machine

* Uses a command line tool to scan the remote machine for running JVMs
* Presents these JVMs in the UI and allows you to start profiling immediately

In addition, production JVMs often run in Docker containers or on Kubernetes clusters. JProfiler
has built-in functionality to look into Docker containers and attach to JVMs that run in containers
managed by Kubernetes.

- @
@ % 5 i O
Start Session Stop Start S Add _ View - Add Confiqure
Ganiter it S 9s Rel @ Attach To Running JVM X
Remote user: e root (via sudo) Switch User
v
v Telemetries . .
Remote container: [} None, showing top level processes Select Container v
Overview Status: All detected HotSpot/OpenJ9 JVMs ~
Memory PID Process Name
. 788 install4j.com.ejt.license.Service start
Recorded Objects 793 /usr/share/jetty9/start jar jetty.state=/var/lib/iettv9/iettv.state iettv-started.xml
799 install4j.com.perfino.server.ServerN @) Select Remote Container X
Receidediilicushput 904 org.apache.catalina.startup.Bootsti
GC Activity 1218 Tnsta\\AJ:.com.p.erﬁno.sen/er.SeNer.l\ No container
1233 msta\\é.lj.com.ejt.demo.se.n/er.Perfm © Docker container:
Classes 1431 com.ejt.demo.server.PerfinoDemof
1434 com.ejt.demo.server.PerfinoDemo$ | spring-petclinic [java -jar /spring-petclinic jar]
Threads 1491 standalone_demo_service Tomcat [catalina.sh run]
CPU Load 1536 com.ejt.demo.server.PerfinoDemof | minikube [/ust/local/bin/entrypoint /sbin/init]
oa 1538 com.ejt.demo.server.PerfinoDemof
GuSienn TIEmErEs 1565 com.eJ:t.demo.sewer.PerfﬁnoDemo!
1569 com.ejt.demo.server.PerfinoDemo§
g 1574 com.eit.demo.server.PerfinoDemo$
"0 Live Memory
aad Legend: Profiling agent loaded JProf ig
Filter:
’
ﬁ Heap Walker
[ox N
Row height: . _ -
m 9 Start Heap Dumpremy: ec] STartJFR | cancel
I @, Detached

Finally, JProfiler also comes with command line tools the let you prepare a JVM for profiling and
control data recording and snapshot saving for profiled JVMs.

Debugging with Advanced Probes

The advanced probes in JProfiler offer deep insights into complex subsystems, enabling
developers to understand and rectify issues swiftly.

Probes are a term that describes the semantic profiling features in JProfiler operating on a
higher level than method-based profiling. They provide analytic access to performance-critical
application layers that pure method call trees cannot provide. JProfiler's probes fall into three
categories:

+ Databases

When database operations via JDBC, JPA, MongoDB or other databases are slow, the developer
needs to see the offending SQL statements, JPA queries or MongoDB operations.
Method-based hotspots are useless in this context because they do not isolate the cause of
the problem.

« Communication mechanisms

HTTP requests and other RPC mechanisms are also problematic in the same way. The URLs
and connection parameters give clues on how to fix a problem, so they have to be available
to the developer.

* JVM subsystems

Other high-level data in the JVM needs to be visible in a fire-fighting operation, such as files,
sockets and the communication with external processes.

; Ei 2 ‘ =
6 W 2 3 ® o B
St petach Session stat | punee Add Bport oW Help oMo Analyze "9 TO0 D
Center Settings cking Bookmark Settings Legend Event:
—
. MongoDB
Threads i
= sta Call Tree 1. Hot Spots 0 Telemetries Events . Tra» Database operations for MongoDB 3
O Monitors & Locks Thread status: o Thread selection: Aggregation level:
0 Allstates v @8 All thread groups v (@ Methods v
; Databases Hot Spot Time Average Time Events
1 Insert: [items] I 331 ms (53 %) 8,724 us 101
JDBC 1 Query: [$cmd] {createlndexes: ?, indexes: ?} Il 197 ms (11 %) 65,789 ps 3
1+ Query: [items] mapReduce {} Il 164 ms (9 %) 82,472 s 2
JPA/Hibernate + Query: [items] mapReduce {index: {$It: 2}} Il 159 ms (9 %) 79,963 s 2
1. Update: [items] findOneAndUpdate {index: ?} 1 38,326 us 2 %) 38,326 ps 1
MongoDB 1+ Query: [items] count {} 136,612 us 2 %) 36,612 ps 1
1+ Query: [$cmd] {dropDatabase: ?} 1 28,705 ps (1 %) 28,705 ps 1
Cassandra 1. Update: [items] {index: {$eq: 2}} | 23,431 ps (1 %) 11,715 ps 2
1+ Query: [items] find { | 18,392 s (1 %) 18,392 us 1
HBase 1+ Insert: [items] bulk write operation | 15,982 ps (0 %) 15,982 us 1
1 Query: [items] distinct index {index: {$It: ?}} | 15,908 ps (0 %) 7,954 ps 2
HTTP. RPC & JEE 1. Retrieve data: [items] | 15,796 ps (0 %) 15,796 us 1
‘ 1 Update: [items] {index: {$lte: 2}} | 13,630 ps (0 %) 13,630 ps 1
1 Delete: [items] {index: {$gt: ?}} | 12,685 ps (0 %) 12,685 ps 1
1. Delete: [items] {index: {$eq: ?}} | 11,672 s (0 %) 11,672 s 1
o JVM & Custom Probes + Query: [$cmd] {aggregate: ?, pipeline: ?, cursor: {}} | 10,786 s (0 %) 5,393 ps 2
1. Update: [items] findOneAndReplace {index: 7} 8,408 ps (0 %) 8,408 ps 1
P 4 Nalata: fitamcl findOnaAndNalata findav: 2 767 1se (0 0L 7647 e 1
==== MBeans
v v
@ 2recordings VM #1 I Snapshot
.
Post-mortem Analysis

JProfiler supports comprehensive post-mortem analysis for data saved with JFR (Java Flight
Recorder), HPROF and PHD, providing a detailed overview of the system's state at the time of
failure, which is crucial for preventing future outages.

Even if aJVM dies because of an OutOfMemoryError or some other crash, these built-in diagnostic
tools can provide data for analysis. To successfully arrive at a swift conclusion, developers need
a profiler that they are familiar with and a tool that provides them with advanced analysis
features. JProfiler is the all-in-one solution that lets developers use the same skills for
development profiling, in-production profiling and analysis of post-mortem data dumps.

v Filter in all text columns v v

Flight Recorder (68 Sample Weight 201 MB to 301 MB

Java Application (598,

@) Java Thread End (84 e
@) Java Thread Park (901
@) Java Thread Sleep (0 events)
@ Java Thread Start (89 events

[4 Object Allocation Sample (1 «/ Selection 1 Hot Spots sk Call Tree Q; Time Line [sample Weight

@ Socket Read (0 events) [jdk.S

o Start Time Event Thread @ Object Class € Sample Weight @
Statistics (1,124 events) 3:34.510 [Feb 7, 2024 9:40:27 A... dump_calculator (ID 57) com jprofiler.core.heapdump.incoming.l... 267 MB
@ Allocation in new TLAB (0 e\ 3:34709 [Feb 7, 2024 9:40:27 A... dump_calculator (ID 57) intl] 237 MB
@ Allocation outside TLAB (0 e 3:34.910 [Feb 7, 2024 9:40:27 A... dump_calculator (ID 57) comjprofiler.core.heapdump.incoming.l... 277 MB
@ File Force (0 events) [jdk Filel | 3:35.310 [Feb 7, 2024 9:40:28 A... dump_calculator (ID 57) com jprofiler.core.heapdump.incoming.... 228 MB
(3:35.509 [Feb 7, 2024 9:40:28 A... dump_calculator (ID 57) com jprofiler.core.heapdump.incoming.l... 224 MB
3:35.710 [Feb 7, 2024 9:40:28 A... dump_calculator (ID 57) int[] 289 MB
| 13:35.911 [Feb 7, 2024 9:40:28 A dump_calculator (ID 57) com jprofiler.core.heapdump.incoming.l... 246 MB
3:36.111 [Feb 7, 2024 9:40:29 A... dump_calculator (ID 57) com jprofiler.core.heapdump.incoming.l... 204 MB
@ Java Exception (0 events) id 3:36.310 [Feb 7, 2024 9:40:29 A dump_calculator (ID 57) com jprofiler.core.heapdump.incoming.I... 211 MB
&) Java Monitor Blocked (0 eve 3:36.516 [Feb 7, 2024 9:40:29 A... dump_calculator (ID 57) com,jprofiler.core.heapdump.incoming.l... 274 MB
@ Java Monitor Inflated (0 eve 3:37.117 [Feb 7, 2024 9:40:30 A... dump_calculator (ID 57) com jprofiler.core.heapdump.incoming.l... 231 MB
@ Java Monitor Wait (8,232 v 3:38.116 [Feb 7, 2024 9:40:31 A... dump_calculator (ID 57) com jprofiler.core.heapdump.incoming.l... 253 MB
3:38.714 [Feb 7, 2024 9:40:31 A... dump_calculator (ID 57) com jprofiler.core.heapdump.incoming.l... 209 MB

0 .

3:39.513 [Feb 7, 2024 9:40 \... dump_calculator (ID 57) int[] 265 MB
3:39.717 [Feb 7, 2024 9:40:32 A... dump_calculator (ID 57) int[] 271 MB

:I'utrai f;o;\ 327";‘7"’,5: 7 7%7 ME

I B B A AN
' 100 MB 200 MB 300 MB 400 MB 500 v

@) Socket Write (0 events) [jdk.¢ I ‘
Java Development Kit (0 events, 533 100000 -
Java Virtual Machine (326,513 e £ 1000 |
Operating System (1,123 events & 10 -+
. | pEEEEEERE mEN N
32 out of 19,904 events Throughput log X

As analyzed elsewhere " the cost of an hour of downtime can be considerable, even millions
of dollars for large companies. By having developers who are familiar with JProfiler, downtimes
can be reduced to a fraction. In these scenarios, the investment into JProfiler is tiny compared
to the damage that is prevented with it.

Comparison With Free Profiling Tools

While free profiling tools provide basic functionality, they often fall short in offering the depth
of analysis, ease of use, and comprehensive features found in JProfiler.

Comparison to Built-In Tools

Java comes with Java Flight Recorder (JFR), a built-in diagnostic tool that has some overlap with
a profiler.JFR is primarily a structured logging tool, best suited for low-overhead data recording
for post-mortem analysis. Its large recording granularity means that it cannot generally be used
as a CPU profiler. Similarly, using HPROF dumps with free-of-charge, but generally hard-to-use
display tools like MAT only provides limited analysis, because there is no way to analyze live
data.

Sometimes, the only available data is from these built-in data dumps. JProfiler fully supports
the corresponding file formats and lets developers use its advance analysis capabilities on them,
all in the same Ul that developers are already familiar with. Whenever possible, the full feature
set of the JProfiler agent can be used for maximum insight with regular profiling sessions.

Comparison to Free-Of-Charge Profilers

While you could use free-of-charge profilers to realize some parts of the savings discussed in
this whitepaper, they will be much smaller due to the much smaller feature set. Discussing all
features that make JProfiler stand out would be a very long list and involve many areas in its
feature set. For the purpose of this whitepaper, we showcase the call tree, a view that is the
core of CPU profilers and that is often used by developers on a daily basis.

(M https://www.pingdom.com/outages/average-cost-of-downtime-per-industry/

8

https://www.pingdom.com/outages/average-cost-of-downtime-per-industry/

JProfiler's unparalleled capabilities related to call trees and hot spots give developers the
necessary tool to understand where optimization work should be focussed. For example, this
includes features like

+ Removing selected parts of the call tree

+ Setting a selected node in the call tree as the new root

+ Collapsing recursions in the call tree

+ Calculating cumulated outgoing calls and backtraces to selected methods

+ Displaying the call tree as an interactive graph or as an interactive flame graph
+ Inlining async executions

+ Splitting the call tree on selected methods with a script

* Recording exceptional method runs for selected methods

+ Defining ad-hoc probes with scripts to create custom analyzes

The above functionality is not present in free-of-charge profilers like VisualVM or Aysnc Profiler
and is just a small list of features that put JProfiler on a different level.

] - . » = 3 -
> 1 K E J o i J =z
Start o Save Session . Start . Stop _start RunGe Add Brport View Help Show Record Back Foruard Show
Center Snapshot Settings | Recordings Recordings Tracking Bookmark Settings Legend CPU Graph
’ Thread status: @) Thread selection: Aggregation level:
Telemetries N
Em Runnable ¥ @8 All thread groups v JEE/Spring ¥

s . @ mmmm— 96.6% - 2,714 ms - 1 inv. HTTP: /buy/quote/send
.'-’- Live Memory I 96.5% - 2,714 ms - 1 inv. com.ejt.web.common.RequestWrappingFilter
I 96.5% - 2,714 ms - 1 inv. com.ejt.web filters. AdConversionFilter
I 06.5% - 2,714 ms - 1 inv. com.ejt.web filters.AliasFilter

y
ﬁ Heap Walker I 35.5% - 2,403 ms - 1 inv. com.ejt.web.external.controllers.products.WebQuoteController
I 67.9% - 1,907 ms - 2 inv. com.ejt. Tree Legend X
/¥ Persistence operations Show in prolj — e
I CPU Views |4.6;/u - .‘129 ms -4 \'nv.. com.ejt.web.¢ Spring bean
/¥ Persistence operations Show in g &) RMIinvocation
Call Tree /¥ JDBC calls Show in probe call tre o R
A 1.3%-37,175 ps - 5 inv. com.ejt. A Web service invocation
Hot Spots 1.3% - 36,625 ps - 1 \'r.w. com / Probe payload container
/¥ Persistence operations Sh Probe payload
Call Graph /. JDBC calls Show in probe. T Waiting for data
0.0% - 3 ps - 4 inv. com.ej oy - y .
.) Missing data, profiled JVM is detached
Outlier Detection . 0.0% - 18 ps - 4 inv. com.gjt.y L] 9 — P
A 0.0% - 35 ps - 5 inv. com.ejtweb Terms And Abbreviations
Complexity Analysis A 00% - 22 ps - 11 inv. com.ejtwe inh. Self time
A 0.0% -4 ps - 2 inv. com.ejt.web.¢ inv. Invocations
Call Tracer A 0.0% -3 ps - 2 inv. com.ejt.web.¢
J— 0.3%-8,771 ps - 1 f"\V- com.ej:t.web. Select a legend entry to see extended help. Selecting
avascrip coon . : nodes in the tree will highlight all corresponding legend
— entries.
Threads g
@ 3recordings ot

The Value of Investing in the Right Tools for High-Stakes Environments

Imagine two mechanics tasked with repairing and optimizing a fleet of high-performance race
cars. One mechanic has a standard set of hand tools. These tools are reliable for basic tasks
and straightforward repairs but lack the precision and efficiency needed for diagnosing and
fixing the complex issues that high-performance race cars often present. This mechanic can
handle common problems but struggles with more complicated issues, taking longer to diagnose
problems and sometimes missing the optimal solution altogether.

On the other hand, the second mechanic is equipped with a state-of-the-art diagnostic machine,
similar to a developer armed with JProfiler. This advanced toolset allows the mechanic to quickly
and accurately diagnose even the most complex issues, that would be time-consuming or even
impossible to detect with basic tools. The high-tech equipment guides the mechanic to the exact

problem area, suggests the best repair methods, and helps optimize the car's performance
beyond its initial state.

The same scenario plays out on the JVM, where the developer with JProfiler not only fixes all
problems faster but is also capable of solving complex issues than developers who only have
access to free-of-charge profiling tools might not be able to handle.

Conclusion

JProfiler represents a strategic investment for development teams aiming for high efficiency,
reduced operational costs, and minimized downtime. Its advanced features, focusing on critical
aspects of modern software development, offer significant advantages over free profiling tools.
The cost of JProfiler is not only justifiable, but is quickly amortized, delivering value that far
exceeds its price tag.

In the fast-evolving world of software development, equipping teams with JProfiler is a decision
that pays dividends in accelerated development cycles, reduced cloud costs, and enhanced
application reliability.

10

	Executive Summary
	Introduction
	Shortening Development Times
	Lowering Cloud Costs
	Reducing Production Outages
	Comparison with Free Profiling Tools
	Conclusion

