
The definitive guide to install4j
Building professional installers on the JVM

© 2025 ej-technologies GmbH. All rights reserved.

Index

Introduction .. 4

A Concepts .. 5
A.1 Projects ... 5
A.2 Building projects ... 11
A.3 Distributing files ... 14
A.4 File sets and components .. 21
A.5 Screens and actions ... 25
A.6 Scripts ... 30
A.7 Generated launchers .. 41
A.8 Form screens .. 51
A.9 Layout groups ... 56
A.10 Styles .. 60
A.11 Look & feel .. 66
A.12 Variables ... 68
A.13 Localization .. 86
A.14 VM parameters .. 91
A.15 JRE bundles ... 96
A.16 Services .. 102
A.17 Elevation of privileges ... 107
A.18 Merged projects ... 113
A.19 Auto-update functionality .. 119
A.20 Checking for updates .. 124
A.21 Background auto-updates ... 130
A.22 Version numbers ... 134
A.23 Media files .. 137
A.24 Data files ... 144
A.25 Code signing ... 148
A.26 Apple App Store Submission .. 153
A.27 Styling of DMGs on macOS .. 156

B Configuring installer beans .. 160
B.1 Screens & actions step ... 160
B.2 Custom code .. 165
B.3 Configuring applications ... 167
B.4 Configuring screens .. 176
B.5 Configuring actions ... 182
B.6 Configuring groups .. 195

B.7 Configuring form components .. 198
B.8 Configuring layout groups .. 204
B.9 Configuring styles .. 208

C Generated installers .. 210
C.1 Installer modes .. 210
C.2 Command-line options .. 212
C.3 Response files .. 217
C.4 JRE search .. 219
C.5 HTTP requests ... 220
C.6 Updates .. 222
C.7 Error handling ... 224

D API .. 226
D.1 Installer API ... 226
D.2 Launcher API .. 230
D.3 Extensions .. 232

E Command line tools .. 234
E.1 Command line compiler ... 234
E.2 Pre-Created JRE Bundles ... 238
E.3 Gradle plugin ... 239
E.4 Maven plugin ... 246
E.5 Ant task .. 255

Introduction To Install4j
What is install4j?

install4j is a professional tool for building installers for multiple platforms, especially for
applications that run on the Java Virtual Machine.

Main features that distinguish install4j are:

• Flexible configuration of screens and actions
In your installers you can define your own flow of installer screens and installer
actions [p. 25] to gather user input and initialize your installation with it. Configurable
form screens [p. 51] allow you to create arbitrary forms that work in GUI and console
mode [p. 210]. A rich set of configurable actions handles a variety of tasks and is
extensible with the API [p. 226].

• Generation of native launchers
install4j generates native launchers for console, GUI and service executables [p. 102].
These launchers offer variety of features such as flexible module and classpath
configuration, version-specific VM parameters [p. 91], icons, splash screens and much
more. At runtime, there is launcher API [p. 230] that interacts with some of these features
and with the variable system of the installer.

• Auto-update functionality
The requirements for automatic updates [p. 119] are very individual, so install4j offers a
template-base mechanism for update-downloaders. Update downloaders are fully
configurable installer applications with their own flow of screens and actions, that can
handles interactive auto-update, mandatory auto-update at startup and background
update.

• Bundling of Java Runtime Environments
Bundling a Java runtime [p. 96] is made easy with the pre-build JRE bundles and the
bundle creation tools in install4j. JRE bundles can also be downloaded on the fly if no
JRE installation is found.

The install4j UI is delivered as a desktop application. Building installers is not only possible
in the IDE, but also with the command line compiler [p. 234] as well as the plugins for
Gradle [p. 239], Maven [p. 246] and Ant [p. 255].

How do I continue?

The "Concepts" section is intended to be read in sequence, with later help topics building
on the content of previous ones. The sections at the end are optional readings that should
be consulted if you need certain features.

We appreciate your feedback. If you feel that there's a lack of documentation in a certain
area or if you find inaccuracies in the documentation, please don't hesitate to contact us
at support@ej-technologies.com.

4

mailto:support@ej-technologies.com

A Concepts

A.1 Projects Overview

Project files

A project in install4j is the collection of all information required to build media files, the
deliverables that can be distributed to the target platforms. A project is saved to a single
XML file with an .install4j extension. Project files are platform-independent, you can
open and compile them on any supported platform. The compilation step will produce
the media files from the project definition. All paths that you enter in install4j are saved
as absolute paths by default. This allows you to move the project file to a different location
on your computer, and the compilation will still work. If you wish to use your project file on
multiple computers or platforms or compile your launchers with automatic build agents,
it is more convenient to use relative paths. On the "General Settings->Project Options" step,
install4j provides an option to convert all paths to relative paths when you save your
project.

install4j keeps a list of recently opened projects under Project->Reopen. By default, install4j
opens the last project on startup. This behavior can be changed in the preferences dialog
by choosing Project->Preferences from the main menu. You can pass the name of a project
file as a command line parameter to install4j to open it on startup. Also, the command
line compiler [p. 234] expects the project file name as its argument.

Contents of a project

The following paragraphs give a high-level overview of the elements that you can configure
in install4j. Each of the configuration sections in install4j as shown in the screenshots below
represents a top-level concept in install4j.

Typically, a project defines the distribution of a single application. An application has an
automatically generated application ID [p. 222] that allows installers to recognize previous
installations.

At the core of the project definition is the sequence of installer screens and actions [p. 25].
They determine what the users see, what information they can enter and what the installer
does. install4j offers a lot of flexibility regarding the configuration of your installer. Besides
creating traditional application installers, install4j is equally suited to create small
applications that modify the target system in some way.

5

The install4j runtime is localized into many languages. You can configure your installers
to support one or multiple languages [p. 86].

Most installers install files to a dedicated directory and optionally to several existing
directories on the target computer. That's what the "Files" section [p. 14] in the install4j IDE
is for. Here, you define a "distribution tree", and optionally "installation components" which
can also be downloaded on demand [p. 144].

6

The actual installation of these files is handled by the "Install files" action which is part of
the default project template. If your installers should not install any files, you can remove
that action and ignore the "Files" configuration section. When the "Install files" action is
executed, it creates an uninstaller. The uninstaller offers the same flexibility as the installer
and is configured in the same way.

Unless the installed files are only static data, you will need application launchers to allow
the user to start your application. You can define one or several application launchers in
the "Launchers" section [p. 41]. Launchers generated by install4j have a rich set of
configuration options including an optional splash screen or advanced features like a
single instance mode. Configured launchers can also be "services" that run independently
of logged-on users. install4j offers special installation screens and actions for services.

7

install4j has many advanced features concerning bundling of JREs or the runtime-detection
of an installed JRE. Bundling of JREs [p. 96] is configured on the "JRE bundles" step and can
be refined on a per-media file basis. If you do not wish to bundle a JRE, you define Java
version constraints and a search sequence [p. 41] for both your installers and your
generated launchers. In this way, you ensure that the launchers run with the same JRE as
your installers.

Finally, the media file definitions define the actual executables that you distribute. They
capture platform-specific information and provide several ways to override project settings.
You typically define one media file for each platform. Multiple media files for the same
platform can be added as needed. Media files are either installers or archives. Archives
simply capture the launchers and the distribution tree. They are a limited way to create
a distribution and might not be suitable if you rely on the flexibility that is offered by
installers.

8

Project reports

install4j projects can become quite complex, especially the definition of the installer can
be very hierarchical with hundreds of nested elements each of which may have important
configuration in their properties. To check all your project settings on a single page, or to
print out your project definition, install4j offers a project report. The action to create
such a report is available in the toolbar. When you generate a report, an HTML file is written
to disk together with a directory named install4j_images that holds all referenced
image files.

If you are looking for certain text value in a property or a particular piece of code in one
of your scripts, use the search functionality in the browser when viewing the exported
report to cover all parts of the project.

IDs of project elements

All elements in projects that can be referenced at runtime, like installation components,
launchers, screens, actions, form components or media files have an automatically
assigned ID. You can toggle the display of IDs globally in the toolbar. You may need to use
IDs when using the API in scripts. Scripts are written in plain Java in a code editor provided
by install4j.

If you would rather not reference automatically generated IDs in your scripts, you can
specify your own custom IDs. Custom IDs can be assigned by using the "Rename" action
for the selected element and selecting the "Custom ID" check box in the rename dialog.
Custom IDs must not start with a number. The numeric internal ID is never discarded. If
you disable the custom ID at a later point, the ID will be reverted to the previous numeric
ID.

9

The "Insert ID" action in the script editor inserts custom IDs instead of the numeric IDs. All
get...ById() methods in the API accept both the custom ID and the internal numeric ID.
This means that you can set a custom ID without breaking anything in the project.

Undo in all views

All changes in the install4j IDE can be undone with the undo toolbar button. The arrow on
the right side opens a list of changes in a popup menu for inspection. Selecting one of
these entries undoes all changes up to an including the selected change. The same feature
is available for redoing undone changes.

10

A.2 Building Projects
You can build a project from the IDE or from the command line. The command line compiler
executable is bin/install4jc and takes the project name as an argument. On macOS,
that directory is inside the application bundle and can be shown in the Finder with the
"Tools" toolbar button. That same toolbar button also allows you to create symlinks for all
command line tools in /usr/local/bin so they can be directly invoked in a terminal.

There are plugins for Gradle [p. 239], Maven [p. 246] and Ant [p. 255] for configuring the build
in a way that is idiomatic for the respective build systems. In the end, all plugins invoke
the command line compiler and for each command line compiler option there is a
corresponding setting in the build system plugins.

When you start a build, install4j will check if all required information has been entered. If
the build has been started from the install4j IDE, the corresponding step will be activated,
and the offending setting will be focused, so it is recommended to try out your builds in
the IDE first.

Build modes

There are three different build modes that correspond to different toolbar buttons in the
install4j IDE or different command-line options in the command line compiler.

When a regularbuild is started, the media files [p. 137] are built and placed in the media
file output directory that is configured on the "General Settings->Media File Options" step.

Previous media files are overwritten, but a single build may not produce the same media
file twice. On the "Customize project defaults->Media file name" step of the media wizard,
you can adjust the media file name if the global pattern resolves to the same name for
multiple media files. You can also use a compiler variable [p. 68] for the media file output
directory and override it for each media file to avoid name clashes.

11

If you just want to check if the build will not produce any errors or warnings, you can start
a dry run. The media files will be built in the temporary directory but not moved to their
final location. For command line builds, use the --test option.

Building media files can take a long time, especially if you package a lot of files that have
to be collected and compressed. To facilitate faster development, install4j offers to build
an installer incrementally. The corresponding command-line option is --incremental.

This build mode is intended for testing changes that you make in the installer
configuration [p. 160] such as adding, removing or modifying screens, actions and form
components.

The action looks for the first media file in the "Media" step that can be run on the current
platform and has an installer media file type [p. 137]. The media file must be already built,
otherwise the action will terminate with an error message.

All scripts are recompiled and the installer configuration files are regenerated. The installed
files are taken from the full build of the media file. If you change the definition of the
distribution tree [p. 14] and expect to see these changes in the installer, you have to rebuild
the media file with a regular build.

When the build is complete, the installer is started, so you can try out your changes
immediately. With respect to a full build, the compilation time is reduced substantially,
typically to a couple of seconds. A full build can take several minutes, depending on the
number of files that are included and the selected type of compression.

Selective building of media files

Instead of building all media files, you can build only a subset by explicitly selecting the
desired media files on the "Build" step.

This selection is persistent, but the command line build will still build all media files unless
you pass the --build-selected option. This allows you to build a suitable media file in
the IDE for testing without impacting the command line build on your build server.

To specify media files from the command line, pass the --build-ids=ID[,ID] or the
--media-types=T[,T] option. IDs of media files are visible in the "Media" step if the "Show
IDs" toolbar toggle button is selected. Selecting media files by their media type ID is useful

12

if you build different media files on different platforms. The --list-media-types
command-line option prints the full list of supported media types and exits.

Faster builds during development

During development, you can speed up your build by compromising on the size of the
produced media files. By switching off LZMA and Pack200 compression [p. 137], builds times
can be reduced by 50% and more. By disabling JRE bundling, the generated installer will
start up faster, because the JRE does not have to be unpacked. Finally, disabling code
signing will prevent dialogs that ask for keystore passwords from being shown.

All these options for making builds faster are also available for the command line compiler,
the corresponding options are --faster for disabling advanced compressions,
-disable-bundling for ignoring JRE bundles and --disable-signing for building without
code signing.

Trouble-shooting build failures

By default, basic progress information is shown in the build output and warning messages
are highlighted. Any error will stop the build, and the command line compiler will exit with
a non-zero return code. For debugging purposes, there are two options that give access
to more detailed information.

With the --verbose option, install4j prints more information about interesting events
during the build. For example, all compiler variable replacements are shown in detail. If
the source of an error message is not clear, switching on verbose mode can give you
more context about the compilation phase that caused the failure. In addition, a
compilation failure that occurs while verbose mode is enabled will print the entire stack
trace to the build output.

Secondly, the install4j compiler prepares its artifacts in a temporary directory which is
deleted after the build completes. With the --preserve option you can ask install4j to
keep this temporary directory so that you can inspect intermediate artifacts.

13

A.3 Distributing Files
In the "Files" step of the install4j IDE, you define your distribution tree, collecting files from
different places to be distributed in the generated media files. In addition, you can optionally
define installation components.

On the "Define Distribution Tree" step, you add and edit the structural elements that make
up the distribution tree. You can create your own directory structure and "mount" directories
from your file system or add single files into arbitrary directories. With drag and drop and
double-clicking on nodes you can modify an existing distribution tree.

On the "View Results" step, you then see the actual file tree as it will be collected and
distributed by the generated media files [p. 137]. Go to this step to check whether your
actions on the "Define Distribution Tree" step actually produce the desired results.

Root container nodes

The top-level nodes in the distribution tree are called file sets. There is one "Default file
set" node that cannot be deleted or renamed. The relative paths of all files that are added

14

to a file set must be unique. See the help topic on file sets and installation
components [p. 21] for more information on how to use file sets.

Within a single file set, it causes an error at build time if the installation paths for two files
collide. For example, if you have added the contents of two different directories into the
same folder in the distribution tree and both directories contain a file file.txt, building
the project will fail with a corresponding error message. In this case, you have to exclude
the file in one of the directory entries. This is only an issue for files, subdirectory hierarchies
on the other hand are merged and can overlap between multiple directory entries and
explicitly added folders.

You can create new file sets with the New File Set action in the add menu on the right
side. Each file set has its own "Installation directory" root. If you define custom roots that
should be present in multiple file sets, you have to duplicate them.

The child nodes of a file set are called installation roots. Their location is resolved when
the installer runs. There are two types of roots:

• The default root of the distribution tree is labeled "Installation directory" and has a
special icon. This is the directory where your application will be installed on the target

system. The actual directory location is dependent on user actions at the time of
installation. In regular installers, a user can select an arbitrary directory where the
application should be installed. For Linux package media files, a user can override the
default directory with command line parameters. For archives, the files are simply
extracted into a common top-level directory.

For installers, the installation directory will only be created if you execute an "Install files"
action in the installer configuration [p. 160]. By default, the "Install files" action is added
to the "Installation" screen. If your installer should not create an installation directory,
you can ignore this root and remove the "Install files" action.

More information on the various installer modes is available in the corresponding help
topic [p. 210].

• If your application needs to install files into directories outside the main installation
directory, you can add customroots to the distribution tree. This is done with the New
Root action in the add menu on the right side or in the context menu. The actual
location of this root is defined by its name and has to resolve to a valid directory at
runtime.

There are several possibilities for using custom roots. The name of a custom root can
be

15

• a fixed absolute path known at compile-time

This works for custom environments where there is a fixed policy for certain locations.
For example, if you have to install some files to D:\apps\myapp, you can enter that
path as the name for your custom root.

If you build installers for different platforms, that root is likely to be different for each
platform. In that case, you can use a compiler variable [p. 68] for the name of the
custom root and override its value for each media file on the "Customize project
defaults->Compiler variables" step of the media wizard.

• an installer variable that you resolve at runtime

If you would like to install files into the directory of an already installed application,
such as a plugin for your own application, you can use an installer variable that you
resolve at runtime. Installer variables have an installer: prefix, such as
${installer:rootDir}, and can be set in a variety of ways [p. 68].

The most common case would be to add a "Directory selection" screen to the screen
sequence [p. 160] and set its variable name property to the variable that you have
used as the name of the custom root. For the above example, that would be rootDir,
without the ${installer:...} variable syntax.

Alternatively, you could use a "Set a variable" action to determine the location
programmatically.

• a pre-defined installer variable

install4j offers several variables for "magic folders" that point to common directories,
such as ${installer:sys.userHome} which resolves to the user home directory or
${installer:sys.system32Dir} which resolves to the system32 directory on
Windows. Have a look at the "Cross-platform variables" category in the installer
variables selector for a list of variables that are suitable for all platforms.

If a custom installation root is not bound at runtime or if it points to an invalid directory,
the contained files will not be installed and there will be no error messages. If you require

16

error handling, you can use a "Run a script" action before the "Install files" action with
the appropriate error message and failure strategy.

For archive media file types, custom installation roots are not installed. If you require
these custom roots for your installation, you cannot use archives.

An alternative way to redirect installed files to different directories is to use the "Directory
resolver" property of the "Install files" actions. Also, the "File filter" property of that action
can be used to conditionally install files. The use of these properties is only recommended
if you require their full flexibility. Otherwise, using custom installation roots and installation
components [p. 21] is a better approach.

Content nodes

Adding files to the distribution tree is done with the Add Files And Directories action in
the add menu on the right side or in the context menu. In the first step of the file wizard
you choose the source or the files:

• With a directory entry, you recursively add the contents of a selected directory. You
have the possibility of excluding certain files and subdirectories and exclude files based
on their file suffix. In the configuration wizard you can override the default settings for
the overwrite and uninstall policies as well as the Unix file and directory modes.

• Alternatively, you can add a number of single files, possibly from different locations,
into a single directory. Each selected file will be added as a separate node that has its
own settings and can be moved independently in the distribution tree.

17

With the Copy action you can add a file list from the system clipboard. The file list
must consist of file entries that are separated by line breaks or the standard path
separator (";" on Windows and ":" on Unix). Each file entry can either be absolute or
relative. On the first occurrence of a relative path, a directory chooser is shown where
you select the root directory against which all further relative paths should be resolved.

• Finally, files can be passed externally through a compiler variable. This can be useful
if you collect lists of files in your build tool and want to use that information to
dynamically build the distribution tree. The command line compiler [p. 234] as well as
the Gradle [p. 239], Maven [p. 246] and Ant [p. 255] plugins have mechanisms for setting
compiler variables for the build.

The string that separates different files in the variable value is configurable and set to
the platform-specific path separator by default.

Folder nodes

Fixed folder nodes can occur below the root nodes to build nested directory structures.
Using the "Edit entry" action on a fixed folder node allows you to edit the unix mode of the
folder.

18

Usually, a directory structure will be copied from a staged distribution directory, but fixed
folders are useful under several circumstances. For example, if you want to apply different
top-level prefix directories, you can add corresponding folder.

Also, fixed folders and single files in fixed folders have a higher precedence than folders
and files from directory entries. In this way, you override settings for certain folders or files.
For example, if a "contents of a directory" node includes the file a/b/c.txt, you can
manually add nested folders a and b and then add the single file node c.txt. You could
then set a different overwrite or uninstall policy for the file. Also, you could override the
Unix mode of the directories.

Compiler variables as directory or file names

Using compiler variables [p. 68] as directory or file names in the distribution tree allows
you to make compile-time conditional includes. The following rules apply:

• if a directory node resolves to the empty string after variable replacement, the directory
and any contained entries will not be included in the distribution.

• if the source directory of a "contents of directory" node resolves to the empty string after
variable replacement, no files will be included by that entry.

• if the file name of a single file node resolves to the empty string after variable
replacement, no file will be included.

For conditions that are evaluated at runtime or for adding platform-dependent files, you
should use files sets [p. 21] instead.

File options

On the "File options" step, a number of settings determine the behavior of the installer and
uninstaller. When files are already present, you can choose a number of strategies for the
"Install files" actions by changing the "Default overwrite policy". Similarly, the "Uninstall files"
action decides what to do for installed files based on the "Default uninstall policy" setting.
On Unix, the "Install files" action assigns permissions to installed files and directories as
configured in the default Unix file and directory modes on this step. All these options can
be overridden in the configuration of the content nodes.

Other available options concern the compilation phase. You can choose the source of
the file modification times, specify a global pattern of files and directories that should be
ignored when collecting files and select a strategy for what should happen if some specified
files are missing at build time.

19

20

A.4 File Sets And Installation Components
install4j offers two mechanisms to group files: File sets and installation components. File
sets are configured in the distribution tree [p. 14] and can be used in a variety of use cases
as building blocks for your installers. Installation components are presented to the user
at runtime and mark certain parts of the distribution tree that have to be installed if the
user chooses an installation component.

Both file sets and installation components are optional concepts that can be ignored if
they are not required for an installer project: There is always a "Default file set" to which
you can add files in the distribution tree and on the "Installation components" step you do
not have to add any components.

File sets

File sets are a way to group files in the distribution tree. When you need to select files in
other parts of the install4j IDE, you can select the file set node instead of selecting single
files and directories. Each file set has a special "Installation directory" child node that maps
to the installation directory selected by the user at run time. Custom installation roots are
defined separately for different file sets. If you require the same installation root in two
different file sets, you simply define the same root twice.

The installation of file sets can be toggled programmatically at run time. The code snippet
to disable the installation of a file set at run time is

context.getFileSetById("123").setSelected(false);

if the ID of the file set is "123". You could insert this snippet into a "Run script" action that is
placed before the "Install files" action on the Installer->Screens & Actions step [p. 160]. File
set IDs can be displayed by toggling the "Show IDs" toolbar button.

A common use case is to exclude platform-specific files from certain media files. You can
define file sets for different platforms and exclude all unneeded file sets in the "Customize
project defaults->Exclude files" step in the media wizard. This is an example of how to use
file sets at design time in the install4j IDE.

Within one file set, all relative paths must be unique. However, the same relative path can
be present in different file sets. Suppose you have different DLL files for Windows 8 and for
Windows 10 and higher. You can create two file sets so that the installer contains both
alternative versions. Once you find out whether you run on Windows 8 or on Windows 10
and higher, you can disable the file set that should not be installed with the code snippet

21

shown above. By default, all included file sets are installed. If the same relative path occurs
twice, it is undefined which version is used. In this case you have to make sure to disable
the file sets that are not appropriate.

Installation components

If you define installation components, the installer can ask the user which components
should be installed. In the configuration of an installation component, you mark the files
that are required for this component. A single file or directory can be required by multiple
installation components.

Installation components are defined in a folder hierarchy. This means you can have groups
of installation components that are enabled or disabled with a single click. Most options
in the configuration of an installation component are used by the "Installation components"
screen [p. 176]. They decide how the installation component is presented to the user,
whether it should be initially selected or mandatory, and if it has dependencies on other
installation components that should be automatically selected. To internationalize the
name of the component for different media files, use custom localization keys [p. 68].

The user will only be able to choose installation components if an "Installation components
selector" form component is present somewhere in the installer. The "Installation
components" screen that is part of the default project template contains that form
component and is only displayed at runtime if you have defined any installation
components.

22

Another important feature of installation components is that they can be marked as
"downloadable". If you configure the download option [p. 144] in the "Data files" step of the
media wizard, separate data files will be created for the downloadable components.

install4j also offers a two-step selection for installation components: In the first step, the
user is asked for the desired "installation type". An installation type is a certain selection
of installation components. Typical installation type sets are [Full, Minimum, Customize]
or [Server, Client, All]. The display and the configuration of installation types is handled by
the "Installation type" screen.

For each configured installation type, you can decide whether the user should be able to
further customize the associated installation component selection in the "Installation
components" screen or not. If the installation type is not customizable, the installer variable
sys.preventComponentCustomization is set to true and a subsequent "Installation
components" screen is not displayed.

23

The IDs of installation components can be used in expressions, scripts and custom code
if you want to check whether the installation component has been selected for installation
or not. A typical condition expression for an action would be

context.getInstallationComponentById("123").isSelected()

if the ID of the component is "123". In this way you can conditionally execute actions
depending on whether a component is selected or not.

24

A.5 Screens And Actions
With screens and actions you configure two separate aspects of the installer: the user
interface that is displayed by your installer and uninstaller on the one hand and the actual
installation and uninstallation on the other hand. Each screen can have a list of actions
attached that are executed when the user advances to the next screen.

install4j offers a wide variety of pre-defined screens and actions that you can arrange
according to your needs. Some of these screens and actions are generic and can be used
as programming elements, such as the "Form" [p. 51] screen and the "Run script" action.

While this chapter presents an overview of the concepts related to the screen and action
system, a later section in the documentation [p. 160] discusses how to configure the related
beans in the install4j IDE in detail.

Installer applications

Building an install4j project creates media files which are either installers or archives. An
installer is defined by a sequence of screens and actions and is executed when the user
executes the media file. Installers usually install an uninstaller which removes the
installation. The uninstaller, too, is a freely configurable sequence of screens and actions.
Archives do not have an installer or uninstaller, and the user extracts the contained data
with other tools.

In addition to the installer and uninstaller, you can define custom installer
applications [p. 167] that are added to the distribution tree. These custom installer
applications can use the same screens and actions that the installer can use. Unlike
installer and uninstaller, they are also added to archives. They can be used to write separate
maintenance applications for your installations that are either invoked directly by the user
or programatically by your application.

The most common use case for custom installer applications is to create auto-updaters.
Auto-updaters are described in detail in a separate help topic [p. 119].

Executing first-run tasks for archives

Another important use-case for custom installer applications is to create a first-run installer
for archives. While there is no need to install files to the installation directory in the case

25

of an archive, there will usually be screens and actions that set up the environment of
your application.

In order to avoid the duplication of screens and actions, install4j offers the possibility to
create links to screens and actions. In this way, a custom installer application can include
a partial set of the screens and actions in the installer. Such a first-run installer should be
added to the .install4j runtime directory so that it is not exposed as part of the
application. This is done by specifying its "Executable directory" property as the empty
string.

Such a first-run installer application is invoked programatically with the com.install4j.
api.launcher.ApplicationLauncher utility class. To determine whether any of the
generated launchers of an installed archive are run for the first time, call

ApplicationLauncher.isNewArchiveInstallation()

at the beginning of your main method. If it returns true, call launchApplication or
launchApplicationInProcess to execute the installer application. Check the Javadoc
for detailed information about this API.

Control flow

At runtime, install4j instantiates all screens and actions and organizes the screen flow
and action execution. There are a number of aspects regarding this control flow that you
can customize in the install4j IDE.

Both screens [p. 176] and actions [p. 182] have an optional "Condition expression" property
that can be used to conditionally show screens and execute actions. Screens have a
"Validation expression" property that is invoked when the user clicks on the "Next" button
allowing you to check whether the user input is valid and whether to advance to the next
screen. These are the most commonly used hooks in the control flow for "programming"
the installer.

All "expression" properties in install4j can be simple Java expressions or scripts of Java
code as described in the help topic on scripts [p. 30].

Another hook into the control flow regarding screens is the ability to declare every screen
as a "Finish" screen, meaning that the "Next" button will be replaced with a "Finish" button

26

and the installer will quit after that button is pressed. Consider applying the "Banner" style
to the screen in that case because it alerts the user that a special screen has been reached.

If you use a series of screens to get user input, users expect to be able to go back to
previous screens in order to review or change their input. This is fine as long as no actions
are attached to the screen. When actions have been executed, the question arises what
should happen if the user goes back to a screen with actions and clicks on "Next" again.

By default, install4j executes actions only once, but that may not be what you want if the
actions operate on the user input in a screen. Because install4j has no way of knowing
what should happen in this case, it applies a "Safe back button" policy by default: if the
previous screen had actions attached, the back button is not visible. You can change this
policy for each screen, either making the back button always visible or always hidden.
The "Can be executed multiple times" property of each action is relevant in the case where
you make the back button always visible for the next screen.

Rollback behavior

At any time in the installation sequence the user can hit the "Cancel" button. The only
exception in the standard screens is the "Display progress" form template screen where
the "Cancel" button has been disabled. install4j is able to completely roll back any
modification performed by its standard actions.

However, the expectation of a user might not be that the installation is rolled back. Consider
a series of post-installation screens that the user doesn't feel like filling out. Depending
on the installer, the user may feel that installation will work even if the installer is canceled
at that point. A complete rollback would then not be desirable. For this purpose, install4j
offers the concept of a "rollback barrier". Any action or screen can be a rollback barrier
which means that any actions before and including that action or screen will not be rolled
back if the user cancels later on.

By default, only the "Installation screen" is a rollback barrier. This means that if the user
cancels while the actions attached to the installation screen are running, everything is
rolled back. If the user cancels on any of the following screens, nothing that was performed
on or before the installation screen is rolled back. With the "Rollback barrier" property of
actions and screens you can make this behavior more fine-grained and customize it
according to your own needs.

27

Error handling

Every action has two possible outcomes: failure or success. If an action succeeds, the next
action is invoked. When the last action of a screen is reached, the next screen is displayed.
What should happen if an action doesn't succeed? This depends on how important the
action is to your installation. If your application is not able to run without the successful
execution of this action, the installer should fail and initiate a rollback. However, many
actions are of peripheral importance, such as the creation of a desktop link. Declaring
that the installer has failed because a desktop link could not be created and rolling back
the entire installation would be counterproductive. That's why the failure of an action is
ignored by install4j by default. If a possible failure of an action is critical, you can configure
its "Failure strategy" to either ask the user on whether to continue or to quit immediately.

Standard actions in install4j fail silently, for example, the "Create a desktop link" action will
not display an error message if the link could not be created. For all available failure
strategies, you can configure an error message that is displayed in the case of failure.
The "Install files" action has its own, more granular failure handling mechanism that is
automatically invoked after the installation of each file.

Standard screens and form templates

install4j offers a series of standard screens that are fully localized and serve a specific
purpose. These standard screens have a preferred order. When you insert such a screen,
it will insert itself automatically in the correct position. This order is not mandated, you can
re-order the screens in any way you like, however, they may not yield the desired result
anymore. If, for example, you place the "Services" screen after the screen with the "Install
service" actions (typically the "Installation" screen), the "Services" screen will not be able
to modify the service installations anymore and the default values are used.

28

The form templates don't have a fully defined purpose, their messages are configurable
and empty by default. For example, the "Display progress" screen is similar to the
"Installation" screen, however, the title and the subtitle are configurable. For templates
also do not have any restriction with respect to how many times they can occur. While
the "Installation" screen (and other screens) can occur only once for an installer, the
"Display progress" screen could be used multiple times.

Form templates are built with form components and can be a starting point for developing
your own screen. Forms allow you to freely define the contents of a screen and are
described in a separate help topic [p. 51].

29

A.6 Scripts
All configurable beans on the Installer->Screens & Actions [p. 160] step have script properties
that allow you to customize their behavior, such as executing some code when a button
is clicked or a custom initialization of a text field. Also, control flow in the screen and action
system is done with scripts and expressions.

Design-time JDK

By default, install4j uses the bundled JRE [p. 96] for compiling scripts up to the Java major
version that install4j runs with itself. For JRE bundles with higher Java major versions,
install4j uses the current JRE instead.

For special requirements, you can invoke "Settings->Java Editor Settings" in the script
editor and select a different JDK for that purpose. The list of available design-time JDKs
is saved globally for your entire install4j installation and not for the current project. The
only information saved in your project is the name of the JDK configuration. In this way,
you can bind a suitable JDK on other installations and on other platforms.

The design-time JDK is used for the following purposes:

• Code completion
The Java code editor will show completion proposals for classes and methods in the
JDK runtime library from the design-time JDK.

• Context-sensitive Javadoc help

If the design-time JDK from the bundled JRE configuration is used, the corresponding
Javadoc from the Oracle website is shown.

If you manually configure a design-time JDK, you can enter a Javadoc directory to get
context-sensitive Javadoc help in the code editor for all classes in the JDK runtime
library. By default, context-sensitive Javadoc help is only available for the install4j API.

30

• Code compilation
install4j uses a bundled eclipse compiler, so it does not use the compiler from the
design-time JDK. However, it needs a runtime library against which scripts entered in
the installer configuration [p. 25] are compiled. The version of that JDK should correspond
to the minimum Java version for the project. This is automatically the case if the
design-time JDK from the bundled JRE configuration is used. For a manually selected
design-time JRE, if its minimum Java version is higher than the minimum Java version
of the project, runtime errors can occur if you accidentally use newer classes and
method.

The code editor

The Java code editor is shown for script properties on the Installer->Screens &
Actions [p. 160] step for any configurable bean including screens, actions, form components
and groups, or when you edit the code for static fields and methods on the
Installer->Screens & Actions->Custom Code [p. 165] step.

The box above the text editor shows the available parameters as well as the required
return type. If parameters or return types are classes - and not primitive types - they will

31

be shown as hyperlinks. Clicking on such a hyperlink opens the Javadoc in the external
browser.

To get more information on classes from the com.install4j.* packages, choose
Help->Show API Documentation from the menu and read the help topic for the install4j
API [p. 226].

A number of packages can be used without using fully qualified class names. Those
packages are:

• java.util.*
• java.io.*
• javax.swing.*
• com.install4j.api.*
• com.install4j.api.beans.*
• com.install4j.api.context.*
• com.install4j.api.events.*
• com.install4j.api.screens.*
• com.install4j.api.actions.*
• com.install4j.api.formcomponents.*
• com.install4j.api.update.*
• com.install4j.api.windows.*
• com.install4j.api.unix.*

You can put a number of import statements as the first lines in the text area to avoid using
fully qualified class names. For example:

import java.awt.Color;
import java.awt.EventQueue;

EventQueue.invokeLater(() -> {
 JTextField textField =
(JTextField)formEnvironment.getFormComponentById("123").getConfigurationObject();
 textField.setBackground(Color.RED);
});

If the gutter icon in the top right corner of the dialog is green, your script is going to compile
unless you have disabled error analysis in the Java editor settings that are accessible in
the menu of the script editor dialog.

In some situations, you may want to try the actual compilation. Choosing Code->Test
Compile from the menu will compile the script and display any errors in a separate dialog.
Saving your script with the OK button will not test the syntactic correctness of the script.
When your install4j project is compiled, the script will also be compiled and errors will be
reported.

Expressions or scripts

Java code properties can either be expressions or scripts. install4j automatically detects
whether you have entered an expression or a script.

An expression does not have a trailing semicolon and evaluates to the required return
type. For example:

32

!context.isUnattended() && !context.isConsole()

The above example would work as the condition expression of an action and skip the
action for unattended or console installations.

A script consists of a series of Java statements with a return statement of the required
return type as the last statement. For example:

if (!context.getBooleanVariable("enterDetails")) {
 context.goForward(2, true, true);
}
return true;

The above example would work as the validation expression of a screen. If the variable
with name "enterDetails" is not set to true, it would skip two screens forward, checking the
conditions of the target screen as well as executing the actions of the current screen.

Script parameters

The primary interface to interact with the installer or uninstaller is the context which is
nearly always among the available parameters. The context provides information about
the current installation and gives access to variables, screens, actions and other elements
of the installation or uninstallation. The parameter is of type

• com.install4j.api.context.InstallerContext for screens and actions in the
installation mode

• com.install4j.api.context.UninstallerContext for screens and actions in the
uninstallation mode

• com.install4j.api.context.Context for form components.

Apart from the context, the available parameters include the action, screen or form
component to which the Java code property belongs. If you know the implementation
class, you can cast to it and modify the object as needed.

Many other useful static methods are also contained in the class com.install4j.api.
Util, for example, OS detection methods or methods to display messages in a way that
works for all installer modes:

if (Util.isMacOS()) {
 Util.showWarningMessage("This warning is only shown on macOS");
}

Editor features

The Java editor offers the following code assistance powered by the eclipse platform:

• Code completion

Code->Complete Code or the corresponding keyboard shortcut brings up a popup
with code completion proposals. Also, typing any character shows this popup if the
"Show suggestions as you type" setting is enabled and completions are available.

33

While the popup is displayed, you can continue to type or delete characters with
Backspace and the popup will be updated accordingly. "Camel-hump completion" is
supported, meaning typing NPE and invoking code completion will propose
NullPointerException among other classes. If you accept a class that is not
automatically imported, the fully qualified name will be inserted unless the "Auto-import
classes during code completion" setting is enabled, in which case an import statement
will be added at the top if required.

The completion popup can suggest:

• Variables and default parameters. Default parameters are displayed in bold font.
• Packages (when typing an import statement).
• Classes. When a constructor for an abstract class is completed, method stubs are

inserted if the "Insert method" stubs setting is enabled.
• Fields (when the context is a class).
• Methods (when the context is a class or the parameter list of a method).
• Code templates that expand when the TAB key is pressed. An example is "serr" or

"syserr" for writing to stderr with System.err.println().
• Static methods in special utility classes like com.install4j.api.Util, com.
install4j.api.SystemInfo or others. For example, if you start typing "show", then
the com.install4j.api.Util.showMessage(...) methods will be suggested.

You can configure code completion behavior in the Java editor settings.

34

• Parameter info

When the caret is in the arguments of a method call, Code->Parameter Info or the
corresponding keyboard shortcut brings up a popup with information about the various
overloaded signatures. The argument at the caret is shown in bold font. If you just
performed code completion, the selected signature will be selected in the popup.

• Caret highlighting
Other usages of the element at the caret are highlighted in the editor with corresponding
markers in the gutter. Write and read occurrences of fields and variables are colored
differently.

• Code-sensitive selection
With Edit->Extend Selection and Edit->Shrink Selection or their corresponding keyboard
shortcuts you can select containing code blocks. Invoke the actions repeatedly to cycle
through larger and smaller blocks.

• Problem analysis

The code that you enter is analyzed on the fly and checked for errors and warning
conditions. Errors are shown with red underlines in the editor and with red stripes in the

35

right gutter. Warnings, such as unused variable declarations, are shown with yellow
underlines in the editor and with yellow stripes in the right gutter. Hovering the mouse
over an error or warning in the editor as well as hovering the mouse over a stripe in the
gutter area displays the error or warning message.

The status indicator at the top of the right gutter is green if there are no warnings or
errors, yellow if there are warnings but no errors and red if there are errors. In the latter
case, the code will not compile and the installer cannot be generated. You can configure
the threshold for problem analysis in the Java editor settings.

For moving between problems, the actions Code->Navigate to Previous Highlighted
Problem and Code->Navigate to Next Highlighted Problem with separate keyboard
shortcuts are available.

When the caret is on a problem location, quick fixes may become available and can
be invoked with Code->Quick Fix or the corresponding keyboard shortcut. A popup will
be displayed with possible actions to fix the problem. When using the mouse, you can
click on the floating lightbulb to show the popup.

Quick fixes include:

• Removing invalid or unused imports
• Terminating unterminated strings
• Declaring unresolved variables
• Adding imports for unresolved types
• Fixing type mismatches
• Adding missing return statements
• Fixing instance access to static members
• Correcting visibility of overridden methods
• Correcting invalid modifiers
• Fixing invalid abstract methods
• Adding unimplemented methods
• Removing unused local variables

36

• Removing unnecessary casts
• Removing dead code

• Context-sensitive Javadoc

Help->Show Javadoc or the corresponding keyboard shortcut opens the browser with
the Javadoc page that describes the element at the cursor position. Javadoc for the
Java runtime library can only be displayed if a design-time JDK is configured and a
valid Javadoc location is specified in the design-time JDK configuration.

• Code formatting

Code->Complete Code or the corresponding keyboard shortcut reformats the selected
code or the entire code if no code is selected. The code style for reformatting can be
configured in the Java editor settings by supplying an Eclipse formatting profile. Eclipse
XML profile files are supported by Eclipse, IntelliJ IDEA and the RedHat Java plugin of VS
Code. To export them from your favorite IDE, perform the steps below:

• Eclipse
In the Eclipse IDE, under Preferences->Java Code Style Formatter, edit the profile and
click on "Export" next to the profile name.

• IntelliJ IDEA
In the IntelliJ IDEA settings, under Editor->Code Style, open the action menu next to
the scheme and choose Export->Export Eclipse XML File.

• VS Code
In VS Code, if you use the RedHat Java plugin, the Eclipse XML file is the way formatting
settings are configured, and you can use the same one as specified in the plugin
settings.

If the file contains multiple profiles, the first one will be used. The tab size setting from
the code formatting will be ignored because it is a separate option in the Java editor
settings. In the install4j code editor, tabs are always converted to spaces.

When you are typing a closing brace, the corresponding block will be reformatted. You
can disable this behavior with the "Format block when entering a closing brace" option
in the Java editor settings.

• Import organization
With Code->Organize Imports or the corresponding keyboard shortcut you can clean
up the imports at the top of the script.

• Refactorings

The context-dependent set of available refactorings is invoked with Code->Refactor or
the corresponding keyboard shortcut.

37

A wide range of local refactorings is available including

• Extracting and inlining variables
• Converting between lambdas and anonymous classes
• Converting between var and explicit types
• Adding static imports
• Converting to enhanced for loops
• Surrounding with try-catch
• Adding explicit lambda parameters
• Changing between lambda expression and lambda block
• Converting lambdas to method references
• Converting string concatenations to MessageFormat, StringBuilder or String.format()

constructs or to text blocks
• Converting switch statements to switch expressions
• Joining and splitting variable declarations with variable definitions
• Inverting calls to Object.equals()

The rename refactoring has its own action Code->Rename with a separate keyboard
shortcut. It is active whenever the element at the caret can be renamed.

Key bindings

All key bindings in the Java code editor are configurable. The keymap editor is displayed
by choosing Settings->Keymap from the menu in the Java code editor dialog. On macOS,
that menu is shown as a "hamburger" menu on the right side of the toolbar.

38

The active keymap controls all key bindings in the editor. When you use the code editor
for the first time, you can select which general purpose IDE you are most familiar with and
the default keymap will be selected accordingly. The default keymaps cannot be edited
directly. To customize key bindings, you first have to copy them. Except for the default
keymaps, the name of a keymap can be edited by double-clicking on it.

When assigning new keystrokes or removing existing keystrokes from a copied map, the
changes to the base keymap will be shown as "overridden" in the list of bindings. The
keymap editor also features search functionality for locating bindings as well a conflict
resolution mechanism.

Key bindings are saved in the file $CONFIG_DIR/install4j/v11/keymap.xml where
$CONFIG_DIR is %USERPROFILE%\AppData\Local on Windows, $HOME/.config on Linux
and $HOME/Library/Application Support on macOS. This file only exists if a keymap
has been selected. When migrating an install4j installation to a different computer, you
can copy this file to keep your keymaps.

Code gallery

The Java code editor offers a code gallery containing useful snippets that show you how
to get started with using the install4j API. The code gallery is displayed with the "Code
gallery" toolbar button in the script editor.

39

You can either copy a portion of the script with CTRL-C or click OK to insert the entire script
at the current cursor position.

Not all code snippets are directly usable in the script that you are editing. Also, some script
properties have special code snippets that are only shown for this property. If such code
snippets exist, they are displayed in bold in a separate category with the name of the
script property.

Installer variables and scripts

Screens, actions and form components are wired together with installer variables that
can be set and retrieved with little code snippets that make use of the contextparameter
that is available for most scripts. Any object can be used as the value for a variable, for a
condition you can use boolean values. In a "Run script" action, you could set a boolean
variable like this:

boolean myCondition = ...
context.setVariable("myCondition", myCondition);

Instead of calling setVariable in a "Run script" action, you can also use a "Set a variable"
action where the return value of the script is saved to an installer variable.

Getting installer variables is done with the context.getVariable(String variableName)
method. The convenience methodcontext.getBooleanVariable(String variableName)
makes it easier to check conditions and write them as expressions without a return value:

context.getBooleanVariable("myCondition")

To use installer variables with a string value in text properties of actions, screens and form
components, write them as ${installer:myVariableName} or use the variable selector
button that inserts them with the correct syntax.

40

A.7 Generated Launchers
Launchers are responsible for starting your application. There are two types of launchers:

• Generated launchers

install4j can generate native launchers that start your application. For example, on
Windows, an .exe file will be created that among other things takes care of finding a
suitable JRE, displaying appropriate error messages if required and then starts your
application. Using launchers generated by install4j has numerous advantages as
compared to using home-grown batch files and shell scripts.

Each launcher definition is compiled separately for each defined media file [p. 137]. This
means that for the majority of all cases, a single launcher definition will be sufficient to
start your application. If, for example, your distribution contains two GUI applications
and a command line application, you have to define three launchers, regardless of how
many media files you define.

When your application is started with a launcher generated by install4j, you can query
the system property install4j.appDir to get the installation directory and and
install4j.exeDir to get the directory where the launcher resides. Use calls like

System.getProperty("install4j.appDir")

to access these values.

• External launchers
If you already have an external launcher for your application, you can let install4j use
that launcher instead of generating one. Because external launchers are most likely
platform-dependent, you will have to add external launchers for each platform that is
targeted by your media files. Make sure to exclude the irrelevant launchers in your media
file definitions in this case.

If the launcher is a binary file rather than a shell script, make sure to set its Unix mode
in the distribution tree to a value that makes it executable for the owner, such as 755
or 700. This also affects the generated .desktop file whose Exec attribute will start with
a shell executable unless the launcher file is executable itself.

41

Types of generated launchers

Executables created by install4j can be either GUI applications, console applications or
service applications.

There is no terminal window associated with a GUI application. If stdout and stderr are
not redirected on the "Executable info->Redirection" step of the launcher wizard, both
streams are inaccessible for the user. This corresponds to the behavior of javaw(.exe).

On Windows, if you launch the executable from a console window, a GUI application can
neither write to nor read from that console window. Sometimes it might be useful to use
the console, for example, for seeing debug output or for simulating a console mode with
the same executable. In that case you can select the Allow -console parameter check
box. If the user supplies the -consoleparameter when starting the launcher from a console
window, the launcher will try to acquire the console and redirect stdout and stderr to it. If
you redirect stderr and stdout in the "Executable->Redirection" step, that output will not
be written to the console.

A console application has an associated terminal window. If a console application is
opened from the Windows explorer, a new terminal window is opened. If stdout and stderr
are not redirected on the "Executable info->Redirection" step of the launcher wizard, both
streams are printed on the terminal window. This corresponds to the behavior of java(.
exe).

Finally, a service runs independently of logged-on users and can be run even if no user
is logged on at all. A service cannot rely on the presence of a console, nor can it open
windows. On Microsoft Windows, a service executable will be compiled by install4, on
macOS a launch daemon will be created, and on Unix-like platforms a start/stop script
will be generated.

When a service is started, the main method of the configured main class will be called. To
handle the shutdown of your service, you can use the Runtime.addShutdownHook()
method to register a thread that will be executed before the JVM is terminated.

For information on how services are installed or uninstalled, see the help topic on
services [p. 102].

42

Java invocation

The most important configuration of a launcher is done on the "Java invocation" step of
the launcher wizard and revolves around replicating the arguments you would pass to
the Java launcher in a batch file:

• VM parameters

You can provide a fixed list of VM parameters to your launcher and also add
version-specific VM parameters. Fixed VM parameters can contain compiler, launcher
and installer variables [p. 68].

Compiler variables are replaced at build time, launcher variables are replaced by the
launcher so that the VM sees the replaced value from the very beginning, and installer
variables are replaced in the main method. This means that using installer variables is
not suitable for setting certain kinds of VM parameters like -Xmx, but can be useful for
replacing system properties that are only used by your code or by libraries.

See the separate help topic on VM parameters [p. 91] for more information on the
various ways to set VM parameters for launchers.

• Module or class path

On the "Java invocation" step of the launcher wizard you can configure both the module
path and the class path. These settings correspond to the --module-path and the -cp
parameters of the standard Java launcher. The module path is only applicable for Java
9 and higher. Like for the standard Java launcher, you can add directories, single archives

43

or directories with archives. In addition, you can add archives from environment variables
and from compiler variables.

The compiler variable entry is useful if the set of JAR files that should be added to the
module path or class path is calculated in your build system and these JAR files are
not staged to a fixed set of directories that you could reference in install4j. In that case,
the the command line compiler [p. 234] as well as the plugins for Gradle [p. 239],
Maven [p. 246] and Ant [p. 255] can set a compiler variable externally where the single
JAR files are separated by a configurable separator.

• Main class
For Java 9 and higher, you can choose a main class from either the module or the class
path. If you choose the module path option, the syntax for the main class is <module
name>/<class name> and corresponds to the --module parameter of the standard
Java launcher. The chooser dialog shows all the available main classes and inserts the
correct value automatically.

• Arguments
Like VM parameters, the list of fixed arguments supports compiler, launcher and installer
variables. Arguments on the command line are appended to the fixed list of arguments.

Cross-platform launcher features

Generated launchers optionally support a singleinstancemode on all supported platforms.
You can use the launcher API [p. 230]to register a startup handler that receives the
command line parameters if the launcher is started more than once. In this way, you can
handle file associations with a single application instance. GUI launchers on macOS are
always in single instance mode because that is a fundamental property of application
bundles.

Icons for launchers can be generated from a set of PNG files. On Windows, an .ico file
and on macOS an .icon file is compiled, on Linux the generated .desktop file references
the PNG images. You can also provide pre-built ICO and ICNS files.

44

A splash screen image can be configured on the "Splash screen" step of the launcher
wizard. The-splashcommand line parameter does not work for the generated executables,
because it is part of the standard Java launchers and not of the Java runtime itself. An
exception is the argument -J-splash:none which is emulated by install4j Windows
launchers to disable the splash screen from the command. The splash screen supports
additional high DPI images with a @2x suffix in the file name.

In addition to the standard splash screen image, install4j allows you to position two lines
of text on top of the splash screen image, a version line and a status line. The status line
can be updated from your launcher with the launcher API [p. 230].

If your code loads native libraries via System.load(...) or if a native library loads
dependent libraries, the native library path has to be modified to include the directories
where these native libraries are located. In batch or shell scripts you would do this in a
platform-specific way, modifying PATH on Windows, DYLD_LIBRARY_PATH on macOS,
LD_LIBRARY_PATH on Linux and a variety of other variable names on different Unix variants.

45

In install4j, you can use the "Java invocation->Native libraries" step of the launcher wizard
to specify such directories, and the launcher will take care that the appropriate environment
variable is modified. These directories end up in the java.library.path system property
in your launcher. If you need different directories for different media files, use a compiler
variable for the directory name and override it for each media file.

JRE search sequence

By default, launchers use the bundled JRE [p. 96]. In case you do not bundle a JRE, the JRE
search sequence determines how install4j searches for a JRE on the target system. New
configurations get a pre-defined default search sequence.

Apart from searching for previous installations with the same application id, the Windows
registry, well-known standard installation locations and paths in environment variables,
you can also configure a relative directory in your distribution tree. This is useful if you
distribute your own JRE for a launcher that is not provided through a JRE bundle managed
by install4j.

install4j has a special mechanism which allows you to bundle JREs with your media files.
If you choose a particular JRE for bundling [p. 96] in one of the media file wizards [p. 137],
this JRE will always be used first, and you do not need to adjust the search sequence
yourself.

If you do not bundle a JRE and a launcher has special Java version requirements that
differ from those of the other launchers, you can override them on the "Java
invocation->Override Java version" step of the launcher wizard.

If you have problems with JRE detection at runtime, see the help topic on error
handling [p. 224] for a description on how to get diagnostic information.

Windows-specific features

A version info resource will enable the Windows operating system to determine
meta-information about your executable. This information is displayed in various locations.
For example, when opening the property dialog for the executable in the Windows explorer,

46

a "Version" tab will be present in the property dialog if you have chosen to generate the
version info resource.

The version info resource consists of several pieces of information. If you check Generate
version info resource on the "Executable->Windows version info" step of the launcher
wizard, there are several fields whose values must be entered. The "original file name", the
"company name", the "product name" and the "product version" fields in the version info
resource are filled in automatically by install4j and cannot be configured.

On the "Executable->Windows manifest options" step you can adjust the contents of the
executable manifest, a static resource in the executable that controls some Windows
features.

With an execution level other than "As invoker", you can ask Windows to show a UAC
prompt and run the launcher with elevated privileges.

47

The DPI awareness controls whether Windows will scale up pixels in a GUI if high DPI is
used. By default, DPI awareness is enabled if the minimum Java version of your project is
at least Java 9.

On Windows, executables can be 64-bit or 32-bit. A 64-bit executable can only run with
a 64-bit JVM, and a 32-bit executable can only run with a 32-bit JVM. By default, 64-bit
executables are generated, but you can switch to 32-bit executables in the "Installer
options" step of the Windows media wizard.

macOS-specific features

By default, the generated application bundle for a GUI application uses the "Executable
name" property from the "Executable info" step of the launcher wizard. If you choose
compact names as appropriate for Windows and Unix, you may not be happy with the
appearance in the Finder on macOS.

On the "Executable info->macOS options" step, you can specify a localizable application
bundle name. If you specify an i18n variable as the application bundle name, such as
${i18n:myLauncherName}, install4j will name the application bundle directory with the
resolved value for the principal language [p. 86] of your project. In addition, it will take the
values for all additional configured languages and set up the appropriate localization in
the application bundle.

On macOS, file associations and URL handlers are not registered with calls to an API that
is provided by the operating system, but by adding special entries to the Info.plist file
of the application bundle. This is why macOS single bundle archives can handle "Create
a file association" and "Register a URL handler" actions at compile-time. By default,
associations for all such actions that are contained in the installer configuration on the
"Installer->Screens & Actions" step are added to the Info.plist file. Optionally, you can
choose that only selected actions should be included.

Many advanced behavioral modifications of an application bundle can be done by adding
entries to the Info.plist file. On the macOS Options step you can specify a fragment
that is added to the default Info.plist file. For services, this fragment is written to the
launcher plist file.

48

Modifying launcher shell scripts and secondary start files

Launchers on Unix as well as command line and service launchers on macOS are shell
scripts that invoke the standard Java launcher. To include your own modifications, you
can specify a fragment that is inserted just before the java invocation.

On Linux, two conditions require the generation of additional start files for a launcher and
in both cases you can add additional content to them:

• The integration of a GUI launcher into a desktop environment requires the generation
of a .desktop file. You may want to add additional content to that file to customize the
interaction with the desktop environment.

• In the case of a service launcher, a .service file is generated if systemd is detected.
To configure advanced aspects of systemd execution, you can add additional content
to that file.

Auto-update integration

In the Installer->Screens & Actions [p. 160] step, you can add a "Background update
downloader" installer application that runs in the background and automatically downloads
an updater installer. Such a background update downloader will not execute the
downloaded update installer because that would disrupt the work of the user. Instead, it
executes a "Schedule update installation" action to register the downloaded updated
installer for later execution.

For GUI launchers, you can select the Execute downloaded updater installers at
startup check box in the "Executable info->Auto update integration" step of the launcher
wizard. When this GUI launcher is started and a downloaded update installer has been
scheduled for installation, the update installer will be executed. By default, the execution
mode of the update installer is set to "Unattended mode with progress dialog" with a
configurable message.

49

For more on auto-update functionality, see the corresponding help topic [p. 119].

50

A.8 Form Screens
Most screens in install4j contain a configurable form. In these screens, you can configure
a list of form components [p. 198] along the vertical axis of the form. install4j provides you
with properties to control the initialization of form components and the way the user
selection is bound to installer variables [p. 68]. With this facility you can easily generate
good-looking installer screens that display arbitrary data to the user and request arbitrary
information to be entered.

Most standard screens are built with form components and form templates are starting
points for your own customizations. Also, you can add empty form screens and add form
components to them. For screens that have a configurable form, a header is shown above
the screen configuration [p. 176] that shows the number of contained form components
as well as buttons for editing them and showing a preview of the form.

The actual configuration of the form components is performed in a separate dialog:

Screens can lay out the contained form in different ways, but for plain form screens, you
can configure this with properties of the containing screen. By default, a form is top-aligned
and fills the entire available horizontal space. For example, for a set of radio buttons that
should be centered horizontally and vertically, the "Fill horizontal space" and "Fill vertical
space" properties of the screen must be set to "false" and the horizontal and vertical anchor
properties must be set to "Center".

51

Form components

install4j offers a large number of form components that represent most common
components available in Java and some other special components that are useful in the
context of an installer.

All components that expect user input have an optional leading label. The components
themselves are left-aligned on the entire form. If you leave the label text empty, the form
component will occupy the entire horizontal space of the form.

Every form component has configurable insets. For vertical gaps that are meant to separate
groups of form components, consider using a "Vertical spacer" form component since it
makes the grouping clearer and allows to reorder form components more easily.

You can preview your form at any time with the Preview Form button. The preview dialog
performs all variable replacements of compiler variables and custom localization keys,
but not of installer variables. Also, no initialization scripts or screen activation scripts are

52

run. The preview is intended to give you quick feedback about visual aspects of your form.
At runtime, the look and feel may be different.

Every form component always has its preferred vertical height. For some form components
such as the "List" form component, this preferred vertical size is configurable. If the vertical
extent of the form exceeds the available vertical space, a scroll bar is shown. If you want
such a form component to fill the entire available vertical space, you can select the "Fill
vertical space" property for the form component and deselect the "Scrollable" property of
the form screen. In that case, there will be no scroll bar for the form.

User input

If a form component can accept user input, you need some way to access the user
selection afterward. install4j saves user input for such form components to the installer
variable [p. 68] whose name is specified in the "Variable name" property. That variable
can then be used later on, for example, in condition expressions for screens and actions.

If you have a checkbox that saves its user input to a variable called "userSelection", the
condition expression

context.getBooleanVariable("userSelection")

will skip the screen or action for which that condition expression is used. The user selection
in form components is written to the variables before the validation expression for the
screen is called. If you have a text field that saves its input to the variable "fileName", the
validation expression

53

Util.showOptionDialog("Do you really want to delete " + context.getVariable("fileName"),

 new String[] {"Yes", "No"}, JOptionPane.QUESTION_MESSAGE) == 0

used on the same screen will block the advance to the next screen if the user answers
with "No".

The values of installer variables accommodate the general type java.lang.Object. Every
form component saves its user input in its naturally corresponding data type, for example:

• For check boxes, the type java.lang.Boolean is used. For this special case the context
offers the convenience method getBooleanVariable.

• For text fields, the type java.lang.String is used.
• For drop down lists the type java.lang.Integer is used to save the selected index.
• For date spinners, the type java.lang.Date is used.

The description of the value type for each form component that accepts user input is
shown in the registry dialog when you select the form component.

Initialization

For each form component, install4j offers several properties that allow you to customize
its initial state. However, you may want to access the properties of the underlying UI
component or use a more complex logic for modifying the form component.

For this purpose, the "Initialization script" property is provided. Form components can
expose a well-known component in the initialization script that allows you to perform
these modifications. This so-called "configuration object" is usually contained in the form
component itself. For example, a "Check box" form component exposes a
configurationObjectparameter of type javax.swing.JCheckBoxand a "Text field" form
component exposes a javax.swing.JTextField.

As with actions and screens [p. 25] in general, the possibility that the user moves back
and forth in the screen sequence presents a dilemma to install4j. Any form component
that accepts user input has a configurable initial value, and any form component can
have an initialization script. This initialization is performed when the user enters the screen
for the first time. Should this initialization be performed again when the user moves back
and then enters the screen once again? Since install4j does not know, it initializes every
form component only once by default. This policy can be changed with the "Reset
initialization on previous" property for each form component.

Depending on factors such as the correct platform, user input in the previous screen or
whether the installer runs in console mode, some form components may not be applicable

54

and should be hidden. In the "Visibility script", you can detect such conditions and return
false to hide the form components.

55

A.9 Layout Groups
A layout group is an element in a form screen [p. 51]. It contains a number of form
components and other layout groups. With layout groups you can achieve virtually any
kind of visual layout.

There are two different kinds of layout groups: vertical and horizontal groups. A horizontal
group puts the contained elements side by side, while a vertical group organizes them
from top to bottom. Essentially, the top-level of a form screen is a vertical layout group
itself.

Use case: Side by side

Putting two form components side by side is done with a single horizontal group:

The leading labels of the first form component in the horizontal layout group ("User:") and
those of the form components on the same level as the horizontal group ("Key file:") are
aligned. There is a property on the horizontal layout group to switch off this alignment.

Use case: Two columns

Two columns of form components are realized with two vertical layout groups inside a
horizontal layout group:

56

In this case the second column with the buttons takes up a fixed amount of horizontal
space, because buttons do not automatically grow beyond their preferred size. To make
all buttons of equal size, the "Make children same width" property has been selected. Two
buttons are aligned at the top of the column, two buttons at the bottom. This is achieved
with a "Spring" form component after the second button that has its axis set to "Vertical".
It pushes all further components to the bottom.

Use case: Breaking label alignment

Alignment of leading labels can be broken by introducing vertical layout groups:

57

Here, the long leading label of the first form component does not enlarge the leading
labels of the two text field form components. The latter are aligned only among themselves.

Use case: Center and right alignment

Single form components can be centered or right-aligned if you enclose them in a
horizontal layout group and set the "Anchor" property on the layout group accordingly.

58

For the layout group with the radio button group, the anchor has been set to "Center", for
that with the button the anchor has been set to "East". This only works with form components
that do not grow horizontally. Some form components that do grow horizontally can be
restricted to a fixed horizontal size, such as the text field by specifying a non-zero column
count.

59

A.10 Styles
Install4j has a flexible model for styling the UI of installer applications that allows you to
arrange content and styling elements in arbitrary ways. While there is an API to do this
programatically, you can configure form styles in the install4j IDE without any custom
code. Form styles use the same foundation as form components [p. 198] for screens. All
default styles are created with form styles, so the details of the default styles can we
tweaked very easily and new styles can be developed by starting with the default styles.

Configuring styles

Styles are configured on a per-project basis. On the "Installer->Screens & Actions->Styles"
step of the install4j IDE, all available styles are listed. When you add a style, it can either
be a configurable form style, or a style implementation from your custom code. Styles are
either standalone or not. A non-standalone style cannot be used directly, but is only
available for nesting into other styles.

One single style is marked as the default style and is shown with a bold font. With the "Set
As Default" action you can change the default style. Styles can be grouped into folders
for organizing them according to your individual preferences. For example, in the default
styles, the nested styles are grouped into a separate folder whereas the standalone styles
are located at the top level.

On the "Installer->Screens & Actions" step of the install4j IDE, you can apply styles. Installer
applications, screen groups and screens all have a "Style" property. For installer applications,
this property is set to "Default". You can change it to any standalone style. For screen
groups and screens, the "Style" property is set to "Inherit from parent". The property also
indicates which style is actually inherited. Alternatively, you can choose to explicitly set a
style for the selected element. Any screen groups and screens below it will now inherit this
style.

60

Some screens have a preference for a particular style. For example, the "Welcome" and
"Finish" screens want their style set to "Banner". When adding such a screen, the IDE matches
the style by name. In this example, if no style named "Banner" is available, the default style
is used. Otherwise, install4j keeps track of style associations by ID and you can rename
styles without breaking any associations.

If you delete a style, all its style associations are broken. Compiling the installer will now
fail, and you will have to visit all installer applications, screen groups and screens where
this style was explicitly selected and choose a new style.

Should you want to return to the default styles, there is a "Reset Styles To Default" action
for that purpose. Existing style associations are matched by name in that case, so style
associations with the "Banner" style survive this reset, for example.

Form styles

A restricted set of the form components that are available for building form screens [p. 198]
can be used to build form styles. Form components that take user input are not suitable
for styles because styles have a different life-cycle than screens.

In addition, form styles can use a set of special form components. The "Screen content"
form component contains the UI component of the screen and is changed each time
when a screen is activated. When you preview the style, this content area is shown with
a placeholder. The "Screen Title" form component shows the title or the subtitle of the
screen, depending on its "Title type" property. The "Control button" form component is used
for realizing the "Next", "Previous" and "Cancel" buttons.

61

Finally, the "Nested style" form component allows you to embed another style. In this way,
you can build a set of styles that share common parts. For example, in the default styles,
the navigation buttons at the bottom are the same. With the "Standard Footer" style used
by both the "Standard" and the "Banner" standalone styles, you have a single place to
change its settings.

Graphical styling elements

A key concern of styling is the placement of images, either in the foreground or in the
background. Both kinds of placements are handled by layout groups in form styles. For
both vertical and horizontal form groups, setting their "Image file" property shows additional
properties that allow you to place the image in the layout group. If you place the image
in the foreground, it cuts off an entire edge of the rectangle that can get its own background
and border. In that way, the image can blend seamlessly into its surroundings.

62

To place an image into the flow of form components, you can use the "Image insets"
property and set its "Icon" property.

Other important styling elements are borders and separators. Again, this is handled by
layout groups. With their "Border sides" property, you can define which sides of the border
should be drawn. Color and thickness of borders are also configurable.

By default, layout groups and form components are transparent, so that the default
background color of the window shines through. By setting the "Background color" property
of a layout group, you can make it opaque and give it a specific color. The "Foreground
color" property sets the font color for contained form components that do not have their
color set explicitly.

Overriding properties

Some styles can have elements that are specific to particular screens or particular installer
applications. For example, the header image in the "Standard" style or the banner image
of the "Banner" style could be required to change for each screen. Instead of duplicating
styles in this scenario, install4j allows you to designate certain properties of selected form
components and layout groups that should be overridable when the style is applied.

When editing the form components of a form style, each form component has an "Allow
external overriding" property. If you select that property, a named overriding entry will be
offered when you explicitly apply the style on the "Installer->Screens & Actions" step. With
the "Override title" property, you specify the displayed name for the override entry and
that name is used for saving the overridden properties. This means that the name must
be unique for a single style and that overrides are lost if you change the name. The "Property
selection mode" property then lets you select which properties should be overridable,
either all properties are overridable, or a list of properties is included or excluded.

63

When you select a style on the "Installer->Screens & Actions" step, install4j scans the style
and all its nested styles for form components and layout groups with defined overrides.
Each named override is presented as a checkbox property. If you select the checkbox, the
overridable properties of the form component or layout group are copied and displayed
as child properties. You can now change the properties to different values. Note that the
overridable properties lose their connection to the default values in the original form
component or layout group. If you change a default property value, you have to manually
change it in all overrides, if necessary.

For more complex overriding cases, consider adding a "Nested style" form component
and making its "Style" property overridable. When applying such a style, you can substitute
a different nested style as appropriate.

API

Under some circumstances, styles are more easily implemented with the API. For example,
if you want to have configurable properties that determine the construction of the style
or if the styling cannot be realized with the facilities of the form style.

The sample project "customCode" includes a style class SunnySkyBackgroundStyle and
its associated BeanInfo SunnySkyBackgroundStyleBeanInfo that show such an example
style. It paints a background image that depends on the window dimensions and continues

64

up to the window border. In the "customCode" project, look for the "Configurable form"
screen in the installer and preview the form to see what it looks like.

That example also shows how to implement a style that wraps a user-selectable style.
The main style is still the standard style, and the "Sunny sky background" style takes the
function of a decorator. To make development of such wrappers easier, the API includes
a convenience class com.install4j.api.styles.WrapperStyle.

Merging styles from other projects

Instead of duplicating styles across projects, you can develop them in one project and
merge them into other projects. The merge projects functionality [p. 113] in install4j includes
an option to merge styles.

If styles are merged, the "Style" property of installer applications, screen groups and screens
shows the merged styles as well, with their names prefixed with the project name that
was assigned in the merge settings.

If you link to screens or screen groups of merged projects, they will use their configured
styles from the merged project only if style merging is enabled. Otherwise, install4j tries
to match a style by name in the main project.

Overriding standard icons

If you would like to change the standard icons in the installer, have a look at the JAR file
resource/i4jruntime.jar in the install4j installation directory. The package com.
install4j.runtime.installer.frontend.icons contains all icons that are used by the
installer. To replace some or all of these icons with your own version, create a JAR file that
contains just the new icon files in the same directory and add it on the "Installer->Screens
& Actions->Custom Code" step. The installer will first try to load an icon from the custom
code. Failing that, it will fall back to the built-in version.

65

A.11 Look & Feel
The GUI of the installer, uninstaller and other installer applications is implemented with
Java Swing. Swing is themeable and so install4j can offer you choices for the look and
feel of the applications that are provided by the runtime. The generated launchers are
not affected by these settings.

Configuring the look & feel

The options for the look & feel can be adjusted on the "Installer->Screens & Actions->Look
& Feel" step.

The default setting is to use the FlatLaf (1) cross platform Look and Feel which is a flat Look
and Feel that works well on all supported platforms and includes a dark mode. Please
consider starring it on GitHub (2) as a token of appreciation for the author.

FlatLaf includes four built-in themes, two for light mode and two for dark mode. By default,
the themes that look like the IntelliJ IDEA light and dark themes are selected. In addition,
FlatLaf supports custom IntelliJ themes. These are based on JSON files and can override
UI colors. You can download an IntelliJ theme (3) from the JetBrains plugin repository and
add its JAR files on the "Installer->Screens & Actions->Custom Code" step. If the themes
plugin is packaged in a ZIP file, you have to extract the ZIP file and add the contained JAR
files instead. The contained themes will then show up in the chooser dialog.

(1) https://www.formdev.com/flatlaf/
(2) https://github.com/JFormDesigner/FlatLaf
(3) https://plugins.jetbrains.com/search?tags=Theme

66

https://www.formdev.com/flatlaf/
https://github.com/JFormDesigner/FlatLaf
https://plugins.jetbrains.com/search?tags=Theme

On Windows 10+ and macos 10.14+, the runtime detects whether dark mode is being used
and activates it automatically. If the user switches between light and dark mode, the
runtime adjusts to it on the fly. The look and feel configuration offers options to prevent
this auto-detection and use either light or dark mode.

For backwards compatibility, you can also select the "Java native look and feel". This is a
look and feel that is included the JRE and tries to mimic the native widgets of the operating
system with varying success. In some instances, this look and feel may seem out of place
as it shows the UI from an older version of the operating system. Also, HiDPI resolutions
may not be well-supported by this look and feel. For these reasons, using the native look
and feel is discouraged and the FlatLaf cross-platform look and feel is recommended
instead.

Using a custom look and feel

You can apply your own look and feel by extending the com.install4j.api.laf.
LookAndFeelHandler class in the install4j API. After adding the compiled class and its
dependencies on the "Installer->Screens & Actions->Custom Code" step, you can select
the class in the chooser dialog.

The com.install4j.api.laf.LookAndFeelHandler implements the com.install4j.
api.laf.LookAndFeelEnhancer interface that contains methods that help with certain
aspects of creating the UI. You can override these methods to change their default behavior.

For example, a tri-state check box is required by the UI of installer applications. Java Swing
does not include such a component, but some look and feels add this feature. To avoid
using a generic simulation of a tri-state checkbox, the createTriStateCheckboxmethod
can be overridden in your implementation of the com.install4j.api.laf.
LookAndFeelHandler.

67

A.12 Variables
With variables you can customize many aspects of install4j. They can be used in all text
fields and text properties in the install4j IDE as well as from the install4j API [p. 226]. The
general variable syntax is

${prefix:variableName}

where prefix denotes the variable type and is one of

• compiler
Compiler variables are replaced by the install4j compiler when the project is built.

• installer
Installer variables are evaluated when the installer or uninstaller is running.

• launcher
Launcher variables are evaluated when a generated application launcher is started.

• i18n
Custom localization keys are evaluated at runtime and depend on the chosen installer
language.

• (no prefix)
Variables with no prefix resolve to runtime environment variables when used in the
launcher configuration.

Text fields in the install4j IDE where you can use variables have a variable selector next
to them. In the popup menu, you first choose a variable system from the available variable
types. In text properties of an installer element [p. 160] or a form component [p. 198], you
can use compiler variables, installer variables and custom localization keys, but not
launcher variables.

The variable selection dialog then shows all known variables of the selected variable type.

68

For both compiler and installer variables install4j offers a fixed set of "system variables"
that are prefixed with "sys.". These variables are not writable, and it is discouraged to use
this prefix for your own variables.

Compiler variables

Compiler variables are written as

${compiler:variableName}

The value of a compiler variable is a string that is known and replaced at compile time.
The installer runtime or the generated launchers do not see this variable, but just the value
that was substituted at runtime. Compiler variables are defined on the "General
Settings->Compiler Variables" step.

You can use compiler variables for various purposes. The most common usage of a
compiler variable is the possibility to define a string in one place and use it in many other
places. You can then change the string in one place instead of having to look up all of its
usages.

An example of this use case is the pre-defined sys.version variable that contains the
value of the text field where you enter the application version. Another usage for compiler
variables is to override certain project settings on a per-media file basis. There are two

69

ways to do that: Either, you specify a platform-specific value right below the compiler
variable value, or you override the compiler variable value for specific media files.

For example, if you want to include one directory in the distribution tree for Windows but
another one for macOS, you use a compiler variable for that directory and set the
platform-specific value for macOS.

The common base value can be referenced with the syntax ${compiler:variableName}
and does not lead to a recursive replacement error when used in a compiler variable
value override. This is useful if you want to augment the base value in a platform-specific
way, for example in a compiler variable for VM parameters where additional VM parameters
are required depending on the platform.

Alternatively, you can override values for single media files. Media file-specific overrides
have a higher precedence than platform-specific overrides. The common base value can
be referenced in the same way as for platform-specific overrides.

70

To quickly override multiple variables for a single media file, you can configure overridden
values on the "Customize project defaults->Compiler variables" step of the media wizard.

Finally, compiler variables can be overridden from the command line compiler [p. 234] as
well as from the Gradle [p. 239], Maven [p. 246] and Ant [p. 255] plugins.

Compiler variables often refer to paths either on the build machine or on the target
machine. install4j has no way of knowing whether the value is actually a path and where
it is needed, so it does not replace file or path separators by default. With the "Separators"
drop-down right below the variable value, you can choose to replace file separators and
path separators: You can either replace them for the build platform where the install4j
compiler is running, or for the target platform associated with the currently compiled
media file. This can be much more readable that using the explicit compiler variables:

71

• ${compiler:sys.fileSeparator} for the file separator on the build platform
• ${compiler:sys.pathSeparator} for the path separator on the build platform
• ${compiler:sys.mediaFileSeparator} for the file separator on the target platform
• ${compiler:sys.mediaFileSeparator}for the path separator on the build platform

With the automatic separator conversion, you can use either Unix-style ('/' and ':') or
Windows-style ('\\' and ';') file and path separators in the value. Both styles are converted
in the same way. If you replace for the target platform and the variable is not used in a
media file-specific context, no conversion will be performed.

When you use a compiler variable in your project that is not a system variable, it must be
defined in on the "General Settings->Compiler Variables" step. If an unknown variable is
encountered, the build will fail. You can use other variables in the value of a variable.
Recursive definitions are detected and lead to a failure of the build. It is not possible to
define compiler variables with the name of a system variable.

install4j provides a number of system compiler variables:

• sys.date [Machine-specific variables]
The current date in the format YYYYMMDD (e.g. "20250210"). The value is set at the start
of a build and will not change during a single build.

• sys.year [Machine-specific variables]
The current year in format YYYYThe value is set at the start of a build and will not change
during a single build.

• sys.time [Machine-specific variables]
The current time in the format HHMMSS (e.g. "153012") where HH is the hour in 24-hour
format, MM is the minute, and SS is the second. The value is set at the start of a build
and will not change during a single build.

• sys.timestamp [Machine-specific variables]
The current time as the Unix epoch. This is a long value with the milliseconds since
January 1st, 1970 (UTC). The value is set at the start of a build and will not change during
a single build.

• sys.install4jHome [Machine-specific variables]
The installation directory of install4j that is used for compiling the media files.

• sys.install4jVersion [Machine-specific variables]
The version of install4j that is used for compiling the media files.

• sys.fileSeparator [Machine-specific variables]
The platform-dependent separator for directories in a file path. On Windows, this is a
backslash ("\"), on Unix a forward slash ("/"). The value of this variable is intended to
refer to files on the build machine. For a value that is valid at runtime, use sys.
mediaFileSeparator instead.

• sys.newLine
A Unix newline character (\n).

72

• sys.pathlistSeparator [Machine-specific variables]
The platform-dependent separator for lists of directories. On Windows, this is a semicolon
(";"), on Unix a colon (":"). The value of this variable is intended to refer to files on the
build machine. For a value that is valid at runtime, use sys.mediaPathlistSeparator
instead.

• sys.version [Project-specific variables]
The version of your application as configured under General Settings->Application Info.

• sys.shortName [Project-specific variables]
The short name of your application as configured under General Settings->Application
Info.

• sys.fullName [Project-specific variables]
The full name of your application as configured under General Settings->Application
Info.

• sys.publisher [Project-specific variables]
The publisher of your application as configured under General Settings->Application
Info.

• sys.publisherUrl [Project-specific variables]
The publisher URL of your application as configured under General Settings->Application
Info.

• sys.languageId [Project-specific variables]
T h e 2 - l e t t e r I S O 6 3 9 c o d e (s e e
https://www.loc.gov/standards/iso639-2/php/code_list.php (1)) for the principal
language of the installer. This variable can be overridden on the command line or the
ant task which is useful if you build different installers for different languages.

• sys.javaMinVersion [Project-specific variables]
The minimum Java version as configured under General Settings->Java Version

• sys.javaMaxVersion [Project-specific variables]
The maximum Java version as configured under General Settings->Java Version

• sys.applicationId [Project-specific variables]
The application ID as configured under Installer->Update Options

• sys.updatesUrl [Project-specific variables]
The URL where auto updaters can download the update descriptor file updates.xml as
configured under Installer->Auto-Update Options. This variable is usually used in the
"Update descriptor URL" property of a "Check for update" action.

• sys.mediaFileName [Media-specific variables]
The file name of the currently compiled media file as configured in the Media section
and possibly overridden in "Customize project defaults->Media file name" step of the
media wizard.

(1) https://www.loc.gov/standards/iso639-2/php/code_list.php

73

https://www.loc.gov/standards/iso639-2/php/code_list.php

• sys.mediaName [Media-specific variables]
The display name in the install4j IDE of the currently compiled media file as configured
in the Media section. If the default name of the media file is not suitable, you can rename
the media file.

• sys.mediaId [Media-specific variables]
The ID of the currently compiled media file as configured in the Media section. This
corresponds to the return value of context.getMediaFileId().

• sys.platform [Media-specific variables]
The platform descriptor of the currently compiled media file. One of windows-x64,
windows-x32, windows-arm64, linux, unix or macos. The value of this variable depends
on your choice in the platform step of the media file wizard.

• sys.withJre [Media-specific variables]
A variable that contains "_with_jre" if a JRE is statically bundled with a media file and
the empty string if not. This is useful if media files with and without JRE are built.

• sys.jreBundleVersion [Media-specific variables]
The Java version of the JRE bundle if a JRE bundle is configured for a media file and the
empty string if not.

• sys.jreBundleArch [Media-specific variables]
The architecture of the JRE bundle if a JRE bundle is configured for a media file and the
empty string if not.

• sys.mediaFileSeparator [Media-specific variables]
The platform-dependent separator for directories in a file path based on the current
media set. For Windows media sets, this is a backslash ("\"), for all others a forward
slash ("/").

• sys.mediaPathlistSeparator [Media-specific variables]
The platform-dependent separator for lists of directories based on the current media
set. For Windows media sets, this is a semicolon (";"), for all others a colon (":").

• sys.msiProductId [Media-specific variables]
The product GUID if a Windows installer is wrapped in an MSI package, otherwise an
empty string.

You can access environment variables on the build machine with the syntax

${compiler:env.environmentVariableName}

where "environmentVariableName" is the name of an environment variable. This is resolved
at build time and only works if no compiler variable with the same name is defined on the
"General Settings->Compiler Variables" step.

Compiler variable values in the IDE cannot be multi-line strings. If you need to insert a
variable with a multi-line string, you can use the text file reference syntax

${compiler:file("path/to/file")}

74

where path/to/file is either an absolute file path or a path relative to the config file. All
text areas that have an adjacent variable selector button offer the "Insert contents of text
file" action in its popup menu. The file chooser has an option whether to use a relative or
an absolute path in the variable expression.

In order to debug problems with compiler variables, you can switch on the extra verbose
output flag in the Build step [p. 11]. All variable replacements will then be printed to the
build console.

The file path can be a variable expression itself, like in

${compiler:file(${compiler:myFile})}

so you can override it for each media file or pass it as a parameter to a command line
build.

Installer variables

Installer variables are written as

${installer:variableName}

The value of an installer variable is an arbitrary object that is not known at compile time.
Installer variables are replaced at runtime in the installer, the uninstaller and in custom
installer applications. They can optionally be predefined in the install4j IDE like compiler
variables, but this is not required.

Undefined installer variables come into existence the first time they are defined at runtime.
However, it is an error to use an undefined variable. For example, if you use an installer
variable in an action, you have to make sure that the installer variable is defined before
the action is executed.

Installer variables are used to wire together actions, screens and form components at
runtime. The user input in screens is saved to variables that can be used in the properties
of actions. Furthermore, installer variables can be used in condition and validation
expressions. Some examples are given in the help topic on form screens [p. 51]. In script
properties, you retrieve variables by invoking

context.getVariable("variableName")

Variable values can be set with the installer API by invoking

context.setVariable("variableName", variableValue)

You can analyze the bindings of an installer variable on the "Installer Variables" tab of an
installer application configuration. That tab will show you a list of bound variables together
with all bindings.

75

In order to document and categorize bound installer variables, you can pre-define them
and set descriptions that will be displayed in the installer variable selector in the install4j
IDE.

For pre-defined installer variables that take string values, the same file and path separator
replacements as for compiler variables are available.

A common scenario is the need to calculate a variable value at runtime with some custom
code and use the result as the initial value of a form component. To achieve this, you can
add a "Set a variable" action to the startup screen and set its "Variable name" property to
some variable name. In this context, install4j expects a variable name, and you must not
use the ${installer:variableName} syntax but specify the plain variableName only.
The return value of the "Script" property is written to the variable.

76

For example, if this variable represents the initial directory that is displayed for a "Directory
chooser" form component, you set the "Initial Directory" property of that form component
to ${installer:variableName}. In this way you have wired the results of an action with
a behavior of a screen.

Another important use of installer variables is in the names of custom installation
roots [p. 14]. In most cases, the name of a custom installation root contains an installer
variable that is resolved at runtime. Often, one of the system installer variables that
represent a "magic" folder can be used, such as ${installer:sys.system32Dir} for the
Windows system32 directory.

When you use installer variables in properties that display text, such as the screen title or
the label properties of form components, a live binding will be created and the displayed
text is updated automatically when the variable values change.

Installer variables can be passed to the installer, uninstaller or custom installer applications
from the command line prefixed with -V:

-VmyVar=test "-VmyVarWithSpaces=this is a test"

Alternatively, you can specify a property file containing installer variables with -varfile
my.properties, where the file my.properties contains one variable definition per line.
The variables that are created will be instances of java.lang.String.

install4j provides a number of system installer variables:

• sys.installationDir [Source and Target]
The installation directory for the current installation. The value of this variable can
change in the installer as the user selects an installation directory in the "Installation
directory" screen or the installation directory is set via context.
setInstallationDirectory(File installationDirectory).

Note that for single bundle archives on macOS, the installation directory usually is just
/Applications, not a separate subdirectory.

• sys.contentDir [Source and Target]
The directory that holds the installed files. On Windows, Linux and Unix, this is the same
as the installation directory. For single bundle archives on macOS, this is [Bundle name].
app/Contents/Resources/app/. To reference an installed file in a cross-platform way,
use this variable and not sys.installationDir.

• sys.mediaFile [Source and Target]
The path of your media file. Not available for uninstallers.

77

On Unix and for non-MSI Windows installers this is the same as sys.installerFile. For MSI
installers, this is the MSI file. On macOS, this is the path to the DMG file. If you want to
reference the installer file, use sys.installerFile instead.

• sys.mediaDir [Source and Target]
The path of the directory where your installer file is located. Not available for uninstallers.

On Unix and for non-MSI Windows installers this is the same as sys.installerDir. For MSI
installers, this is the directory where the MSI file is located. On macOS, this is the directory
where the DMG file is located. If you want to reference files inside the DMG file, use
sys.installerDir instead.

• sys.installerFile [Source and Target]
The path of your installer file. Not available for uninstallers.

On Unix and for non-MSI Windows installers this is the same as sys.mediaFile. For MSI
installers, this is the extracted installer executable. On macOS, this is the path to the
installer inside the mounted DMG. If you want to reference the DMG file, use sys.mediaFile
instead.

• sys.installerDir [Source and Target]
The path of the directory where your installer file is located. Not available for uninstallers.

On Unix and for non-MSI Windows installers this is the same as sys.mediaDir. For MSI
installers, this is the directory the installer was extracted to. On macOS, this is the path
into the mounted DMG. If you want to reference files in the same directory as the DMG
file, use sys.mediaDir instead.

• sys.resourceDir [Installer application state]
The directory where the resource files are present that have been configured on the
Installer->Custom Code & Resources tab.

• sys.installationTypeId [Installer application state]
The ID of the selected installation type. This is only relevant if the "Installation Type"
screen has been added to the installer. The value is null as long as no installation type
has been selected.

• sys.version [Installer application state]
For installers, the version of your application as configured under General
Settings->Application Info. In that case, the variable yields the same value as the
compiler variable of the same name. For custom installer applications, the installed
version, which might not be the same as the version for which the custom installer
application was originally compiled.

• sys.logFile [Installer application state]
The full path to the currently used log file. This is a path in the TEMPdirectory. For installers,
this changes after the "Install Files" action, when the log file is moved to a path in the
installation directory.

• sys.responseFile [Installer application state]
If a response file is supplied with a -varfile command line argument, the full path to
the response file. If no response file is used, the variable value is null.

78

• sys.preferredJre [Installer application state]
The home directory of the JRE that will be used by the installed launchers. This variable
will only be set after the "Install files" action has run. It will be the same as System.
getProperty("java.home") or the sys.javaHome installer variable unless a bundled
JRE has been installed. This variable is not available in the uninstaller or custom installer
applications, use the sys.javaHome directory there.

• sys.languageId [Installer application state]
T h e 2 - l e t t e r I S O 6 3 9 c o d e (s e e
https://www.loc.gov/standards/iso639-2/php/code_list.php (1)) for the actual language
of the installer. For fixed-language installers, this is the same as the compiler variable
of the same name. For multi-language installers, the value is determined at runtime.

• sys.installerApplicationMode [Installer application state]
A string that reports the type of the installer application: "installer" for the installer,
"uninstaller" for the uninstaller and "custom" for custom installer applications.

• sys.programGroupDisabled [Installer application state/Program group]
If the user has disabled program group creation on the "Standard program group"
screen. This applies to both the Windows program group and the Linux/Unix launcher
link directory selection. If no "Standard program group" screen is present, the variable
value will be null.

• sys.programGroupName [Installer application state/Program group]
The name of the program group that user has selected on the "Standard program
group" screen. If no program group has been selected, the variable value will be null.
Only set in Windows installers.

• sys.programGroupDir [Installer application state/Program group]
The directory that has been selected as the program group. This is the full path to the
actual location of the program group, not just the name of the program group. If no
program group has been selected, the variable value will be null. Only set in Windows
installers.

• sys.programGroupAllUsers [Installer application state/Program group]
If the user has selected to create menu entries for all users on the "Standard program
group" screen. If no "Standard program group" screen is present, the variable value will
be null. Only set in Windows installers.

• sys.symlinkDir [Installer application state/Program group]
The name of the directory for launcher links that user has selected on the "Standard
program group" screen. If no program group has been selected, the variable value will
be null. Only set in Linux/Unix installers.

• sys.fileSeparator [Cross-platform variables]
The platform-dependent separator for directories in a file path. On Windows, this is a
backslash ("\"), on Unix a forward slash ("/").

• sys.pathlistSeparator [Cross-platform variables]
The platform-dependent separator for lists of directories. On Windows, this is a semicolon
(";"), on Unix a colon (":").

(1) https://www.loc.gov/standards/iso639-2/php/code_list.php

79

https://www.loc.gov/standards/iso639-2/php/code_list.php

• sys.userHome [Cross-platform variables]
The user home directory, typically something likeC:\Users\$USERon Windows or/home/
$USER on Unix platforms.

• sys.userName [Cross-platform variables]
The user account name.

• sys.workingDir [Cross-platform variables]
The working directory. For the installer, this is the temporary directory that the installer
was extracted to.

• sys.tempDir [Cross-platform variables]
The temporary directory of the operating system. On all supported platforms, this is the
value of the TEMP environment variable.

• sys.javaHome [Cross-platform variables]
The Java home directory of the currently used JRE.

• sys.javaVersion [Cross-platform variables]
The Java version of the currently used JRE.

• sys.confirmedUpdateInstallation [Cross-platform variables]
If the user has confirmed an update installation on top of a previous installation. If a
previous installation is detected, the "Welcome" screen asks the user whether to perform
an update installation or choose another installation directory. The result of that question
is saved to this variable. If the "Welcome screen is not shown, this variable is not set and
Context#getBooleanVariable(...) returns false for this variable.

• sys.desktopDir [Cross-platform variables]
The directory used to physically store file objects on the desktop. On Windows, a typical
path is C:\Users\[user name]\Desktop. On macOS, this is the ~/Desktop directory
and on Unix the freedesktop.org setting for the XDG_DESKTOP_DIR directory is returned.

• sys.docsDir [Cross-platform variables]
The directory used to physically store a user's common repository of documents. On
Windows, a typical path is C:\Users\[user name]\Documents. On macOS, this is the
~/Documents directory and on Unix the freedesktop.org setting for the
XDG_DOCUMENTS_DIR directory is returned.

• sys.downloadsDir [Cross-platform variables]
The directory used to physically store a user's downloads. On Windows, a typical path
is C:\Users\[user name]\Downloads. On macOS, this is the ~/Downloads directory
and on Unix the freedesktop.org setting for the XDG_DOWNLOAD_DIRdirectory is returned.

• sys.appdataDir [Platform-specific variables]
The directory that serves as a common repository for application-specific data. On
Windows, a typical path is C:\Users\[user name]\AppData\Roaming. On macOS, this
is the ~/Library/Application Support directory. On Unix, the value of the
XDG_DATA_HOME environment variable or if not defined ~/.local/share is returned.

80

• sys.localAppdataDir [Platform-specific variables]
The user-specific directory that serves local applications to store computed data. On
Windows, a typical path is C:\Users\[user name]\AppData\Local. On macOS, this is
the ~/Library/Cachesdirectory. On Unix, the value of the XDG_CACHE_HOME environment
variable or if not defined ~/.cache is returned.

• sys.windowsDir [Platform-specific variables]
The Windows installation directory, typically C:\Windows.

• sys.system32Dir [Platform-specific variables]
The system32 directory of your Windows installation, typically C:\Windows\system32.

• sys.commonDir [Platform-specific variables]
The common files directory of your Windows installation, typically C:\Program Files\
Common Files.

• sys.programDataDir [Platform-specific variables]
The directory where applications can save data that is not specific to particular users.
A typical path is C:\ProgramData.

• sys.startMenuDir [Platform-specific variables]
The directory containing Start menu items. A typical path is C:\Users\[user name]\
AppData\Roaming\Microsoft\Windows\Start Menu.

• sys.programsDir [Platform-specific variables]
The directory that contains the user's program groups. The groups are themselves file
system directories. A typical path is C:\Users\[user name]\AppData\Roaming\
Microsoft\Windows\Start Menu\Programs.

• sys.startupDir [Platform-specific variables]
The directory that corresponds to the user's Startup program group. The system starts
these programs whenever any user logs onto Windows. A typical path is C:\Users\
[user name]\AppData\Roaming\Microsoft\Windows\Start Menu\Programs\Startup.

• sys.sendToDir [Platform-specific variables]
The directory that contains Send To menu items. A typical path is C:\Users\[user
name]\AppData\Roaming\Microsoft\Windows\SendTo.

• sys.templatesDir [Platform-specific variables]
The directory that serves as a common repository for document templates. A typical
path is C:\Users\[user name]\AppData\Roaming\Microsoft\Windows\Templates.

• sys.favoritesDir [Platform-specific variables]
The directory that serves as a common repository for the user's favorite items. A typical
path is C:\Users\[user name]\Favorites.

• sys.programGroupDir [Platform-specific variables]
The directory of the program group that will be or was created by the "Create standard
program group" action. If this action is not present, the value will be null. The value of
this variable can change in the installer as the user selects a program group on the
"Create program group" screen.

81

• sys.fontsDir [Platform-specific variables]
The folder that contains fonts. A typical path is C:\Windows\Fonts. On macOS, the value
is /Library/Fonts.

• sys.programFilesDir [Platform-specific variables]
The directory where programs are installed, typically something like C:\Program Files.
On macOS, the value is /Applications.

• sys.date [Cross-platform variables]
The current date in the format YYYYMMDD (e.g. "20250210"). The value is set when the
installer is started and will not change for the current process.

• sys.year [Cross-platform variables]
The current year in format YYYYThe value is set when the installer is started and will not
change for the current process.

• sys.time [Cross-platform variables]
The current time in the format HHMMSS (e.g. "153012") where HH is the hour in 24-hour
format, MM is the minute, and SS is the second. The value is set when the installer is
started and will not change for the current process.

• sys.timestamp [Cross-platform variables]
The current time as the Unix epoch. This is a long value with the milliseconds since
January 1st, 1970 (UTC). The value is set when the installer is started and will not change
for the current process.

Launcher variables

Launcher variables are written as

${launcher:variableName}

The value of a launcher variable is a string that is not known at compile time. In contrast
to installer variables, they are replaced by the launcher and not by Java code, so the
replaced value is seen by the JVM at startup. Launcher variables can only be used in the
"VM parameters" and "Arguments" text fields on the "Java invocation" step of the launcher
wizard [p. 41].

No user-defined launcher variables exist, the available system launcher variables are:

• sys.launcherDirectory
The directory in which your launcher has been installed at runtime.

• sys.jvmHome
The home directory of the JVM that your launcher is running with. This is useful to put
JAR files from the JRE into your boot classpath. The "home directory" is the directory that
contains the "bin" directory of the JRE.

• sys.tempDir
The temporary directory for the current user.

82

I18N messages

I18N messages are written as

${i18n:keyName}

The value of an I18N message depends on the language that is selected for the installer.
You can use this facility to localize messages in your installers if they support multiple
languages [p. 86]. To do that, you supply key-value pairs in the custom localization file.
The variable selection dialog for I18N messages shows all system messages as well as all
messages in the custom localization file for the principal language of your project.

All standard messages displayed by install4j can be referenced with this syntax as well.
You can locate the key name in one of the message_*.utf8 files in the $INSTALL4J_HOME/
resource/messagesdirectory and use it anywhere in your project. The standard messages
can be overwritten by your custom localization files.

Default values for missing variables

For the text field syntax of installer and compiler variables there is a mechanism to supply
a default value in case the variable is not defined: After the variable name you add the
delimiter ?: and insert the default value before the closing curly bracket.

For example:

${installer:myVariable?:defaultValue}

will resolve to defaultValue if the installer variable "myVariable" is not defined. The default
value can be another variable, also of a different type. For example:

${installer:updatesUrl?:${compiler:sys.updatesUrl}}

83

If the installer variable "updatesUrl" is not defined, the compiler variable "sys.updatesUrl"
is inserted. This is the default value for the "Update descriptor URL" property of the "Check
for update" action.

The chain of default values can be arbitrarily long:

${installer:one?:${installer:two?:${installer:three?:${installer:four?:some plain
text}}}}

This will resolve to the first defined installer variable out of "one", "two", "three", "four" or to
some plain text if none of them are defined.

Binding variables to non-text properties

Many bean properties do not take text input, for example, boolean, integer or enum
properties, so that the variable syntax ${installer:myVariable} for text fields is not
applicable. For these properties, you can select "Switch to text mode" in the context menu
and enter a variable expression that resolves to the required type. Conversions from string
values are important because compiler variables can only hold string values, unlike installer
variables that can hold arbitrary types.

The help icon in the property editor tells you what the property type is and also informs
about the supported conversions from other primitive types or strings. For example, "true"
or "false" string values are supported for boolean properties as well, which is what you
would use with a compiler variable. For enum properties, the name of the enum or the
ordinal as a number or as a string will be resolved to the actual enum value. Also, numeric
values will be parsed from strings.

If you develop a custom bean and want to support that functionality as well, you have to
enable it in the property descriptor and insert a call into the property getter as explained
in the Javadoc for AbstractBean.

84

Using variables in your own applications

Frequently there is a need in the installed applications to access user input that was made
in the installer. The launcher API [p. 230] provides the helper class com.install4j.api.
launcher.Variables to access the values of installer variables.

There are two ways that installer variables can be persisted in the installer: First, installer
variables are saved to the default response file [p. 217] .install4j/response.varfile
that is created when the installer exits, or if a "Create response file" action is executed.
Only response file variables are saved to that file. Secondly, selected installer variables
can be saved to the Java preference store. com.install4j.api.launcher.Variables
offers methods to load variables from both sources.

Saving to the Java preference store is interesting if you want to modify those variable
values in your applications and save back the modified values. The Java preference store
is available on a per-user basis so that it is possible to modify settings even if the user
does not have write permissions for the installation directory. com.install4j.api.
launcher.Variables has methods for loading and saving the entire map of installer
variables that was saved in the installer. Also, it is possible to specify an arbitrary package
to which the installer variables are saved, so that settings can be shared between different
installers.

Finally, it is useful to access compiler variables in your own applications. For example, the
version number configured in the install4j IDE can be accessed in your own application
through com.install4j.api.launcher.Variables.

85

A.13 Localization
On the "General Settings->Languages" step, you configure the languages that are supported
by your project. The following languages are available:

• Arabic [ar]
• Chinese (Simplified) [zh_CN]
• Chinese (Traditional) [zh_TW]
• Croatian [hr]
• Czech [cs]
• Danish [da]
• Dutch [nl]
• English [en]
• Finnish [fi]
• French [fr]
• German [de]
• Greek [el]
• Hebrew [he]
• Hungarian [hu]
• Italian [it]
• Japanese [ja]
• Korean [ko]
• Norwegian [no]
• Polish [pl]
• Portuguese [pt]
• Portuguese (Brazilian) [pt_BR]
• Romanian [ro]
• Russian [ru]
• Spanish [es]
• Swedish [sv]
• Turkish [tr]
• Ukrainian [uk]

By default, only one language is shipped with the installer. This is called the principal
language. By adding additional languages, you can build multi-language installers. If
none of the configured languages match the locale at runtime, the principal language is
used.

86

For multi-language installers, a language selection dialog is shown when the installer is
started. By selecting the Skip language selection dialog check box you can choose
to show the language selection only if the installer cannot find a match between a
supported language and the auto-detected locale.

The principal language setting can be overridden for each media file on the "Customize
project defaults->Principal language" step of the media wizard. In this way, you can build
multiple fixed-language installers, each with a different principal language.

Localization mechanism

In projects, localized messages are obtained in one of two ways;

• with i18n messages

The i18n variable system [p. 68] gives access to all messages with the syntax

${i18n:messageKey}

To select a message, use the variable selector button next to text fields and properties.
For messages with one or more parameters of the form {0} to {n}, the variable selector
will insert placeholder values like in

87

${i18n:DiskSpaceWarning("arg 0", "arg 1")}

• with the API

In scripts and in your custom code you can call

context.getMessage("messageKey")

For messages with arguments, you pass the arguments with the vararg syntax:

context.getMessage("DiskSpaceWarning", 10000, 100)

The "Insert variable" toolbar button in script editors allows you to insert these calls with
the correct syntax for selected message keys.

Custom localization

In addition to the standard messages that are displayed in the generated installer and
uninstaller, you will have your own messages that need to be localized in the same way.
To configure these messages, create a custom localization file for the principal language.
A custom localization file is a text file with key-message pairs in the format of

• a Java properties file
A Java properties file has a .properties file extension and must use ISO 8859-1
encoding. All other characters must be represented as Unicode escape sequences, like
\u0823.

• a properties file with UTF-8 encoding
A properties file with UTF-8 encoding has an .utf8 file extension and has the advantage
that you do not have to use escape sequences. However, it might not be supported by
some localization tools.

88

You can create and edit custom localization files externally or directly in the install4j IDE
with the built-in editor:

For each additional language, add a corresponding custom localization file that contains
the same keys. If a message is missing for an additional language, the message for the
principal language is used. The variable selection dialog for i18n messages will show all
keys in the custom localization file for the principal language.

If any standard message in the installer is not appropriate for your purpose, you can
override it by looking up the corresponding keys in the appropriate message file with the
path

<install4j installation directory>/resource/messages/messages_*.utf8

and defining the same key in your custom localization file. The built-in editor has an
"Override message" toolbar button that helps you find the message of interest and inserts
the key-value pair in the editor.

89

Parameters in i18n messages

If required, you can use parameters for your messages by using the usual {n} syntax in
the value and listing the parameters with a function-like syntax after the key name. For
example, if your key name is myKey and your message value is

Create {0} entries of type {1}

you can use a variable

${i18n:myKey("5", "foo")}

in order to fill the parameters, so that the actual message becomes

Create 5 entries of type foo

However, in the context of localizing an installer this is rarely necessary. Should you need
to include a literal variable expression {n} in the message, you have to quote it like '{'n'}'.

Another way of adding parameters to i18n messages is to use compiler or installer variables.
Compiler variables are replaced at build time, and installer variables are replaced at
runtime. For example:

messageWithCompilerVariable=Title for ${compiler:sys.fullName}
messageWithInstallerVariable=Installing to ${installer:sys.installationDir}

90

A.14 VM Parameters
VM parameters can be passed to generated launchers [p. 41] in a variety of ways: You
can specify fixed VM parameters, pass them on the command line or add them to a text
file where the user or your application can edit them.

Fixed VM parameters

Fixed VM parameters can be configured in the launcher wizard [p. 41] where you can use
compiler variables [p. 68] to handle platform-specific changes or launcher variables [p. 68]
to use runtime-dependent paths.

install4j can add specific VM parameters depending on the Java version. To set this up,
click on the Configure version specific VM parameters button. In the dialog, add rows for
each range of Java versions that should receive specific VM parameters. If the Java version
of the JVM that is used at runtime matches a configured version expression, the associated
VM parameters will be appended to the common VM parameters. The search is stopped
at the first matching entry. The syntax for the Java version expressions is explained by the
help icon on the table header.

91

Passing VM parameters on the command line

When executing a generated launcher, arguments are passed to the main class, so you
cannot pass an argument like -Xmx800mand expect it to be interpreted as a VM parameter.
To tell the launcher that you want to use a specific command line argument as a VM
parameter, you have to prefix it with -J, as in

-J-Xmx800m

If this behavior is not desirable, you can deactivate it on the "Java invocation" step of the
launcher wizard.

*.vmoptions files

A common requirement is the capability to adjust the VM parameters of launchers after
the installation has been completed or to determine the VM parameters at installation
time depending on the environment like the target platform or some user selection in the
installer.

For this purpose, a parameter file in the same directory as the executable is read and its
contents are added to the list of fixed VM parameters. The name of this parameter file is
the same as the executable file with the extension .vmoptions.

For example, if your executable is named hello.exe, the name of the VM parameter file
is hello.vmoptions. For GUI launchers on macOS, an additional .vmoptions file inside
the application bundle with the relative path Contents/vmoptions.txt is read.

In the .vmoptions file, each line is interpreted as a single VM parameter and the last line
must be followed by a line feed. install4j adapts your .vmoptions files during the
compilation phase so that the line endings are suitable for all platforms. For example, the
contents of the VM parameter file could be:

-Xmx256m
-Xms32m

The .vmoptions files allow the installer as well as expert users to modify the VM parameters
for your generated launchers.

It is possible to include other .vmoptions files from a .vmoptions file with the syntax

92

-include-options [path to other .vmoptions file]

Recursive includes are supported. You can also add this option to the fixed VM parameters
of a launcher. In that way, you do not have to create .vmoptions files for all your launchers,
but you can have a single .vmoptions file for all of them.

This allows you to centralize the user-editable VM options for multiple launchers and to
have .vmoptions files in a location that can be edited by the user if the installation directory
is not writable. You can use environment variables to find a suitable directory, for example

-include-options ${APPDATA}\My Application\my.vmoptions

on Windows and

-include-options ${HOME}/.myApp/my.vmoptions

on Unix. If you have to decide at runtime where the included .vmoptions file is located,
use an installer variable:

-include-options ${installer:vmOptionsTargetDirectory}/my.vmoptions

and add a "Replace installer variables in a text file" action to replace it after you have set
the vmOptionsTargetDirectory installer variable to a suitable path with a "Set a variable"
action.

In addition to the VM parameters you can also modify the classpath in the .vmoptions
files with the following options:

• -classpath [classpath]
Replace the classpath of the generated launcher.

• -classpath/a [classpath]
Append to the classpath of the generated launcher.

• -classpath/p [classpath]
Prepend to the classpath of the generated launcher.

Instead of adding your own .vmoptions to the distribution tree, you can set up an initial
.vmoptions file on the "VM options file" step of the launcher wizard, either with a template
or with your own pre-defined content. Overwrite mode and file rights can also be configured
in this step.

93

Environment variables

You can use environment variables in the fixed VM parameters and in the .vmoptions file
with the syntax ${variableName} replacing variableName with the name of the
environment variable.

This environment variable syntax also works in the arguments text field and the classpath
configuration.

"Add VM options" action

With the "Add VM options" action [p. 182], you can handle VM parameter additions to the
.vmoptions file in the installer. The action creates a .vmoptions file if necessary or adds
your options if it already exists.

A number of VM parameters can only occur once, so the action replaces the following
parameters if they already exist:

• -Xmx
• -Xms
• -Xss
• -Xloggc
• -Xbootclasspath
• -verbose
• -ea / -enableassertions
• -da / -disableassertions
• -splash

as well as the install4j-specific classpath modification options that can be used in
.vmoptions files.

94

To set an -Xmx value to a fraction the total memory of the target system, you can use a
"Set a variable action" that calculates the numeric part of the -Xmx value using the utility
method SystemInfo.getPhysicalMemory(). In the second step, you use that variable in
the "VM options" property of the "Add VM options" action. For example, if you want to set
the maximum heap size to 50% of the total memory, you do the following after the "Install
files" action:

1. Add a "Set a variable" action with variable name "xmx" and a script of

"-Xmx" + Math.round(SystemInfo.getPhysicalMemory() * 0.5 / 1024 / 1024) + "m"

2. Add an "Add VM options" action with VM options

${installer:xmx}

95

A.15 JRE Bundles
When deploying a Java application, you should always bundle a JRE. While a JRE with the
required version may be available in a controlled environment, it is generally far less
error-prone to ship a JRE with each media file. Any JRE bundle that is installed by install4j
is private to your application and will not interfere with other applications.

install4j offers two ways to create JRE bundles. You can either let install4j download JDK
archives from well-known OpenJDK providers and create JRE bundles from them on the
fly, or you can create JRE bundles yourself from installed JREs.

How JRE bundles work at runtime

install4j automatically adjusts the JRE search sequence [p. 41] of all generated launchers
and includes the bundled JRE as the first choice. A bundled JRE is used automatically by
the installer, the uninstaller, custom installer applications and the generated launchers.

A bundled JRE will always be distributed inside the installation root directory [p. 14], on
Windows and Linux/Unix in the directory

<installation directory>/jre

and on macOS in

<content directory>/.install4j/jre.bundle

The content directory is available from the installer runtime variable sys.contentDirand
resolves to the installation directory for folder media file types and Contents/Resources/
app for archive media file types. The actual location of the JRE installation directory is
available from the installer runtime variable sys.preferredJre after the "Install files"
action has run.

When you update your application and include a new JRE bundle, the old JRE bundle will
be deleted prior to the installation, so that any files left over from the old JRE cannot
interfere with the new JRE.

Generated JRE bundles

On the "General Settings->JRE Bundles" step, you can use the release chooser dialog to
select a release from which you would like to create the JRE bundles. The available
platforms are listed next to each release. The standard platform IDs are

• windows-amd64 for 64-bit Windows
• windows-x86 for 32-bit Windows
• windows-aarch64 for 64-bit Windows on ARM
• macos-amd64 for macOS on x64
• macos-aarch64 for macOS on ARM
• linux-amd64 for 64-bit Linux
• linux-x86 for 32-bit Linux
• linux-aarch64 for 64-bit Linux on ARM

96

Other platforms may be provided by the JDK providers and are usable in the Linux/Unix
media files.

By default, Adoptium (1) is set as the JDK provider and is recommended for general purpose
usage. For JavaFX applications, the Liberica (2) and the Zulu (3) providers are convenient,
because JavaFX is already included, and you don't have to work with separately
downloaded JMOD files. Liberica also offers an especially wide range of Linux architectures.
For Swing desktop applications, the JetBrains Runtime (4) is the best choice because it
contains a lot of fixes that are not included in the upstream OpenJDK. Finally, Amazon
Corretto (5) is an OpenJDK distribution that focuses on including additional fixes and
patches from the main branch and other sources into older releases.

Selecting a release folder node in the chooser dialog rather than a node for a specific
release will insert a key ending in /latest. At compile time, the latest release that includes
the required platform will be taken.

To add new JDK providers, an SPI is provided in resource/jdk-provider.jar. The
associated Javadoc in the archive resource/jdk-provider-javadoc.jar has more
information.

Downloaded JDK bundles contain all kinds of modules that you do not need in your
distribution. On the other hand, you may have a set of JMODs that have to be linked into
the JRE bundle, such as JavaFX (6). With your configuration in the module selector, you can
include a base set of modules, single named modules and additional JMODs. By default,
a "JRE" with commonly used modules is linked, but the module sets "Minimum" and "All"
are also available.

(1) https://adoptium.net
(2) https://bell-sw.com/
(3) https://www.azul.com/downloads/zulu-community/?package=jdk
(4) https://confluence.jetbrains.com/display/JBR/JetBrains+Runtime
(5) https://aws.amazon.com/de/corretto/
(6) https://openjfx.io/

97

https://adoptium.net
https://bell-sw.com/
https://www.azul.com/downloads/zulu-community/?package=jdk
https://confluence.jetbrains.com/display/JBR/JetBrains+Runtime
https://aws.amazon.com/de/corretto/
https://aws.amazon.com/de/corretto/
https://openjfx.io/

install4j always adds modules that are required by the install4j runtime. This includes the
java.desktopmodule which is required even if you only want to create console installers
or archives. In addition, install4j scans the module requirements of your generated
launchers [p. 41] and adds them automatically. With the Show included modules button,
you can show the actual list of modules that will be added to the JRE bundle. In Java 8
there is no module system, so the entire JRE is bundled for those versions.

In the "Bundled JRE" step of the media wizard, the "Generate a JRE bundle" option is selected
by default. You can set it to "Do not bundle a JRE" in order to create media files without
JRE bundles. Furthermore, you can customize the common JRE bundle configuration.

In addition to overriding the JDK provider and the release, you can specify additional
modules and JMOD files that should be included for the current media file. The Show
included modules button on this step uses the JDK bundle for the target platform unlike
the corresponding button on the "General Settings->JRE Bundles" step which uses the JDK
bundle for the current platform. This can lead to slight differences because JDKs contain
platform-specific modules.

98

For Unix/Linux media files, the actual platform must be defined on the "Bundled JRE" step
of the media wizard. By default, it is set to linux-amd64 which stands for 64-bit Linux. The
chooser button displays a dialog with all platforms that are available for the selected
release.

If Java 8 is bundled, you can optionally deactivate the Pack200 compression for JAR files
in the JRE. In archives, for example, these JAR files are decompressed the first time when
a generated launcher is executed, adding a possibly undesired lag. That is why Pack200
compression is not selected by default for archive media files. Pack200 compression is
unavailable for macOS single bundle archives where the signature requirements forbid
the modification of any included files.

install4j will cache both downloaded JDK bundles and generated JRE bundles in the JRE
cache directory

%LOCALAPPDATA%\install4j\v<version>\cached_jres

99

on Windows.

~/Library/Caches/install4j/v<version>/cached_jres

on macOS, and

.cache/install4j/v<version>/cached_jres

on Linux and Unix where the root directory can be modified with the environment variable
XDG_CACHE_HOME.

You can move the contents of this directory including the subdirectories "original" and
"generated" to another machine to avoid downloads and speed up compilation. You can
also delete this directory to force install4j to re-download all JDK bundles and generate
new JRE bundles.

Pre-created JRE bundles

You can create a JRE bundle from any installed JRE on your file system. install4j offers the
"Create a JRE bundle" wizard in the "Project" menu to make this task as simple as possible.

If you wish to automate the process, a command line tool [p. 238] for building JRE bundles
is available with corresponding tasks in the Gradle, Maven or ant integrations.

Packaging your own JRE can be useful if you want to use JDK providers not supported by
install4j (such as the official Oracle JDKs), or if you want to use runtime images that were
created by jlink (7). The JRE bundle wizard only works for the platform you are running on.
That means, to create a JRE bundle for Windows, you have to run install4j on Windows, to
create a bundle for Linux, you have to run install4j on Linux.

All JREs are saved with a tar.gz extension to the root of the pre-created JRE directory
which is

%LOCALAPPDATA%\install4j\v<version>\jres

(7) https://docs.oracle.com/en/java/javase/11/tools/jlink.html

100

https://docs.oracle.com/en/java/javase/11/tools/jlink.html

on Windows.

~/Library/Application Support/install4j/v<version>/jres

on macOS, and

.local/share/install4j/v<version>/jres

on Linux and Unix where the root directory can be modified with the environment variable
XDG_DATA_HOME.

Pre-created JRE bundles can be selected in the "Bundled JRE" step of the media wizards

If you would like to put your JRE bundles into a different directory, such as a directory in a
version-controlled location, you can copy the .tar.gz file to that directory with the Copy
Bundle File button and choose "Manual entry" in the JRE bundle drop-down to enter the
path to the bundle file.

JRE bundle format

In special cases you might want to create or modify a JRE bundle programmatically,
without using the install4j IDE or the command line tools. This can be done with the standard
GNU tools tar and gzip. A JRE bundle for install4j is simply a file with the naming scheme:

[operating system]-[architecture]-[JRE version].tar.gz

For windows bundles, the operating system name must be "windows", for macOS "macos",
and for Linux and Unix any name can be used. The .tar.gz file contains the JRE bin and
lib folders as top-level entries. The steps to create a bundle are outlined below:

cd jre
tar cvf minix-x86-11.tar *
gzip minix-x86-11.tar
cp minix-x86-11.tar.gz $HOME/.local/share/.install4j/v<version>/jres

First you change into the top-level directory of the JRE, then you tar all files and directories
and gzip the tar archive.

101

A.16 Services
Many applications have a component that has to run in the background without user
interaction. On Windows, this is called a "service", on Unix a "daemon", in install4j the term
"service" is used exclusively. install4j can generate service launchers for your application
on all supported platforms. On Windows, managing services is a particularly demanding
area and so other service executables that have not been generated by install4j are
supported as well.

Generated service launchers

A service launcher will be generated if the selected executable type in the "Executable"
step of the launcher wizard is set to "Service".

There are no special requirements and interfaces that have to be used by your code.
When the service is started, the main method of the configured main class will be called
just like for GUI or console launchers. Also, there is no special "shutdown" interface that is
notified when the service is stopped. To perform cleanup, use the Runtime.
addShutdownHook()method to register a thread that will be executed just before the JVM
is terminated.

If you define a service launcher, it will not run automatically after the installation. A
generated service launcher has to be installed and started explicitly. To do that, you have
to add the following actions to the installer:

• Install a service

This action registers a service with the system, so that it can be executed automatically
when the computer is started. By default, the name of the installed service is the launcher
name that is configured in the launcher section of the install4j IDE. To change the service
name, you have to rename the launcher.

102

On Windows, if you require a user-configurable service name or if you wish to install
the service multiple times, use the method for external service launchers as described
below.

• Start a service

Installing a service does not start it immediately, and you have to add this separate
action to actually run the service.

When the "Install Files" action runs and a previous installation is being updated, any running
services that are associated with the same executables are stopped.

Windows user accounts

On Windows, you can configure the user account that is used for running the service. There
are a few well-known user accounts, like "Local System" (the default) or "Local Service"
that you can choose directly in the configuration of this action.

In some cases, you might want to create a separate user to run a service. install4j offers
API support for creating new user accounts with thecom.install4j.api.windows.WinUser

103

class. If you would like to query the user for details on the user account, it is possible to do
that without using the API. On a configurable form, add a "Windows user selector"
component and select the "Show 'Create User' button" property.

The SID of the created or selected user is saved to the configured variable, say "serviceUser".

You also have to query the user for the password of the account. For that purpose, add a
"Password field" form component, set its variable to "servicePassword" and choose that
form component in the "Password form component" property of the user selector form
component.

In the "Install a service" action, you can then choose Other in the "Account" property and
enter ${installer:serviceUser} in the nested "Account name or SID" property as well
as ${installer:servicePassword} in the nested "Password" property.

Command-line options of generated service launchers

Under some circumstances, services must be able to be installed and started manually
from the command line. While this is required functionality on Unix, service executables

104

on Windows usually offer no command line functionality. Instead, it is expected that there
is a special program that installs and uninstalls the service.

This task is handled by the "Install a service" and "Uninstall a service" actions in install4j.
In addition, you can start and stop services in the Windows service manager. install4j
includes the "Start a service" and "Stop a service" actions to do this programatically in the
installer.

To improve usability, install4j adds Unix-like arguments to the generated service launchers
on Windows as well. For Unix and Windows service executables, the usual

my_service start | my_service.exe /start
my_service stop | my_service.exe /stop
my_service status | my_service.exe /status
my_service restart | my_service.exe /restart

options for daemon start scripts are supported. The stop command waits for the service
to shut down. The exit code of the status command is 0 when the service was running, 3
when it was not running and 1 when the state cannot be determined, for example, when
it is not installed on Windows.

For debugging purposes, you may want to run the executable on the command line without
starting it as a background service. This can be done with the run parameter.

my_service run | my_service.exe /run

In that case, all output will be printed on the terminal. If you want to keep the redirection
settings, use the run-redirect parameter instead.

To install or uninstall a service on Windows from the command line, call

my_service.exe /install
my_service.exe /uninstall

In this way, your service is always started when Windows is booted. To prevent the
automatic startup of your service, call

my_service.exe /install-demand

instead. As a second parameter after the /install parameter, you can optionally pass
a service name. In that way you can

• install a service with a different service name than the default name.
• Use the same service executable to start multiple services with different names. To

distinguish several running service instances at runtime, you can query the system
property exe4j.launchName for the service name. Note that you also have to pass the
same service name as the second parameter if you use the /start, /restart, /status
/stop and /uninstall parameters.

On Windows, all command line switches also work with a prefixed dash instead of a slash,
like -uninstall or with two prefixed dashes, like --uninstall.

105

External service launchers on Windows

When deploying third-party software, you may want to install and start services that were
not generated by install4j. Both the "Install a service" action and the "Start a service" action
provide a way to select other service executables. If you choose [Other service
executable] in the drop-down list of the "Service" property, two new nested properties
are shown: In the "Executable" property you set the path of the external service executable
and the "Name" property allows you to specify the name of the installed service.

Note that this action does not provide "service wrapper" functionality for regular
executables. The selected executable has to be a service executable, otherwise the action
will not work.

106

A.17 Elevation Of Privileges
Most operating systems have the concept of normal users and administrators. While
regular applications can run with limited privileges, installers often need full administrator
privileges because they make modifications to the system that are not granted to limited
users.

The required privileges depend on two factors: The operating system and the type of
operations that are performed by the installer. The "Request privileges" action that is
present in the "Startup" sequence of the default template for installers takes care of
elevating the privileges to the required level and optionally terminating the installer with
an error message if the required privileges cannot be obtained.

Due to the differences of the different operating systems, this configuration is made
separately for Windows, macOS and Unix.

If the action fails, you can choose to not display an error message and switch to an
installation directory in the user home directory with the "Fall back to user-specific
installation directory" property. Use Util.hasFullAdminRights() in condition expressions
of actions that only work with elevated privileged in this case.

For the installer and the uninstaller, the privileges should be the same. This is why the
default template for the uninstaller has a "Request installer privileges" action that will
request the same privileges that were obtained in the installer.

107

If you have more complex requirements, you can have multiple "Request privileges" actions
with appropriate condition expressions, each with a link in the uninstaller.

Windows privileges

On Windows, "User Account Control" (UAC) (1) limits privileges for all users by default. An
application can request full privileges, with different effects for normal users and admin
users:

• A normal user cannot be elevated to full privileges, so the user has to enter credentials
for a different administrator account. A normal user is not likely to have these credentials,
so by default the "Request privileges" action does not try to obtain full privileges for
normal users.

Under some circumstances, for example, if you want to manage services in your installer,
you absolutely require full privileges. In this case, you can select the "Try to obtain full
privileges if normal user" property in the Windows category.

• An admin user can be elevated. A UAC prompt will be shown in this case, and the user
simply has to agree to elevate privileges for the installer. Given that it is not possible to
write to the program files directory without elevated privileges, this elevation is performed
by default. With the "Try to obtain full privileges if admin user" property you can configure
this behavior according to your own needs.

(1) http://en.wikipedia.org/wiki/User_Account_Control

108

http://en.wikipedia.org/wiki/User_Account_Control

By default, the installer will fail if the requested privileges cannot be obtained. You can
deselect the "Show failure if requested privileges cannot be obtained" property in the
Windows category to continue and let the user install into the user home directory or
another writable directory.

When you insert a service action and the elevation properties are not selected, you will
be asked whether the necessary changes should be made automatically.

macOS privileges

Similar to Windows, macOS limits privileges for all users by default and normal users and
admin users behave differently with respect to privilege elevation:

• A normal user cannot be elevated to full privileges, so the user has to enter the root
password. A normal user is not likely to have the root password, so the "Request privileges"
action does not try to obtain full privileges for normal users by default.

• To elevate an admin user, an authentication dialog will be shown, and users have to
enter their own password. Contrary to Windows, admin users can always write to the
/Applications directory, even without full privileges. That is why on macOS no elevation
of privileges is requested by default.

Like on Windows, the installer will fail by default if the requested privileges cannot be
obtained. In the default setting this has no effect, because privileges are never requested.

Service installations require full privileges, so the "Try to obtain full privileges if admin user"
and the "Try to obtain full privileges if normal user" properties in the macOS category
should be selected in that case. Again, the necessary changes will be suggested when
service actions are inserted into the project.

109

Linux privileges

install4j supports elevation of privileges with pkexec for GUI installation if available. For
console installations, sudo or su will be called. install4j does not elevate privileges for
unattended installations. In this case, the installer has to be started by the root user if
required.

Elevation mechanism

install4j does not elevate the entire process, but it starts an elevated helper process with
full privileges.

Elevated
action

Elevated
code

Elevated
helper
process

Original
unelevated
process

Unelevated
code

Unelevated
action

Installer UI

launches pushes
down

pushes
upelevates

displays

All actions have an "Action elevation type" property that can be set to "Inherit from parent",
"Do not elevate" or "Elevate to maximum available privileges". The root element in the

110

hierarchy or beans is always an installer application whose "Action elevation type" property
is set to "Do not elevate" by default.

An action whose "Action elevation type" property results as "Elevate to maximum available
privileges" will run in the elevated helper process. Such an action has full access to all
installer variables as long as the contents of the variables are serializable.

Actions can have a preferred elevation type that is set automatically when you add the
action. Actions that need to be elevated include

• the "Install files" and "Uninstall files" actions
• service actions
• actions that add rights on Windows
• actions that write files
• the "Run executable or batch file" action

Actions that are explicitly not elevated by default include

• the "Show URL" action
• the "Show file" action
• the "Execute launcher" action
• actions that should run as the original user, such as registry actions
• actions that interact with the GUI of the installer application

Elevated code can only interact with the GUI in a limited way. All methods in the com.
install4j.api.Utilclass for displaying message dialogs or option dialogs are supported.
You cannot call context.getWizardContext() or directly display a GUI using the Java
Swing API. Also, calling methods in the com.api.install4j.context.Context that change
screens is not supported. Most importantly, because an elevated action runs in a different
process, you cannot access any static state in custom code. The only means to modify
state from elevated actions are installer variables.

For your own scripts or your custom code, the API offers a way to push a piece of code to
the elevated helper process or to the original process if they exist. This is done by wrapping
the code in a com.install4j.api.context.RemoteCallable and calling context.
runElevated(...) for the elevated helper process and context.runUnelevated(...)
for the original process with the RemoteCallable:

111

context.runElevated(new RemoteCallable() {
 public Serializable execute() {
 // do something in the elevated helper process
 return null;
 }
}, true);

context.runUnelevated(new RemoteCallable() {
 public Serializable execute() {
 // do something in the original process
 return null;
 }
});

The RemoteCallable must be serializable, so its fields can be transferred to the other
process. Its execute() method that contains the code returns a Serializable so you
can return a result to the calling process.

112

A.18 Merged Projects
There are two basic motivations for merged projects: First, there are large projects where
a monolithic project file is inconvenient because multiple developers work on the same
installer. Secondly, if you have multiple products that share certain components, it is
undesirable to duplicate configuration for their installers.

The "merged projects" feature is a solution for both of these problems. You can create
project files that are separate installers by themselves, such as a "database installer" and
reuse them in multiple projects by adding them on the "General Settings->Merged Projects"
step. On the other hand, you can also create project files that do not install anything by
themselves, but just contain a collection of "Run script" actions that are useful in several
of your installers.

Merged projects in install4j are not subprojects that will retain their structure at runtime.
Merging inserts selected elements into the main project before the main project is
compiled.

Merge options

By default, files, launchers and custom installer applications are inserted. The corresponding
merged elements are only added at compile-time and will not be visible in the main
project. You can change merge options for each merged project individually.

113

Merging works across an arbitrary number of levels and is performed in a bottom-to-top
fashion: If the main project A includes a merged project B which in turn includes a merged
project C, then C is first merged into B and the result is merged into A.

All selections are transitive for nested merged projects. For example, if the merged project
contains another merged project for which merging of files is enabled, those files are only
merged if file merging is enabled in the main project.

Merging of files

If you have enabled file merging for a merged project, files are merged automatically
according to the following rules:

• All files from the default file set of the merged project are merged into the default file
set of the main project.

• Roots are merged if the main project has roots with the same name, otherwise they are
discarded.

• Files in each file set of the merged project are only merged if the main project has a
file set with the same name.

The contained files in the merged project are not displayed in the main project. When
defining installation components in the main project, you will only be able to select the
entire file set. This means that the file sets in the merged project have to be as granular
as required for your main project.

If there are files with the same relative paths, the main project has the highest precedence
and the most deeply nested merged project has the lowest precedence. For merged
projects on the same level, a project with a lower position in the list has a higher precedence
than a project with a higher position.

There is no merging of installation components. Installation components can only be
defined in the main project. However, with the appropriate definition of file sets in merged
projects, you can easily contribute files to installation components in the main project.
For example, if your merged project installs your database, and you want to ask the user
whether to install the database, define a file set named "Database files" in the merged
project and add all files to that file set. In your main project, you also add a file set named
"Database files".

When adding the merged project, you will be asked whether to add that file set
automatically to the main project. If file sets change later on, there is an action to repeat
this synchronization. After invoking the action, the new file sets are displayed in the definition
of the distribution tree [p. 14].

114

In your installation component for the database, choose the file set "Database files". It will
not contain any files in the IDE, but during compilation, the files from the merged project
will be added to it.

Merging of launchers and custom installer applications

All launchers and custom installer applications are merged if you have enabled the
corresponding option for a merged project. It is not an error if there are collisions of
launchers or custom installer applications with the same relative paths, and the rules of
precedence are the same as for the merging of files. However, it is recommended not to
hide launchers in this way because this can lead to unexpected problems at runtime.

Both launchers and custom installer applications can be attributed to a particular file set.
In that case, they are only merged if the file set also exists in the main project. The
attribution to a particular installation component in the main project is done in the same
way as for files.

Merging of screens and actions

Screens and actions are not merged automatically, but through a selective placement
of links on the "Installer->Screens & Actions" step [p. 160]. If merged projects are configured,
the "Add link into" menu contains an entry for each merged project.

115

You can add multiple links to single screens and actions, but for more complex tasks it is
advisable to create groups for related beans and add a link to a single group.

When adding links, the install4j IDE, shows special nodes that do not show any structure
but just a button that opens the target of the link in a different window. At compile-time,
the target elements are inlined. This means that at runtime, it appears as if all merged
elements were defined directly in the main project.

116

Merging of styles

If style merging is enabled, all styles from the main project are made available for installer
applications, screen groups and screens. This allows you to centrally manage a set of
styles and re-use it in multiple projects.

See the help topic on styles [p. 60] for more information on how merged styles can be
used in the project.

Flat merging considerations

As a result of flat merging, there are no intermediary artifacts for merged projects and
the result of the compilation is a single monolithic installer. This has the advantage of
being straightforward and flexible, but collisions can occur unless concerns are properly
separated between the main project and its merged projects.

In particular, all elements in the final result share the same namespace for compiler and
installer variables. All custom localization files are merged, so that localization in merged
projects is not impacted unless there is a collision in the message keys. Such problems
can be avoided if unique prefixes are used for compiler variables and installer variables
as well as custom localization keys. For example, in project A, all variables could be prefixed
with "a." and in project B with "b.".

117

One area where such collisions are not possible is for IDs of any entity in a project, such
as launchers, file sets, actions, screens or form components. When a project is merged,
install4j prefixes all IDs with the application ID of that project.

For example, if the application ID of a merged project is "1406-2150-6354-3051" and a
launcher has the ID "2265", the ID is changed to "1406-2150-6354-3051:2265" after merging.
This ensures that all IDs remain unique no matter how many projects are merged. Beans
(screens, actions and form components) in the merged project are passed a special
context that automatically prefixes all unqualified IDs with this application ID. For example,
if you have a script in your merged project that calls

context.getLauncherById("2265")

this will succeed, even though the ID is now actually "1406-2150-6354-3051:2265". If you
want to access that same launcher configuration from a script in the main project, you
would have to call

context.getLauncherById("1406-2150-6354-3051:2265")

Generally, it is recommended to organize merged projects so that they are relatively
self-contained and only interact with their main project through common installer variables.
In that way, the main project can continue to work if the merged project is removed and
the merged project can work as a standalone installer.

118

A.19 Auto-Update Functionality
install4j can help you to include auto-update functionality to your application.
Auto-updating includes two tasks: First, there must be a way to check if there is a newer
version available for download. This check can be initiated by the user in various ways, or
the check can be triggered automatically by your application. Secondly, there must be a
way to download and execute an appropriate installer for the new version.

install4j creates a special file named updates.xml in the media output directory when
you build the project. This file describes the media files of the current version. If you want
to use install4j's auto-update functionality, you have to upload this file to a web server.
The file is then downloaded by deployed installations and delivers information about the
current version. The contents of updates.xml are explained in detail in the next
chapter [p. 124].

Downloading and installing the new version is done with a custom installer
application [p. 167]. install4j offers several templates for update downloaders that
correspond to the different update strategies. These strategies are explained below and
in the chapter on background auto-updates [p. 130].

Getting started

To get basic auto-update functionality for a GUI application, you should start with a
standalone update downloader that will help you validate the associated concepts. To
add a standalone update downloader to your project, you can follow these instructions:

1. Upload the file updates.xml together with your media files to a directory on your web
server.

2. Go to the "Installer->Auto-Update Options" step and enter the download URL for the
updates.xml file. This must be the full URL for the file, like https://www.server.com/
download/updates.xml and not just for the containing directory.

3. Go to the "Installer->Screens & Actions" step, click on the "Add" button, choose Add
application from the popup menu and select the "Standalone update downloader"
template.

4. For the added update downloader application, enter the "Executable name" property,
for example checkForUpdate.

Users can now execute the checkForUpdate executable to check whether a new update
is available. Optionally, the update can also be downloaded and installed.

119

For testing, you can set the "URL for updates.xml" value to a file URL like file:///c:/Users/
bob/myProject/media/updates.xml. Note the triple slashes after the colon that arise
from the initial slash for the required root directory of the file path in addition to the two
slashes that separate the protocol from the path. With a file URL, you do not need a web
server and the updates.xml file does not have to be uploaded anywhere.

Installers versus archives

Generally, auto-update functionality is available for installers only. This is because the
update downloader downloads the current installer and executes it to perform the actual
update.

One exception is the single bundle archive for macOS where auto-updating is fully
supported by the update downloader templates. On macOS, the single bundle archive is
the preferred way to distribute software unlike on other platforms that prefer installers or
packages that are handled by a package manager. In the update downloader template
you will notice screen and action groups that deal with the macOS single bundle archives
separately.

Automatic invocation of update downloaders

Typically update checks are integrated into the application. An easy way to do so for
desktop applications is to start the update downloader when a particular launcher is
started. Activate the "Launcher integration" tab for the update downloader application
and select the "Start automatically when launcher is executed" check box.

To control how often this update check is performed, you can adjust the "Launch schedule".
By default, it uses the frequency that is set it in the "Update schedule registry". To initialize
the update schedule registry, you can add a "Configurable form" to your installer and add
an "Update schedule selector" form component to it. In the installer, the user will then get
the possibility to choose the frequency of the update checks.

There are two points in the life-cycle of the launcher when the update downloader can
be started: At startup or when the first window is shown. In addition, the invocation at
startup can be blocking or non-blocking. This is set with the "Launch mode" drop-down
on the "Launcher integration" tab.

120

Of course your ideas for auto-updates might be different. Maybe you do not have a GUI
application, and you want to perform unattended updates, or you want to notify your
users about updates directly in your application. That is why the auto-update functionality
has to be extremely flexible, with the unavoidable downside that its configuration is not
trivial, and there are a couple of concepts that you have to understand in order to be
successful. The bulk of this flexibility comes from the fact that the update downloader is
not a monolithic entity, but is composed of standard form components and actions that
can be adjusted according to your particular requirements.

Blocking update downloaders

Some applications need to ensure that updates are applied as soon as possible or make
it a requirement that the current update is applied before the application can be started.
In that case, an update check has to be made at startup. If an update is found, the update
installer should be downloaded and executed. The "Standalone update downloader"
template is not directly suitable for this purpose because it informs the user if no new
version is available. This behavior is only appropriate if the user explicitly requested an
update check.

The "Blocking update downloader" application template is what is required in this case
and is intended for automatic update checks. It looks for an update in the startup sequence
and terminates the update downloader if no new version is available. This means that if
there is no new version available, your users will not see that a check has taken place.
Only if a new version is available will the update downloader display its window and inform
the user of the possibility to download the update installer.

121

For such an automatic check you may want to invoke the update downloader in a blocking
fashion before the application is actually started. As explained in the chapter about update
checks [p. 124], you can use the ApplicationLauncher class to start update downloaders
from your own code. When calling ApplicationLauncher.launchApplication(...)with
the blocking argument set to true, the method will not return until the update installer
has exited. If the user decides to run the installer on the "Finish" screen, your application
will be terminated by the "Shut down calling launcher" action.

Also, this template does not offer the user a directory selection for the downloaded installer,
but downloads to the user-specific download directory by default. You can change this
default directory by passing the argument -VupdaterDownloadLocation=[directory]
to the ApplicationLauncher.launchApplication(...) call.

Typically you will want to restart your launcher after an update has been downloaded in
this way. This cannot be done in the update downloader because it has to terminate right
after starting the installer in order to release locks on installed files. The task to start your
launcher again falls to the installer where you can implement it with an "Execute launcher"

122

action in the "Finish screen". If this should only happen during an update, you can set the
"Condition expression" of the action to context.isUpdateInstallation().

To disable displaying information about a new version in the update downloader template,
you can set the installer variable skipNewVersionAvailable to true or delete the screen
named "New version available". This may be necessary because you already notify users
about updates in your own application as explained in the next chapter [p. 124].

Unattended auto-updates

If a user interaction is not desired, the update downloader can work in unattended mode.
The execution mode of the update downloader is set through its "Default execution mode"
property. By default, it is set to "GUI mode". On Unix, access to the X-server is often not
available, for example, when you install in an SSH session. Also by default, the "Fall back
to console mode on Unix" property allows the installer to switch to console mode [p. 210]
in that case.

To generally disable GUI mode, the "Default execution mode" property can be set to
"Unattended mode". This would be appropriate for a service or for a desktop application
that executes the update downloader in the background. The "Unattended mode with
progress dialog" is intended for desktop applications that need to show a progress UI while
the update is being downloaded.

For programmatic invocations, it is possible to set the execution mode on the command
line with the "-q" and "-splash" command line parameters [p. 212]. Programmatic invocations
of update downloaders should be done with theApplicationLauncherAPI that is explained
in the next chapter [p. 124].

In the default templates for the standalone and blocking update downloaders, the
execution mode is passed on to the "Run executable or batch file" action that executes
the downloaded installer. The "Set a variable" action named "Set installer arguments"
analyzes the current execution mode and prepares the command line parameters. This
is a good example for how the update downloader is actually a composition of actions,
screens and scripts.

123

A.20 Checking For Updates
This chapter explains the background behind update checking and introduces you to the
API that allows you to integrate these checks into your application.

The updates.xml file

The updates.xml file is created in the media output directory [p. 137] each time you build
the project. For advanced use cases, you can modify this file before uploading it to the
web server. The file looks like the sample below:

<?xml version="1.0" encoding="UTF-8"?>
<updateDescriptor baseUrl="">
 <entry targetMediaFileId="8" updatableVersionMin="" updatableVersionMax=""
fileName="hello_windows_4_0.exe"
 newVersion="4.0" newMediaFileId="8" fileSize="2014720" bundledJre=""
myCustomAttribute="showWarning">
 <comment language="en">Hello world</comment>
 <comment language="de">Hallo Welt</comment>
 <comment language="it">Ciao mondo</comment>
 </entry>
 <entry targetMediaFileId="9" updatableVersionMin="" updatableVersionMax=""
fileName="hello_linux_4_0.rpm"
 newVersion="4.0" newMediaFileId="9" fileSize="817758" bundledJre="">
 <comment />
 </entry>
 <entry targetMediaFileId="10" updatableVersionMin="" updatableVersionMax=""
fileName="hello_macos_4_0.dmg"
 newVersion="4.0" newMediaFileId="10" fileSize="1359872" bundledJre="">
 <comment />
 </entry>
</updateDescriptor>

Its contents are derived from your input on the "Installer->Auto-Update Options" step
where you define global options and common options that are replicated on all media
file entries.

124

On the "Customize project defaults->Auto-update options" step of the media wizard you
can override settings with specific values for each media file.

The root of the updates.xml file is the updateDescriptor element. It has a baseUrl
attribute that can be used to specify an alternate download URL for the installers and
contains the value of the "Base URL for installers" setting on the "Installer->Auto-Update
Options" step. By default, it is empty which means that the installers must be located in
the same directory as the updates.xml file.

The updateDescriptor element contains one or more entry elements that correspond
to the media files that were created by the build.

When install4j determines whether an entry in the update descriptor is a match for the
current installation, it looks at three attributes of the entry element: Most importantly, the
targetMediaFileId attribute has to match the media file ID of the current installation.
You can show media file IDs by toggling the "Show IDs" toolbar button

Another criterion is the installed version of the application. Depending on that version, you
might want to offer different updates. The updatableVersionMin and the
updatableVersionMax attributes can set lower and upper limits for the installed versions
that should download the associated entry in the update descriptor. By default, these
attributes are empty, so no version restrictions apply. On the "Installer->Auto-Update
Options" step, these versions can be set for all media files.

Attributes that describe the update installer include fileName which is necessary to
construct the download URL, and fileSize which contains the size of the file in bytes.
newVersion contains the available version while newMediaFileId is the media file ID of
the update installer which is usually the same as targetMediaFileId. Lastly, bundledJre
contains the original file name of the JRE bundle without the .tar.gz extension or the
empty string if no JRE is bundled in the installer.

If you discontinue a media file, you can migrate users of that media file to a different
media file with the legacy media file setting on the "Customize project
defaults->Auto-update options" step of the media wizard. For each specified legacy ID,
the entry for the current media file is duplicated, but with the targetMediaFileIdattribute
set to the legacy ID. For more complex scenarios, you can modify the updates.xml file
yourself and add additional entry elements as required.

125

In addition to the above attributes, the nested comment elements can contain a localized
description that should be displayed to the user. You can populate these elements for all
media files by configuring the "Files with comments" setting in the "Installer->Auto-Update
Options" step. The main use case for this feature is to display release notes in the update
downloader.

Finally, you can add any number of arbitrary attributes to the entry element. This is
configured with the "Additional attributes" setting in the "Installer->Auto-Update Options"
step. Additional attributes are useful for custom logic to select a suitable update installer
in the update downloader.

126

The update descriptor API and up-to-date checks

The install4j runtime API [p. 226] contains the com.install4j.api.update.UpdateChecker
utility class that can download the updates.xml file and translate it to an instance of com.
install4j.api.update.UpdateDescriptor. From there, you can get a suitable com.
install4j.api.update.UpdateDescriptorEntry with a single method call:

import com.install4j.api.launcher.Variables;
import com.install4j.api.update.*;

String updateUrl = Variables.getCompilerVariable("sys.updatesUrl");
UpdateDescriptor updateDescriptor = UpdateChecker.getUpdateDescriptor(updateUrl,
ApplicationDisplayMode.GUI);
if (updateDescriptor.getPossibleUpdateEntry() != null) {
 // TODO an update is available, execute update downloader
}

See the Javadoc for more detailed information.

In this way, you can display your own notification that announces the new version and
lets the user decide whether to download it or not. This API is primarily intended for use in
your application. The "hello" sample project shows how to use it in a complex example,
see the source file hello/gui/HelloGui.java in your install4j installation and look for the
checkForUpdateWithApi method.

In a custom installer application, you would rather use a "Check for update" action that
performs the same actions as UpdateChecker and saves the downloaded
UpdateDescriptor to an installer variable. All update downloader templates included
with install4j execute the "Check for update" action at some point. Its URL is set to
${installer:updatesUrl?:${compiler:sys.updatesUrl}} by default. If you start the
update downloader with the argument -VupdatesUrl=<URL>, it will define the installer
variable "updatesUrl" and that value will be used as the URL. Otherwise, it falls back to the
compiler variable "sys.updatesUrl" that contains the URL for updates.xml that you have
entered on the "Installer->Auto-Update Options" step.

Instances of UpdateDescriptorEntry expose all attributes of the corresponding entry
element in the updates.xml file. They also provide access to any additional attributes
that were added to the entry element so you can implement custom logic to find a
suitable update. The most important method of the UpdateDescriptorEntry class is the
getUrl()method that constructs the full URL from which the update installer can be

127

downloaded. If no baseUrlhas been specified on the updateDescriptor root element,
the URL starts with the parent directory from which the updates.xml file has been
downloaded.

Update schedule registry

A common requirement is to check for an update on a regular schedule. install4j comes
with a standard implementation of an update schedule registry that frees you of the task
to implement one yourself. This update schedule registry is fully integrated with the launcher
integration that starts update downloaders when launchers are executed, but it is also
available in the API.

The com.install4j.api.update.UpdateScheduleRegistry class is intended to be used
in your application. You configure a particular UpdateSchedule by calling

import com.install4j.api.update.*;

UpdateScheduleRegistry.setUpdateSchedule(UpdateSchedule.DAILY);

and call

boolean shouldCheckForUpdate = UpdateScheduleRegistry.checkAndReset();

each time your application is started. If you get a positive response, you can start a suitable
update downloader with the ApplicationLauncher class as explained below.

To facilitate the configuration of the update schedule in your installer, install4j offers a
special "Update schedule selector" form component whose initial value is set to the current
setting (if any) and automatically updates the setting for the installed application when
the user clicks "Next".

Starting update downloaders from your own code

If you have a GUI application, you could provide integration with the update downloader
by offering a "Check for update" menu item or similar that invokes the update downloader.
One problem in this scenario is that if the updater downloads and executes the update
installer, your application will still be running and the user will receive a corresponding
warning message in the installer. The solution to this problem is to use the com.install4j.
api.launcher.ApplicationLauncher class to launch the update downloader. With this

128

utility class, you can launch the update installer by passing its ID as an argument. IDs of
installer applications can be shown by toggling the "Show IDs" toolbar button.

If you launch an installer application such as an update downloader that way, the "Shut
down calling launcher" action will be able to close your application. To react to the
shutdown and perform cleanup operations, you can pass a callback to the
ApplicationLauncher.launchApplication(...) call. After you are notified via the
callback, your application will be terminated with a call to System.exit(). For example,
for an update downloader with ID 123:

import java.io.IOException;
import com.install4j.api.launcher.ApplicationLauncher;

try {
ApplicationLauncher.launchApplication("123", null, false, new
ApplicationLauncher.Callback() {
public void exited(int exitValue) {
//TODO update check complete, no update available
}

public void prepareShutdown() {
//TODO update installer will be executed, perform cleanup before the process is
terminated
}
}
);
} catch (IOException e) {
e.printStackTrace();
//TODO handle invocation failure
}

To easily get such a code snippet for invoking the update downloader, select the update
downloader application and click on the Start Integration Wizard button on the right.

129

A.21 Background Auto-Updates
The introductory chapter on the auto-update functionality [p. 119] discussed update
downloaders that check for update installers, download them and execute them directly
on demand.

Another way to organize auto-updates is to download the update installer in the
background and schedule the update for execution the next time a launcher is executed.
This mode requires the least involvement of the user during the update process. Depending
on how much information you choose to provide to the user in your application, the only
thing the user may notice is an update dialog when the application is started. No download
will take place at that time, because the update installer was already downloaded during
a previous session. The update will be installed without user interaction and no further
user input is necessary.

The "Schedule update installation" action

install4j offers a custom application template that handles such background updates.
On the "Installer->Screens & Actions" step, click on the "Add" button, choose Add application
from the popup menu and select the "Background update downloader" template.

Just like the standalone and blocking update downloader templates, the background
update downloader template uses the "Check for update" action to check if an update is
available and then downloads the update installer with a "Download file" action. There are
two differences with respect to the other update downloader templates: First, a background
update downloader has no UI and automatically downloads an update installer if available.
Second, it will not execute the downloaded update installer directly because that would
disrupt the work of the user. Instead, it executes a "Schedule update installation" action to
register the downloaded update installer for later execution.

In addition to the "Installer file" property that tells the action where the downloaded installer
is located, the "Schedule update installation" action has a "Version" property. This is
necessary so that if multiple installers have been downloaded and not yet been executed,
only the most recent version is actually installed.

To avoid a situation where an installer that terminates with an error or is cancelled by the
user is executed again each time when the launcher is started, the "Maximum retries on
error" and "Maximum retries on cancel" properties limit the number of times that these

130

conditions are repeated, before the installer is finally ignored and the background update
downloader waits for the next version.

To mitigate external issues, such as interrupted internet connectivity, there is a minimum
time between retries of a failed installation. By default, the "Retry inhibition in minutes"
property is set to one day. If you would like to retry more quickly, you can reduce this value.
This may be necessary during development when you want to try out the feature multiple
times in succession. With the default setting, you can only try it once per day.

Executing scheduled installers

There are two options to execute an update installer that is scheduled for execution:

• Programmatic invocation

By calling

com.install4j.api.update.UpdateChecker.executeScheduledUpdate(...);

you can execute the downloaded update installer programatically, usually after checking
the result of

com.install4j.api.update.UpdateChecker.isUpdateScheduled()

to determine whether such a download has been completed. You can do that while the
launcher is running or at startup. Notifying the user about this event or letting the user
defer the installation is handled by your own code. For console and service launchers,
this is the only option.

The "HelloGui" class the in the "hello" sample contains a complete demonstration of how
to use the API to check for updates programatically and uses a background update
downloader to download and install updates.

• Automatic invocation

For GUI launchers, you can edit the launcher, go to the "Executable info->Auto-update
integration" step and select the Execute downloaded update installers at startup
check box. When the GUI installer is started and a downloaded update installer has
been scheduled for installation, the update installer will be executed. See the help topic
on launchers [p. 41] for more information.

Restarting the launcher

In the standalone and blocking update downloader templates, the installer is responsible
for starting a launcher after the installation with an "Execute launcher" action, and you
can choose whether to do that or not.

Installers that have been scheduled by the "Schedule update installation" action are always
executed from a running launcher, so install4j knows which launcher to restart and does
so automatically if you use the automatic auto-update integration for GUI launchers. For
programmatic invocations with the

com.install4j.api.update.UpdateChecker.executeScheduledUpdate(...)

131

API calls, therestartLauncherargument controls whether the current launcher is restarted.
If you pass false, you should start a launcher at the end of the update installer yourself.

Trouble-shooting background auto-updates

A complete background auto-update involves 5 processes that are created in
chronological succession. First, code in the launcher (1) or the automatic launcher
integration for an update downloader detects a new update. Then, the update downloader
(2) is started which downloads the update installer and schedules it for execution. At a
later point in time, the user starts the launcher again (3) and install4j detects that a
scheduled update installer is available. It then executes that update installer (4) and
terminates itself. At the end of the update installer, the original launcher is restarted (5).

Launcher Check for update

Update
downloader Schedule installer execution

Update
installer Restart original launcher

Restarted
Launcher Up to date

executes

Launcher Scheduled update found

executes and terminates itself

executes

starts launcher again

If an error occurs at any point in this chain of processes, the auto update will fail. When
setting up your project, this may be due to a misconfiguration, like a wrong URL for the
updates.xml file or a failed download of the update installer. Because the log files of the
update downloader and the update installer are not readily available and API calls that

132

you use the in the launcher to check for updates or execute scheduled installers do not
log at all, it is difficult to find out where the problem is located.

To debug issues during background auto-updates, you can set the system property
install4j.updateLog=true for the launcher that starts the update process. If you pass
it on the command line, remember to prefix it with-J, otherwise it is passed as an argument
to the main class:

-J-Dinstall4j.updateLog=true

If this system property is set, install4j will create a file named update.log in the updater
cache directory. The updater cache directory can be found in the following
platform-dependent locations:

• Windows
%LOCALAPPDATA%/install4j/update

• macOS
$HOME/Library/Caches/install4j/update

• Linux/Unix
$XDG_CACHE_HOME/install4j/update or $HOME/.cache/install4j/update if
XDG_CACHE_HOME is undefined

The updater cache directory contains directories whose names are hashes of the
application ID and subsequently directories with hashes of the installation path. You can
look for the most recently modified directories to quickly find the application that you are
testing. Inside those directories is the actual content, including the file update.log, that
contains logging output that will help you determine the location as well as the cause of
a failure. Other artifacts in this directory include the downloaded installers as well as lock
files for the update process.

To completely start over with an auto-update process during testing, you can delete this
directory and install4j will re-create it as necessary.

133

A.22 Version Numbers
Version numbers in install4j should be a sequence of version components separated by
dots:

A.B.C...

where A, B, C are composed of alphanumeric characters without dots, for example 1, 112,
5-rc-9 or release.

Version comparisons in the auto-update API

The auto-update [p. 119] API in the com.install4j.api.updatepackage has to determine
whether a new version is greater than an installed version or not. Usually, the
getPossibleUpdateEntry() method of the update descriptor is called to make that
comparison:

UpdateDescriptor updateDescriptor = ...;
if (updateDescriptor.getPossibleUpdateEntry() != null) {
 //TODO an update is available
}

In its implementation, it calls

UpdateDescriptorEntry updateDescriptorEntry = ...;
String installedVersion = context.getVersion();
if (updateDescriptorEntry.checkVersionCompatible(installedVersion)) {
 // TODO This entry has a version that is newer than the installed version
}

The checkVersionCompatible method checks if the supplied version

• is greater or equal than the minimum updatable version in the update descriptor entry
(if defined)

• is less or equal than the maximum updatable version in the update descriptor entry (if
defined)

• is less than the version of the new media file

Internally, it calls

if (UpdateChecker.isVersionGreaterThan(newVersion, installedVersion)) {
 // TODO newVersion is indeed greater than installedVersion
}

to compare the version strings of the installed version with the new version in the update
descriptor entry.

Comparison algorithm for versions

Let us call the two versions that should be compared A and B. A has NA components while
B has NB components. Components are determined by splitting the version string with a

134

java.util.StringTokenizerand a single dot as a delimiter. The components are denoted
as A(0) ... A(NA-1) and B(0) ... B(NB-1).

The following rules apply when comparing these two versions:

1. Before the comparison, the following replacements are performed for both versions in
this order:

• When going from left to right, a boundary between digits and non-digits creates a
new component, for example 2.3a becomes 2.3.a. Boundaries between non-digits
and digits are left intact, for example 2.3.a4. This means that non-numeric characters
only appear as leading characters for each component.

• After dots, any "-" and "_" characters are discarded.
• All characters are converted to lower-case, for example 1.0-HEAD becomes 1.0.
head.

2. The version that has fewer components is filled up with components of value 0, so that
both versions have the same number of components N = max(NA, NB).

3. The versions are compared from left to right, component by component. The version
comparison is finished for the first K = 0 ... N-1 for which the components are not
equal:

B(K) > A(K) => B > A
B(K) < A(K) => B < A

4. Components that have leading non-numeric characters are considered as less than
components with leading numeric characters. For example 2.3-pre < 2.3, because
2.3-pre is converted to 2.3.pre and 2.3 is converted to 2.3.0.

5. If both components have a non-numeric part, version comparison is decided by their
lexicographic comparison, as performed by String.compareTo(...). For example, 2.
Z3 > 2.X4. If the non-numeric parts are equal, the numeric parts are compared where
missing numeric parts are set to 0.

6. Otherwise the components are both numeric and can be compared numerically.

Some examples from the unit test for the version comparison method are:

135

1 < 2
1.1 < 2
1.1 < 1.2
1.1.0 < 1.1.1
9.0 < 10
1.6.0_4 < 1.6.0_22
1.6.0 < 1.6.0_22
1.6.0_4 < 1.6.1
1.0beta1 < 1.0beta2
1.0.beta1 < 1.0.beta2
A10 < A11
2.0 beta 1 < 2.0
2.0 beta 1 < 2.0.0
2.0 beta 1 < 2.0 beta 2
1.0rc1 < 1.0
1.0-rc1 < 1.0
1.0.rc1 < 1.0
1.0alpha < 1.0rc1
1.0alpha < 1.0alpha1
1.0alpha9 < 1.0alpha10
1.0alpha100 < 1.0.rc100
1.0.alpha < 1.0-rc
z < 1
DEVELOP-HEAD130714193704 < DEVELOP-HEAD130714193705

136

A.23 Media Files
Media files are the final output of install4j: single artifacts that are used to distribute your
application to your users. The creation of a media file has platform-dependent options,
so for each platform, you have to define a separate media file. It also makes sense to
define several media files for one platform in case you wish to distribute different subsets
of your distribution tree, or if you distribute your application with and without a bundled
JRE.

Common options for all media files, such as the destination directory, a pattern for naming
the output file and compression options are defined on the "General Settings->Media File
Options" step.

137

Media files have names and IDs. The name is available elsewhere by using the sys.
mediaName compiler variable but is otherwise not used by the compiler. IDs of media files
can be used for selecting media files when building the project from the command
line [p. 234]. You can show IDs by toggling the "Show IDs" toolbar button.

There are two fundamentally different types of media files: installers and archives. Installers
support the full functionality of install4j while archives are limited in several ways.

Installers

Installers install your application programmatically with the configured sequence of
screens & actions [p. 25]. Optionally, an installer can be executed in unattended or in
console mode [p. 210] and it can download a JRE [p. 96] if no suitable JRE is found on the
target system.

The following installer media file types are available:

• Windows

A media file for Windows is a native setup executable that installs your application with
an installer wizard.

Optionally, you can create an MSI wrapper instead of a regular executable. This is
configured on the "MSI wrapper" advanced options step below the "Installation options".
It is not recommended to use the MSI wrapper without having a specific requirement
for it. The MSI wrapper adds a lot of extra process machinery and additional logic to
bridge mismatches between the concepts of install4j and MSI. This results in additional
overhead, increased temporary disk space requirements, reduced responsiveness and
extra considerations for the non-GUI installer modes.

138

MSI wrappers have a fixed setting for whether an installation will be performed
per-machine or per-user. In install4j, this corresponds to whether the "Request privileges"
action is performed or not. In the "per-machine" MSI installation scope it is your
responsibility to ensure that the "Request privileges" action is always executed and that
in the "per-user" MSI installation scope the "Request privileges" is never executed.

MSI will prevent that an installation is repeated if it has already been performed. The
identity of an installation is defined by the MSI product ID. If an installation with the same
product ID is found, the MSI installer will show an error message and terminate. By
default, install4j creates a unique MSI product ID for each build. You can also tell install4j
to create a new product ID for each application version as configured on the "General
Settings->Application Info" step, or to use a custom MSI product ID that you can change
as required.

To change the installation directory, the variable INSTALLDIR can be specified on the
command line. In addition, PARAMETER can be used to pass arbitrary command line
parameters to the wrapped installer.

• macOS folder
The folder media file for macOS is started by the user from the Finder after opening the
DMG. The wizard installs your application as a folder that contains the entire distribution
tree and multiple application bundles for each included GUI launcher.

• Unix/Linux GUI installer
A Unix/Linux GUI installer media file is an executable shell script that extracts an installer
and installs your application with an installer wizard.

Archives

Archives can be extracted by the user to arbitrary locations or are submitted to package
managers for installation. No screens are shown and no actions are executed. If you define
additional installation roots, the files in them are not installed. Also, no installation
components are downloaded.

Apart from the "macOS single bundle" archive that produces the idiomatic deployment
mode for GUI applications on macOS, archives are mainly intended as a fallback or for
additional packages such as documentation bundles.

139

When a launcher is executed for the first time after an extraction, you can call a custom
installer application to perform tasks that would otherwise have been part of the installer.
With theApplicationLauncher.isNewArchiveInstallation()method you can find out
whether this is the case:

import com.install4j.api.launcher.*;

if (ApplicationLauncher.isNewArchiveInstallation()) {
 ApplicationLauncher.launchApplication("123", null, true, null);
}

where "123" is the ID of the custom installer application that should be run.

The following archive media file types are available:

• Windows archive
An archive media file for Windows is a ZIP-file that contains your application.

• macOS single bundle archive

A single bundle media file for macOS is a DMG or .tgz archive that contains a single
application bundle for a selected GUI launcher. Command line launchers and service
launchers are contained in the application bundle. If you wish to support multiple GUI
launchers, choose the "macOS folder archive" media file type instead.

All files in the distribution tree are contained inside the application bundle under the
relative path Contents/Resources/app.

This is the preferred way to distribute a GUI application on macOS. The corresponding
installer that installs a single application bundle is deprecated because of signature
requirements of modern macOS versions. To make it easier to use the screen and action
system in install4j for installations, the media wizard allows you to select a custom
installer application that is executed the first time the user starts the application bundle.

• macOS folder archive
A folder media file for macOS is a DMG or .tgz archive that contains the distribution tree
and multiple application bundles for each included GUI launcher.

• Unix/Linux archive

A Unix/Linux archive media file is a gzipped TAR archive that contains your application.
Users will extract them with a command like

tar xzf archive.tar.gz

• Linux RPM

An RPM archive for Linux can be installed and uninstalled with the rpm command on
Linux distributions that use the Redhat package management.

A basic installation command looks like

rpm -i archive.rpm

140

You can configure custom installer applications to run in the post-installation phase
and the pre-uninstallation phase. Alternatively, default actions for installed launchers
can be performed without starting a JVM. These include the installation of services,
creating links for non-service launchers in/usr/local/binand integrating GUI launchers
into the menu of the desktop environment. In addition, bash scripts for pre-install,
post-install, pre-uninstall and post-uninstall phases can be configured.

• Linux Deb

A Deb archive for Linux can be installed and uninstalled with the dpkg command on
Linux distributions that use the Debian package management.

If you deliver the .deb file as a download, the user will have to install it with

sudo dpkg -i archive.deb

If you specify dependencies for the .deb file in the media wizard, they will not be installed
automatically by the above command. If dependencies are missing, dpkg will simply
report a failure due to the missing dependencies. If you need to install dependencies
from configured repositories with an external .deb file, the installation is a 2-step process:

sudo dpkg -i your_package.deb
sudo apt-get install -f

The second line installs the missing dependencies from the repositories.

Deb media files have the same functionality for running custom installer applications
as RPM media files.

Customizing project defaults

Many project configuration settings can be overridden for each media file. Settings in text
fields can be overridden by using compiler variables [p. 68] and overriding them in the
"Customize project defaults->Compiler variables" step of the media wizard.

It is also possible to override compiler variables for specific media files from the command
line [p. 234] by prefixing the variable name with the media file ID and a colon, as in

-D 123:key=value

if the media file ID is "123". As a special case, you can change the principal language on a
per-media file basis by setting the compiler variable sys.languageId with the 2-letter
ISO code (1) of the desired language, for example

-D 123:sys.languageId=fr

For some features where text fields are not used, special screens are available in the
"Customize project defaults" category. They let you exclude files, launchers, installation
components and installer elements. In addition, the principal language [p. 86] and
auto-update options [p. 119] can be overridden for the media file.

Because it is often necessary to change the name of the media file from the global media
file pattern configured on the "General Settings->Media File Options" step, a separate
(1) https://www.w3.org/WAI/ER/IG/ert/iso639.htm

141

https://www.w3.org/WAI/ER/IG/ert/iso639.htm
https://www.w3.org/WAI/ER/IG/ert/iso639.htm

customization step is available in the media wizard. For example, you may want to produce
two different variants for the same platform with and without some particular files. To
avoid a name clash of the two media files, you have to adjust the name of one or both of
the media files.

Pack200 JAR compression

Pack200 compression (2) is a compression algorithm that was designed for JAR files and
achieves exceptional results, especially for large JAR files.

If you have signed JAR files or JAR files that create a digest, apply the $JDK_HOME/bin/
pack200 executable in your build process with

pack200 --repack my.jar

before signing the JAR files. Pack200 rearranges JAR files, but the reordering is idempotent,
so the above pack/unpack sequence creates a stable JAR file.

(2) http://java.sun.com/j2se/1.5.0/docs/guide/deployment/deployment-guide/pack200.html

142

http://java.sun.com/j2se/1.5.0/docs/guide/deployment/deployment-guide/pack200.html

While Pack200 compression can be quite slow, Pack200 decompression is relatively fast.
Pack200 compression is only used for installers and not for archives.

To avoid problems with external JAR files, you can check the "Exclude signed JARs or JARs
creating digests" option. If you would like to exclude selected JAR files only, you can place
an empty *.nopack file next to it. For example, if the jar file is named app.jar, then a file
app.jar.nopack in the same directory will disable Pack200 compression for that file.

To pass options (3) to the packer, create a file *.packoptions next to the file and add one
option per line. Currently, only -P and --pass-file are supported.

(3) http://docs.oracle.com/javase/8/docs/technotes/tools/windows/pack200.html

143

http://docs.oracle.com/javase/8/docs/technotes/tools/windows/pack200.html

A.24 Data Files
Typically, installers are single files that contain all data that they can install when they are
executed. There are three common situations where this is not the case:

• DVD installers with large data files
If your application relies on large amounts of data, it is often distributed on a DVD. In
that case, you typically ship a number of external data files that you do not wish to
package inside the installer. The installer should start up quickly, and the data files
should not be extracted from the installer to save time. The user might decide to install
only certain components, so some data files might not be needed at all. If they are
included in the installer executable, all this data would have to be read from disk.

• Installers with large optional components
Some applications have large optional components that are not relevant for the typical
user. To reduce download size for the majority, the optional components should be
downloadable on demand.

• Net installers
Some applications are highly modular, so it is not feasible to build a set of installers for
typical use cases. A net installer lets the user select the desired components and
downloads them on demand. The download size of the net installer is small because
no parts of the actual application are contained in the installer itself.

To accommodate the above use cases, install4j offers three different ways to handle the
installer data files. The data file mode can be selected in the "Data files" step of the media
wizard. By default, the "Included in media file" option is selected where all data files are
included in the installer, so you can ship it as a single download.

External data files

This mode covers the "DVD installers with large data files" use case.

Next to your installer, a directory for the data files is created with the name of your installer
and the extension .dat. For example, if your media file name is hello_4_0, resulting in a
Windows installer executable hello_4_0.exe, the directory containing the external data

144

files is named hello_4_0.dat. You have to ship this directory in the same relative location
on your DVD.

The number of data files depends on the definition of your installation components. The
data files are generated in such a way that

• the files for an installation component are contained in one or more data files
• there are no files in those data files that do not belong to this installation component

If components do not overlap, there's a one-to-one correspondence between data files
and installation components.

Downloadable data files

This mode covers the "Installers with large optional components" and "Net installers" use
cases. It can only be used if you define installation components [p. 21].

Data files are generated just like for the "External" mode, but only for installation components
that have been marked as downloadable in the installation component definition [p. 21].

If no installation components are marked as "downloadable", this mode will behave like
the "Included in media file" mode. For a "net installer", all installation components should
be "downloadable".

For this mode, you have to enter a HTTP download URL, so the installer knows from where
it should download the data files at runtime if the user requests downloadable components.
The URL must begin with http:// or https:// and point to a directory where you place
the data files that the compiler produces in the .dat folder next to the installer.

145

The build output will list the data files that belong to downloadable installation components
with a message like

Important: Please make sure that the following files can be downloaded from

 https://www.test.com/components

 hello_windows-x64_8_0.41.dat

This means that the data file must be uploaded to the web server, so that the installer can
download it from the URL

https://www.test.com/components/hello_windows-x64_8_0.41.dat

Any data files that you leave in the data file directory next to the installer will not be
downloaded. This means that if you test your installer directory from the location where
it was generated, the installer finds all data files in the data file directory and does not try
to download them.

Naming and partitioning of data files

The naming of data files is stable and only depends on the name of the media file and
the downloadable installation components.

For example, say your installer includes the following 7 files:

file_1.txt
file_2.txt
file_3.txt
file_12.txt
file_13.txt
file_23.txt
file_123.txt

and there are three installation components with IDs 1, 2 and 3 that include the following
files:

146

Component 1:
 file_1.txt
 file_12.txt
 file_13.txt
 file_123.txt
Component 2:
 file_2.txt
 file_12.txt
 file_23.txt
 file_123.txt
Component 3:
 file_3.txt
 file_13.txt
 file_23.txt
 file_123.txt

Note that some files are in multiple components, and in the above scheme each
component includes all files whose number contains the ID of the installation component.

If the media file is named test, the compiler then produces one data file per component
named test.X.dat with the files that are included exclusively by the corresponding
component:

test.1.dat
 file_1.txt
test.2.dat
 file_2.txt
test.3.dat
 file_3.txt

Next, data files named test.X.Y.dat for the files that are included in exactly two
components are generated:

test.1.2.dat
 file_12.txt
test.1.3.dat
 file_13.txt
test.2.3.dat
 file_23.txt

Finally, a data file is generated that includes files that appear in all three components:

test.1.2.3.dat
 file_123.txt

When generalizing this partitioning to N installation components, a maximum number of
2N - 1 data files are created. In practice, it is more likely that each installation component
only has exclusive files and that there will be N data files.

For the downloadable data file mode, only the downloadable installation components
are included in this partition. Files that belong to other installation components are included
in the installer and do not play any role in the creation of data files.

147

A.25 Code Signing
Code signing ensures that the installer, uninstaller and launchers can be traced back to
a particular vendor. A third party certificate authority guarantees that the signing
organization is known to them and has been checked to some extent. The certificate
authority has the ability to revoke a certificate in case it gets compromised.

The basis for code signing is a public and private key pair (1) that you generate on your
computer. The private key is only known to yourself, and you never give it to anyone else.
The certificate provider takes your public key and signs it with its own private key. That
key in turn is validated by an official root certificate that is known to the operating system.
The private key, the public key and the certificate chain provided by the certificate provider
are all required for code signing.

Code signing is important for installers on Windows and macOS. For unsigned applications
that require admin privileges, a window will display special warning dialogs to alert the
user that the application is untrusted and may harm the computer. Also, the SmartScreen
(2) filter will make it very difficult for the user to execute unsigned executables.

On macOS, the Gatekeeper (3) prevents non-expert users from installing an unsigned
application that was marked as downloaded from the internet, so code signing is practically
required.

(1) https://en.wikipedia.org/wiki/Public-key_cryptography
(2) https://en.wikipedia.org/wiki/Microsoft_SmartScreen
(3) https://en.wikipedia.org/wiki/Gatekeeper_(macOS)

148

https://en.wikipedia.org/wiki/Public-key_cryptography
https://en.wikipedia.org/wiki/Microsoft_SmartScreen
https://en.wikipedia.org/wiki/Microsoft_SmartScreen
https://en.wikipedia.org/wiki/Gatekeeper_(macOS)

You need different certificates for code signing on Windows and macOS. While it is
technically possibly to use the same certificate, the recognized root certificates are different
on both platforms.

Code signing for Windows

You can purchase a "Microsoft Authenticode" code signing certificate from a certificate
provider such as DigiCert (4).

Keys and certificates can be stored in a .p12 file and directly used by install4j. Otherwise,
they are stored on a token or HSM or in a cloud storage. When signing on Windows, the
easiest way to access these types of keys is to use the "Windows keystore" option in install4j.
Drivers for tokens and HSMs integrate into the Windows keystore and can be used
transparently by install4j.

Another option is to use an external executable for code signing according to the
instructions of your certificate authority. In the command line you can use the $EXECUTABLE
variable to reference the full path of the executable that is currently being signed. The
working directory of the executed process is the directory where your project file is located,
so you can use relative file names for key or certificate files. If the signing command cannot
replace the executable directly, but rather needs a separate output file, use the $OUTFILE
variable. It will receive a temporary output file name that will be moved back to the
processed executable after the command has completed.

A third way you can use to access HSMs is using the "Hardware security module PKCS #11
library" option and configure a native library that provides access to the keystore in the
HSM through the PKCS #11 API (5). Libraries can access multiple HSMs that are said to be in
different "slots". By adjusting the slot index, you can switch to a different HSM. By default,
the first available HSM in slot 0 is used. After the library has been configured, a certificate
can be chosen from the keystore in the HSM. Even if you have just one code signing
certificate, over time you will likely add certificate renewals to the same HSM.

Code signing for macOS

This chapter discusses code signing for the standalone distribution of macOS apps outside
the App Store. App Store submission is discussed in a different chapter [p. 153].

Certificates for code signing are only issued by Apple. To get started, open the Keychain
Access app and select Keychain Access->Certificate Assistant->Request a Certificate
From a Certificate Authority. The assistant will save a certSigningRequest file to your file
system.

Then, log in to the Apple Developer Network (6) and request a "Developer ID Application" (7)

macOS code signing certificate. Download the certificate and double-click to add it to
the Keychain.

Finally, open the Keychain Access app, select the "Keys" category and export the key that
belongs to your "Developer ID Application" certificate by selecting both the certificate and
the private key and right-clicking on the combined selection. Choose .p12 as the file
format. The keychain tool will ask you for a new password for the exported file. This is the
password you will have to specify during the install4j build to access your key.

install4j will refuse to use certificates for code signing that have a certificate subject name
other than "Developer ID Application". It is technically possible to sign with an arbitrary
(4) https://www.digicert.com
(5) https://en.wikipedia.org/wiki/PKCS_11
(6) https://developer.apple.com
(7) https://developer.apple.com/support/developer-id/

149

https://www.digicert.com
https://en.wikipedia.org/wiki/PKCS_11
https://developer.apple.com
https://developer.apple.com/support/developer-id/

certificate, although such a signature will not be considered as valid by Gatekeeper. To
enable signing with all kinds of certificates, set the compiler variable sys.ext.
macosAcceptAllCerts to true. Expiration times will still be checked in that case, only the
constraints on the certificate subject name will be removed.

You can find general information about code signing on macOS in the Apple code signing
guide (8).

Notarizing macOS media files

Apple offers a service that checks DMGs for security problems and adds them to their
database. This is called "notarization" and is required starting with macOS 10.15. The exact
steps for notarizing your application are described on the Apple developer web site (9).

However, Apple will only notarize applications that follow certain guidelines. The "hardened
runtime" has to be enabled, which install4j automatically does for you by adding the
appropriate entries to the entitlements file. Also, all binaries in the DMG have to be signed.
This also concerns binaries that are in a ZIP archive. Because JAR files are ZIP archives, the
notarization process can detect binaries in JAR files. Some popular frameworks and libraries
such as SWT or JNA ship native binaries in their JAR files. These contained binaries have
to be signed as well.

For this purpose, install4j lets you configure a list name patterns for binaries. All files in the
distribution tree are matched against these patterns, and if a match is found, the
corresponding file is signed if it is really a MACH-O binary (10). The reason why install4j
cannot just automatically check all files in this way is that this check is rather expensive.

In addition, you can configure a list of name patterns for JAR files that should be scanned
for binaries with the above name patterns. This only works for unsigned JAR files because
the modification introduced by the signature would break the signature of a signed JAR
file and install4j has no way of regenerating that signature.

The actual notarization of a media file is performed by uploading it with the App Store
Connect API to Apple while identifying yourself with an API key generated for an account
matching the code signing certificate. If the app passes the inspection, install4j "staples"
the notarization signature to the DMG. Stapling is only necessary if a macOS machine is
offline and cannot verify the notarization of an app by connecting to the internet.

In the install4j IDE, notarization must be enabled on the "General Settings->Code signing"
step and an App Store Connect API key, issuer, and private key file has to be entered. The
access role of the key must be "Developer". You can generate API keys on Apple's App
Store Connect website.
(8) https://developer.apple.com/support/code-signing/
(9) https://developer.apple.com/documentation/security/notarizing_your_app_before_distribution
(10) https://en.wikipedia.org/wiki/Mach-O

150

https://developer.apple.com/support/code-signing/
https://developer.apple.com/support/code-signing/
https://developer.apple.com/documentation/security/notarizing_your_app_before_distribution
https://en.wikipedia.org/wiki/Mach-O

Key store passwords

Private keys contain sensitive information, and if they get into the wrong hands, your
identity is compromised. Because of that, private keys are secured with a password. When
install4j signs your installers and launchers, it needs to work with the private key.

When you start a build in the install4j IDE, you will be asked for the Windows and macOS
key store passwords as required. install4j does not store those passwords to disk, but they
are cached on a per-project level as long as the install4j IDE remains open.

When you run a command line build, the install4j command line compiler will ask you for
the required passwords. If you want to fully automate a build with code signing, you can
pass passwords on the command line by setting the --win-keystore-password=
[password] and --mac-keystore-password=[password] command line parameters.
The plugins for Gradle [p. 239], Maven [p. 246] and Ant [p. 255] offer the corresponding
"winKeystorePassword" and "macKeystorePassword" attributes. Note that adding these
passwords to shell scripts or ant build files constitutes a security risk.

In a setup where only a restricted number of people can build signed executables, you
can use the --disable-signing command line parameter, the "disableSigning" attribute
of the build system plugins or the corresponding build option in the "Build" step of the
install4j IDE to temporarily disable code signing. In that way, other developers can build
fully functional, unsigned installers without modifying the project file.

Time stamp counter-signing

Code signing certificates issued by certificate providers expire after a certain time. For
Windows code signing, the expiry time is usually one to three years, after which you have
to purchase a renewal from your certificate provider. Executables that were signed while
the certificate was still valid are trusted indefinitely unless the certificate is revoked.

A computer that validates an executable compares the signing time and the expiry time
of your certificate. Certificate providers have to prevent you from turning back the clock
of your computer to circumvent the expiry of your certificate. This is why the signing time
has to be counter-signed by a certificate provider. Certificate providers offer free web
services that will confirm that a signature was performed at a particular time. This
counter-signature is not related to a particular certificate, so you can use the web service
of any certificate provider, regardless of where the certificate came from. install4j uses
the DigiCert time stamp signing service at

http://timestamp.digicert.com

and falls back to the GlobalSign time stamp signing service at

http://timestamp.globalsign.com/?signature=sha2

if there is a failure.

To use a different service, define the compiler variable

151

sys.ext.timestampUrl=<URL>

where <URL> can contain multiple URLs separated by semicolons.

If the timestamp service call fails, install4j will retry up to 10 times or whatever the sys.
ext.counterSignRetry compiler variable is set to.

Apple has its own time stamp signature server at

http://timestamp.apple.com/ts01

that can be changed with the compiler variable

sys.ext.macTimestampUrl=<URL>

Setting up a proxy for HTTP calls

The consequence of the time stamp counter-signature scheme is that you need an internet
connection at build time. Many build servers are behind fire walls, and you might need to
set up a proxy to get internet connectivity and whitelist the above time stamp servers.
install4j will try to auto-detect the proxy information. If that fails, the IDE will ask you for
proxy information, but the command line builds will not ask for user-input in order to avoid
hanging builds due to temporary internet connectivity problems.

For command line builds, you can pass the following VM parameters to the command
line compiler:

• -DproxySet=true
• -DproxyHost=[host name]
• -DproxyPort=1234
• -DproxyAuth=true
• -DproxyAuthUser=[user name]
• -DproxyAuthPassword=[password]

The authentication parameters are optional, only the first 3 parameters are required to
set up a proxy.

If you pass these parameters to the command line compiler, you have to prefix them with
-J to mark them as VM parameters, such as

-J-DproxySet=true

The plugins for Gradle [p. 239], Maven [p. 246] and Ant [p. 255] offer way to set VM parameters
without using the -J prefix.

152

A.26 Submitting An App To The Apple App Store
Apps that are submitted to the macOS App Store have to fulfill a number of requirements
and pass a review process by Apple. While install4j can help you to prepare an artifact
that will be accepted by the App Store, you first have to make yourself familiar with the
submission process by studying the Apple Developer documentation (1).

Configuring a media file for App Store submission

To prepare a package that can be uploaded to App Store Connect (2), start with a media
file of type "macOS single bundle archive" and select the ".pkg for App Store submission"
option on the "Installer options" step of the media wizard.

Right below that option you can select a provisioning profile file to request app capabilities
that have to be allowed by Apple, such as "com.apple.developer.team-identifier",
"com.apple.developer.applesignin" and "com.apple.developer.icloud-service". In addition,
using TestFlight is only possible when a provisioning profile is specified.

This file is created in the "Profiles" section of your Apple Developer account (3) and
determines the Apple distribution channel which must be set to "Mac App Store Connect".
When creating the provisioning profile, you will have to select the App Identifier and a
certificate of type "Mac App Distribution". The App Identifier and the certificate have to be
created in the Apple Developer account before the provisioning profile can be created.

However, the above certificate is not the only certificate that is required. The PKCS #12
certificate file for code signing in the macOS section of the "General Settings->Code
signing" step has to contain

• a certificate of type "Mac App Distribution" certificate for your app
• a certificate of type "Mac Installer Distribution" for the submitted .pkg installer
• (optional) a certificate of type "Developer ID Application" if you also have media files

for standalone distribution on macOS

(1) https://developer.apple.com/macos/submit/
(2) https://appstoreconnect.apple.com
(3) https://developer.apple.com

153

https://developer.apple.com/macos/submit/
https://appstoreconnect.apple.com
https://developer.apple.com

As explained in the chapter on code signing [p. 148], you can export multiple certificates
by selecting them in the Keychain Access app together with their private keys.

Configuring the launcher for App Store submission

One requirement for macOS App Store submission is that the App icon contains images
in the formats 16x16, 32x32, 128x128, 256x256 and 512x512 as well as their Retina variants
with double the resolution. On the "Icon" step of the launcher wizard, add the files for the
non-Retina formats. The icon compiler will try to pick up Retina files with an "@2x.png"
ending and the same base name.

By default, install4j will generate a bundle identifier for your launcher that is written to the
Info.plist file. In case of an App Store submission, you have to explicitly set the bundle
identifier to the same value that you have configured in the App ID Configuration in your
Apple Developer account. This is done on the "Executable info->macOS options" step of
the launcher wizard.

Another requirement for the App Store is that the LSApplicationCategoryType key for the
application category is set in the Info.plist file. You can also do that on the "Executable
info->macOS options" step of the launcher wizard. Possible values for this key are listed
in the Apple Developer documentation (4).

Finally, App Store apps have to run in a sandbox. This is enabled by the
"com.apple.security.app-sandbox" key in the entitlements file that install4j adds
automatically. Your app may need further entitlements, like the ability to read and write
user-selected files. In that case, you have to include an entitlements file on the "Executable
info->macOS options" step of the launcher wizard with content like

(4) https://developer.apple.com/documentation/bundleresources/information_property_list/
lsapplicationcategorytype

154

https://developer.apple.com/documentation/bundleresources/information_property_list/lsapplicationcategorytype

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
 "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
 <dict>
 <key>com.apple.security.files.user-selected.read-write</key>
 <true/>
 </dict>
</plist>

For a list of all available entitlements, see the Apple Developer documentation (5).

Testing the sandboxed App

install4j will create a .pkg file that contains your application bundle. This is the kind of
archive that is required for App Store submission. The App Store will install the .pkg file
silently. If you want to test the sandboxed environment of an app, you will want to install
it before submitting it to the app store. Apple offers the TestFlight app, so you and other
beta-testers can run uploaded builds locally in their final form.

However, if you want to test the app before uploading it and you use an app store
provisioning profile, you cannot install the compiled .pkg file locally. You have to use a
"macOS App Development" provisioning profile instead. A development provisioning profile
is associated with certificates of the type "Apple Development" or "Mac Development". This
means that you have to change both the provisioning profile and the code signing
certificate to create a development build.

In addition, the development provisioning profile must allow your local device and it must
be installed by double-clicking on it in the Finder. When you register your macOS device
in the "Devices" section in the Apple Developer Account, make sure to specify the
Provisioning UDID and not the Hardware UUID, even if the web interface asks you for it. You
can find the UDID from a terminal by executing.

system_profiler SPHardwareDataType | grep UDID

If all these conditions are met, you can double-click the generated .pkg file and follow the
instructions in the wizard to install the application bundle to the /Applications folder.
The installed application bundle will run in a sandbox with the requested entitlements just
like the app that end users will download from the App Store. If some functionality in your
application does not work as expected, it may be missing entitlements. Use the "Console"
app to record logging output and find the cause of a failure.

Submitting the App to the App Store

The most convenient way to upload the generated .pkg file to App Store Connect is through
the "Transporter" app that can be installed from the App store. For signing in, use the Apple
ID of the Apple Developer account where the App is configured.

Before uploading the .pkg file, it is checked for issues that will result in a rejection. After
you fix all these issues in your application, the .pkg file is uploaded and a more thorough
check is performed that may take a couple of minutes. If that check does not pass, you
will get an email with the list of issues that resulted in the rejection. If your app passes
these checks, it will be selectable as a build in the App configuration in App Store Connect.

(5) https://developer.apple.com/documentation/bundleresources/entitlements

155

https://developer.apple.com/documentation/bundleresources/entitlements

A.27 Styling Of DMGs On MacOS
On macOS, software is usually delivered as a DMG. DMG stands for "Disk image" and
contains a file system that can be mounted, rather than an archive that can be extracted.
When the user double-clicks on a DMG file in the Finder, it is mounted to /Volumes/[volume
name] and a new Finder window is opened for the mount point.

The Finder can be styled on a per-directory basis and the information about that styling
is saved to a file named .DS_Store in every directory. This means that you can ship styling
information with a DMG file. Styling includes setting a background image for the Finder
window and that image file can be added to the DMG as well.

For single bundle GUI applications, a styled DMG generally includes a symbolic link to
/Applications in the top-level folder of the DMG, so that user can drag the application
bundle into the default installation directory with minimum effort.

install4j allows you to add any number of files and symbolic links to the DMG. All macOS
media file types have a step named "DMG options and files" as a sub-step of the "Installer
options" step. Here, you can add the top-level .DS_Store files, a background image and
the symlink to /Applications.

Step-by-step instructions

To create your .DS_Store file, follow the steps below on a macOS machine where install4j
is installed.

1. Compile DMG

The first step is to compile your macOS media file from install4j without any custom
styling. This DMG will be the template for which we will define the style. You cannot use
just any other DMG, because each media file has a unique ID. When using background
images, the .DS_Store file must have been created for a DMG with the same ID,
otherwise the image will not be found reliably.

When you recompile the media file in install4j, this ID remains the same, so you can
add the .DS_Store file from a previously compiled DMG to the additional DMG files in
the media wizard.

2. Convert the read-only DMG to a writable DMG

The generated DMG is a read-only image. To make any modifications at all, we have
to convert the DMG to a writable format.

First, make sure that the DMG is not mounted. In a terminal, cd to the directory where
the DMG was created and execute

hdiutil convert hello.dmg -format UDRW -o hello_rw.dmg

where "hello" has to be replaced by the actual name of your media file. Note that the
last argument has "_rw" appended at the end, because the output DMG must be
different from the input DMG.

3. Enlarge the writable DMG

By default, a DMG generated by install4j is full. It is not possible to add any more files
simply because the file system in it has no more available space. To enlarge the DMG,
we first determine its current size by executing

156

hdiutil resize hello_4_0_rw.dmg

The "cur" column of the output shows the number 512-byte sectors. To add about 10
MB, we add 20000 to that number and execute

hdiutil resize -sectors <new number of sectors> hello_4_0_rw.dmg

To check the new size, run

hdiutil resize hello_4_0_rw.dmg

again.

4. Mount DMG

We now mount the read/write DMG by executing

hdiutil attach hello_4_0_rw.dmg

and note the mount point /Volumes/[volume name] that is given by the output of the
above command.

5. Copy background image to DMG

To add a background image, we first have to copy the image to the DMG. We do not
want the image file to show up in the finder, so we create a hidden directory in the
DMG. To do that, we execute

cd /Volumes/[volume name]
mkdir .background

To open this hidden directory in the Finder, we execute

cd .background
open .

Now, we open another Finder window, locate our background image and copy it to the
hidden directory that is visible in the original Finder window.

6. Select background image for DMG top-level folder

Because we need the Finder with the hidden directory in a minute, we leave it as it is,
and double-click on the mounted volume on the desktop to open the default Finder
window for the DMG. We position the new Finder window side-by side with the Finder
window that shows the hidden directory.

To start changing styles, we invoke View->Show View Options. This will show a tool
window with styling controls. In the "Background" section, we choose "Picture" and notice
the drop target for a picture file.

157

Now we have to perform a somewhat tricky operation. From the Finder window that
shows the hidden directory, we drag the image to the mentioned drop target in the
view options dialog without activating that Finder window (otherwise the view options
dialog would change its target folder).

Finally, we see can see the background image applied to our read/write DMG.

7. Adjust DMG finder window

Two properties of the Finder window should be adjusted: Invoke View->Hide Toolbar
and resize the window so that it fits the size of the background image.

8. Add link to /Applications for single-bundle archives

If you have a single-bundle archive media file type, you probably want to add a
drop-target for the installation. In the terminal, we execute

cd /Volumes/[volume name]
ln -s /Applications " "

This creates a link with an empty name that immediately shows up in the Finder window.
The empty name is a good strategy to get around localization issues. The Applications
folder has a special icon and is easily recognizable, so a name is not necessary.

9. Adjust icons

Now you can position the icons as needed and adjust the "Icon size" property in the
view options dialog until they fit with your background image.

10. Extract .DS_Store file

The result of your work above is the .DS_Store file in the top-level folder of the DMG.
Go to the terminal and copy it to your project folder so that you can reference it in the
install4j IDE:

cp .DS_Store [project folder]/DS_Store

Note that we have omitted the leading dot before DS_Store in the target path. This
makes it easier to work with the file and prevents confusion with the Finder.

At this point, our work with the read/write DMG is finished. We should now delete it and
also remove it from the Trash. If we don't do this, subsequent tests will automatically mount
this DMG again. This is due to the "alias" feature in macOS. The .DS_Store contains an alias

158

to the configured background image and as long as the original DMG still exists somewhere,
it will open it from the template DMG instead of from the newly generated DMG.

Configuring the media file

In the media file wizard of the install4j project, we can now use the generated .DS_Store
file. On the "Installer Options->DMG options and files" step we enter the [project folder]/
DS_Store and give it the name .DS_Store in the DMG.

The background image is added with the name .background/[image name with file
extension] where the image name must be the same as on the read/write DMG. The
.background folder will be created automatically.

If you have added a symbolic link to /Applications, you can add a corresponding
symbolic link entry here, the name should also be set to the same name as in the read/write
DMG. An empty name is entered as "" (with the quotes).

With the above files and symbolic links a newly generated DMG will look the same as the
read/write DMG where the styling was added. When you tweak your styling in the future,
you don't start from zero but with the styles that are already present in the generated
DMG.

159

B Configuring Installer Beans

B.1 The Screens & Actions Configuration Step
The "Installer->Screens & Actions" step shows a tree representation of the installer, the
uninstaller and other installer applications, such as updaters. The nodes in the tree are of
the following types:

• Applications [p. 167]
An application consist of a series of screens.

• Screens [p. 176]
A screens displays information to the user, optionally gathers user input and optionally
executes a series of actions when the user moves to the next screen.

• Actions [p. 182]
An action usually makes a modification to the installation.

In this chapter, the functionality and configuration options on the "Installer->Screens &
Actions" step are discussed, the underlying concepts are discussed in a different help
topic [p. 25].

Adding new installer elements

Installer elements are added by clicking the Add button.

In the popup window you can select whether to add

• an action [p. 182], a screen [p. 176] or an application [p. 167]. Actions and screens are
made available by install4j or are contributed by an installed extension [p. 232]. A registry
dialog will be shown where you can select the desired screen or action. When adding
an application, the application template dialog is displayed.

• an action or a screen contained in your custom code. New types of reusable actions
or screens can be developed with the install4j API [p. 226]. In your custom code
configuration [p. 165] you can specify code locations that are scanned for suitable
classes.

• an action group or a screen group [p. 195]. The new group is initially empty. You can also
create groups directly from a selection in the tree of installer elements.

160

Installer elements can only be added to appropriate parent elements. If no appropriate
parent element is selected, install4j tries to find one by moving in the ancestor hierarchy
from the current selection. If no appropriate parent element can be found, an error message
is displayed.

• Applications are added at the top level.
• Screens and screen groups can be added to applications or screen groups.
• Actions and action groups can be added to screens or action groups.

Editing installer elements

If you select a single installer element in the tree of installer elements, you can edit its
properties on the right side. Properties that have been modified are shown with an asterisk
(*) in front and can be restored to their default value with the "Reset To Default" action
from the context menu.

Selecting multiple installer elements is possible on the same tree level, meaning that all
selected elements have to be siblings in the tree.

When the configuration area is focused, you can transfer the focus back to the tree of
installer elements with the keyboard by pressing ALT-F1.

The tree of installer elements provides the following actions in the toolbar on the right that
operate on the current selection. You can also access these actions from the context
menu or use the associated keyboard shortcuts.

• Delete
All selected installer elements will be deleted after a confirmation dialog when invoking
the Delete action. The deleted installer elements cannot be restored. You will be
notified if deleting the selected installer elements would break links.

• Rename
After you add an installer element, the tree of installer elements shows it with its default
name. If you have multiple instances of the same installer element next to each other,
a custom name makes it easier to distinguish these instances. You can assign a custom
name to each installer element with the Rename action. The default name is still
displayed in brackets after the custom name. To revert to the default, enter an empty
custom name in the rename dialog.

• Comment

You can add comments to selected installer elements with the Add Comments action.
When a comment is added, the affected installer elements will receive a "Comments"
tab. After adding a comment to a single installer element, the comment area is focused

161

automatically. Likewise, you can remove comments from one or more installer elements
with the Remove Comments action.

In order to visit all comments, you can use the Show next comment and Show previous
comment actions. These actions will focus the comment area automatically and wrap
around if no further comments can be found.

• Disable
In order to "comment out" installer elements, you can use the Disable action. The
configuration of the disabled installer elements will not be displayed, their entries in the
tree of installer elements will be shown in gray, and they will not be checked for errors
when the project is built.

• Copy and paste

install4j has a clipboard for installer elements. You can Cut or Copy installer
elements to the clipboard and Paste them in the same project or in a different project.
Note that references to launchers or references to files in the distribution tree might not
be valid after pasting to a different project.

Pasted installer elements are appended to the end of the same level that would be
chosen if you added installer elements of that type. Sequence restrictions with respect
to the already present installer elements may force a different order.

• Reorder
If your selection is a single contiguous interval, you can move the entire block up or

down in the list. The selection can only be moved within the same level with the
reorder actions. To move the selection to a different parent, you can cut and paste it.

• Group

You can create a screen group or an action group [p. 195] from the selected installer
elements with the Create Group action. The new group will be inserted in place of
the selected installer elements.

You can dissolve a group with the Dissolve Group action. This action is only enabled if
the selection consists of a single screen group or action group. The elements contained
in the group will be inserted in place of the group. Nested groups will not be dissolved.

• Link

You can reuse screens and actions by linking to a single definition. This is particularly
useful if you define an installer maintenance application [p. 167] that should repeat parts
of the installer, such as a number of forms that query the user for initial values to set
up your application. Also, links are the only way to integrate screens and actions from
merged project [p. 113] into the main project.

In order to link to a screen, action, screen group or action group, you click on the "Add"
button and select Add Link Into from the popup menu. The first entry in that popup menu
is always "This project" for links into the current project. If you have set up merged
projects [p. 113], then you get an entry for each merged project. The configuration area
of a link will only contain a button that selects the original definition in the tree of installer
elements. For merged projects, the merged project is opened in a new window, unless
it is already open.

Another way to add a link into the same project is to select the installer element and
invoke the Copy Link action. Then you navigate to the installer element where the link
should be inserted and invoke the Paste Link action.

162

For links into the same project, install4j ensures that there are no broken links in the tree
of installer elements. When you delete an installer element, all links to it will be deleted
as well. If that is the case, the deletion message will tell you how many links are about
to be deleted. Links into merged projects may be broken, this condition is shown in in
the configuration panel.

Searching for installer elements

In the log files, actions and screens are logged with their IDs. You can navigate to an
installer element if you know their ID by clicking on the search icon and choosing "Search
ID" from the popup menu.

When a match is found the result tree shows the match at the top together with the reverse
chain of installer elements that lead to it. You can either show the match itself or select
any other element in the result tree and show that element instead when closing the
dialog with the Show button. This works even if the target element is in a form component
dialog or an action list or a property. The scope of the search is always rooted in the
installer elements that are reachable from the current view.

A separate action "Search Names, Comments and Properties" is available to search for
arbitrary patterns. You can disable any of the search types to narrow down the scope of
the search.

163

Display options for installer elements

When using the install4j API, you reference installer elements with IDs. You can show IDs
in the tree of installer elements by toggling the Show IDs tool bar button.

In order to adjust the information density in the tree of installer elements, you can change
the icon size by choosing large or small icons in the Icon Size sub-menu in the context
menu. The default setting is to show large icons.

164

B.2 Custom Code & Resources Step
Custom code is configured on the "Installer->Screens & Actions->Custom Code" step.

Entries in the custom code are used for

• specifying additional libraries that can be used in scripts and expressions [p. 30] of
screens [p. 176], actions [p. 182] and form components [p. 198].

• developing new types of actions, screens or form components with the install4j API. See
the help topic on using the API [p. 226] for more information.

Before you start to develop a new action, have a look at the available actions [p. 182]
and screens [p. 176]. If it is just a few lines of code, you can use the "Run script" action to
enter them directly into install4j. If you would like to collect user input, most use cases
can be solved with a form screen [p. 51].

An alternative way of adding your beans to the install4j is packaging them as an
extension [p. 232]. In that case, you can select them directly from the standard registry
dialogs instead of having to go through the "Search in custom code" menu entries when
adding beans to the installer.

• including resource files into the installer. Resource files are arbitrary files like DLLs, external
executables or text files that have to be available before the "Install files" action has run.
All class files are packed into a single user.jar file, archives and resource files are
extracted to the user subdirectory in the working directory of the installer. You can
access a resource file named file.txt with the following expression in custom code:

new File("user", "file.txt")

To specify resource files in text fields in the installer configuration, use the sys.
resourceDir installer variable:

${installer:sys.resourceDir}/file.txt

To load native libraries in custom code, do not use System.load(..), but rather Util.
loadNativeFromResources(...) to load the library in the same class loader that loads

165

scripts. For example, if you have added a native library jni.dll to your custom code,
you can load it in a "Run script" action by calling

Util.loadNativeFromResources("jni.dll");

The following types of custom code locations are available:

• Class or resource files

For simple actions, screens or form components that do not depend on other classes,
it is easiest to insert their class files directly, especially if you build your installer extensions
together with your application. Anonymous inner classes will be included automatically.
If you select a resource file, for example, an image, it will be added to the top-level
directory of the custom JAR file and will be available via Class.getResourceAsStream().

• Directories

With this type of entry you can add an entire directory. Make sure to select a classpath
root directory, otherwise your classes cannot be loaded.

• Scan Directories

Use this type of entry to add all JAR and ZIP files in a selected directory.

• Archives

Use this type of entry to add a JAR file. Files that are present in both the custom code
as well as the distribution tree will not be packaged twice. Files that are also present in
the distribution tree can be freely added to your custom code, they will not increase
the size of your installer. The compiler checks the source path of included files to
determine if they are already present in the installer.

166

B.3 Configuring Applications
Applications are configured on the Screens & and actions step [p. 160].

The top-level nodes represent the different applications that can be configured for the
project. There are three types of applications:

• Installer
The installer is the application that is executed when the media file is invoked by the
user, for example, when the user double-clicks on the installer executable in the Windows
explorer. The installer cannot be deleted from the tree of installer elements.

• Uninstaller

The uninstaller is a special application for uninstalling an installation. It is used in various
contexts and can be

• directly invoked by the user
• invoked from the Windows software registry
• invoked by the "Uninstall previous installation" action

The uninstaller cannot be deleted from the tree of installer elements. If you do not wish
to generate an uninstaller, you can disable it [p. 160].

• Custom installer application
You can add any number of custom installer applications that can be invoked after the
installation. install4j comes with several templates for auto-updater downloaders [p. 119].
Custom applications can also be used for writing maintenance applications for your
installation.

You can add a new custom installer application by clicking on the Add button on the
right side of the list and choosing Add Application from the popup. The application
templates dialog will be displayed and lets you choose a starting point for your custom
installer application. Application templates are entirely made up of existing screens,
actions and form components. You can modify the selected application template after
adding it.

Unlike the installer and uninstaller above, custom applications are also created for
archive media files [p. 137]. See the help topic on media files [p. 137] for more information
on how to create first-run installers for archives.

Custom installer applications with a non-empty "Executable directory" property are
automatically added to the "Default file set". If you leave the executable directory empty,
the custom installer application is added to the .install4j directory and will always
be included, regardless of the installation component configuration.

Each installer application has a startup sequence of actions [p. 182]. Those actions are
executed before the installer application presents a user interface. If any of these actions
fails and has a "Quit on failure" failure strategy, the installer application will not be shown.

Properties of installer applications

Common properties of installer applications are:

167

• Executable icon [Executable]
By default, a standard installer icon is used for the executable. To customize the icon,
press the customizer button in the configuration pane.

• Allow unattended mode [Execution Modes]
If selected, the user can pass -q as an argument to run the installer application without
a GUI. No user input is required, the installer applications work with the default values.
Please see the corresponding help topic on installer modes for more information. All
standard actions and standard screens support unattended installations. If your policy
forbids unattended installations or if you include custom code that cannot handle
unattended installations, you can disable them by deselecting this property.

• Progress interface creation script [Configuration]
If you would like to implement your own way of displaying progress information for
unattended installations, you can do so by returning a custom implementation of com.
install4j.api.context.UnattendedProgressInterface from this script. If you return
null, no progress information will be shown just as if this script had not been set. There
is a default implementation com.install4j.api.context.
DefaultUnattendedProgressInterface that does nothing for all its operations. You
can derive from that class if you just need to implement a few particular methods in
the progress interface.

If you just need a simple dialog that shows progress information in unattended mode,
please choose the "Unattended mode with progress dialog" execution mode instead.

This property is only visible if "Allow unattended mode" is selected.

• Allow console installations [Execution Modes]
If selected, the user can pass -c as an argument to run the installer application on the
console. The installer asks for user input on the console in that mode. Please see the
corresponding help topic on installer modes for more information. All standard actions
and standard screens support console installations, form screens are also fully mapped
to console installers. If your policy forbids console installations or if you include custom
code that cannot handle console installations, you can disable them by deselecting
this property.

• Console screen change handler [Configuration]
By default, a screen in console mode does not show any particular separation. You
insert your own custom display with this script. The title parameter gives you access to
the title of the screen. In console mode, screens display their subtitle only, so the title
string will not be displayed again.

This property is only visible if "Allow console installations" is selected.

• Disable console mode on Windows [Configuration]
Offer console mode only on non-Windows platforms.

This property is only visible if "Allow console installations" is selected.

• Fall back to console mode on Unix [Configuration]
On Unix, users often operate in environments where no X11 server is available and no
GUI can be displayed. The installer will fall back to console mode if console mode
execution is allowed and this option is selected. Otherwise, an error message will be
displayed that tells the user how to invoke the installer in console mode.

168

This property is only visible if "Allow console installations" is selected.

• Default execution mode [Execution Modes]
The default execution mode for the installer application. By default, a GUI wizard will be
shown, but it is also possible to run in console mode or unattended mode by default.

• Title for progress dialog [Configuration]
The title for the progress dialog, for example "Updating installation".This title and the
unattended mode with a progress window can also be set by passing -splash [title]
as an argument from the command line.

This property is only visible if "Default execution mode" is set to "Unattended mode with
progress dialog".

• Show alerts [Configuration]
By default, no alerts are shown in unattended mode. This includes messages boxes,
error alerts and questions. By selecting this property, alerts are enabled for unattended
executions with a progress dialog.

This mode can also be activated by passing -alerts as an argument from the
command line.

This property is only visible if "Default execution mode" is set to "Unattended mode with
progress dialog".

• Windows console executable [Execution Modes]
If selected, a console executable will be created on Windows. A non-hideable console
will be shown when the installer is double-clicked in the explorer. This improves the user
experience for a console-only installer (default execution mode set to console) and
allows execution through rsh.

• VM parameters [Execution Options]
If you need to pass special VM parameters to the installer application, you can enter
them here. A common case would be to raise the maximum heap size with a different
-Xmx parameter if your installers require a lot of memory.

• Arguments [Execution Options]
If you need to pass fixed default arguments to the installer application, you can enter
them here. For example, if you want to display a splash screen in unattended mode by
default, you can set the arguments to -splash "Installing ...". Please note that
command line arguments will be appended to this list, so it is not possible to "override"
a fixed argument from the command line.

• Rollback on failure [Execution Options]
If selected, the installer application will try to restore the state before the last rollback
barrier by rolling back all actions that were executed since the last barrier. Any screen
or action can be selected as a rollback barrier with the property "Rollback barrier". If no
rollback barrier was encountered, all executed actions will be rolled back.

• Help customizer script [General Customization Options]
If the user starts the installer application with one of the arguments -h -help /?, help
regarding the available command-line options will be displayed. If you have your own
command-line options, you can customize this help with this script. The script receives
a List containing String arrays of length 2 with the options and explanations. You can

169

add options like this: options.add(new String[] {"/mySwitch", "Explanation of
mySwitch"}}. You can also delete default options in the list.Attention: The context
parameter has not been initialized at that point.

In order to get extra command line arguments in the installer, call context.
getExtraCommandLineArguments() in any script.

• Customize version info [Windows]
If selected, you can customize the fields of the Windows version info in the nested
properties. A Windows version info resource is always generated for the executable with
default values for product name and file version taken from the general settings.

• Copyright [Configuration]
The copyright field in the version resource. If empty, the publisher name from the general
settings is used.

This property is only visible if "Customize version info" is selected.

• File description [Configuration]
The file description field in the version resource. If empty, the full name from the general
settings is used.

This property is only visible if "Customize version info" is selected.

• File version [Configuration]
The file version field in the version resource. If empty, the version from the general
settings is used. The file version must consist of four numbers separated by spaces,
commas or dots.

This property is only visible if "Customize version info" is selected.

• Internal name [Configuration]
The internal name field in the version resource. If empty, the short name from the general
settings is used.

This property is only visible if "Customize version info" is selected.

• Product name [Configuration]
The product name field in the version resource. If empty, the full name from the general
settings is used.

This property is only visible if "Customize version info" is selected.

• macOS entitlements file [macOS]
If you have configured code signing for macOS, an entitlements file can unlock certain
features on macOS, such as iCloud storage or push notifications.

• Custom fragment for Info.plist [macOS]
On macOS, you may want to add additional elements to the Info.plist file of the
application bundle in order to customize its behavior in ways that are not directly
supported by install4j.

• Custom script fragment [Unix]
On Unix and Linux, the JVM for an installer application is launched by a shell script. To
add your own code to the shell script, you can specify a script fragment that is added
immediately before the java invocation takes place.

170

• Style [GUI Options]
The default screen style for this installer application. Screens and screen groups can
override this style.

• Window width [GUI Options]
The width of the window displayed by the installer application. The default value is 500.
If the "Size client area" property is selected, this does not include the size of the window
frame border.

• Window height [GUI Options]
The height of the window displayed by the installer application. The default value is
390.If the "Size client area" property is selected, this does not include the size of the
window frame border.

• Size client area [GUI Options]
If selected, the supplied size for the window will not be applied to the outer dimensions
of the window, but to the actually usable area inside the window. Unusually large window
frame borders can occur due to user settings (accessibility, window themes, etc.) and
may interfere with banner images or introduce unwanted scroll bars to form screens.

• Resizable [GUI Options]
If selected, the window displayed by the installer application is resizable.

• Action elevation type [Privileges]
If any contained actions should run in the elevated helper process, if their "Action
elevation type" property is set to "Inherit from parent".An elevated helper process is
available on Windows and macOS if the process has been started without admin
privileges and the "Request privileges" action has been configured to require full
privileges.

Custom applications as well as the uninstaller are added to the distribution tree and have
additional related properties:

• Executable name [Executable]
The name of the executable for the . Please enter a name without any path components
and without a file extension.

• Executable directory [Executable]
The directory to which the executable of the will be written. If empty, it will be placed in
the .install4j runtime directory.

• Use custom application bundle name [macOS]
If selected, a different application bundle name is used on macOS. Executable names
on macOS are localizable. Otherwise, the value of the "Executable name" property is
used for the application bundle name.

• Custom application bundle name [Configuration]
The application bundle name to be used for macOS media files. Bundle names on
macOS are shown in the Finder and are localizable. For example, the executable name
could be set to ${i18n:myLauncherName(${compiler:sys.fullName})} where
myLauncherName is an i18n message with value "Launcher for {0}".

This property is only visible if "Use custom application bundle name" is selected.

171

• Unix mode [Unix]
The executable mode for the on Unix.

The remaining properties that are specific to the installer are:

• Suppress initial progress dialog [Execution Options]
If selected, the initial native progress dialog of the installer is not displayed.

• Replacement script for language code [General Customization Options]
With this script you can replace the language that the installer will run with.

Parameters: The parameter languageCode contains the 2-letter ISO 639 code of the
auto-detected language. If auto-detection has not been enabled on the language step
of the general settings, the parameter will be null.

Return value: If you return null, the language selection dialog will be shown, if you
return a language code, the language selection dialog will not be shown, and the
returned language will be used. If the returned language code is a language that is not
configured for this installer, the language selection dialog will be shown.

• Create log file for stderr output [Windows]
If selected, and output on stderr is detected, a log file will be created and all output to
stderr will be redirected to that file.

• Log file for stderr [Configuration]
The log file for the stderr output relative to the installer media file.

This property is only visible if "Create log file for stderr output" is selected.

Finally, custom installer applications have the following additional properties:

• Create executable [Executable]
If selected, an executable for this installer application will be created. If not selected,
this application launcher can only be invoked with the com.install4j.api.launcher.
ApplicationLauncher API or an automatic launcher integration.

For macOS single bundles, executables for installer applications are never created.

• Single instance [Configuration]
If checked the application will ensure at startup that there is only one instance running
per user account.

This property is only visible if "Create executable" is selected.

• File set [Executable]
Choose the file set to which the installer application is added. File sets can be defined
on the Files->Define Distribution Tree step.

This property is only visible if "Create executable" is selected.

• Change working directory [Execution Options]
If selected the working directory will be changed to the value in 'Working directory' at
startup.

172

• Working directory [Configuration]
The working directory to be used when 'Change working directory' is selected.

This property is only visible if "Change working directory" is selected.

• Execution level [Windows]
The execution level for this application. If you want to modify files in the installation
direction, you most likely need administrator rights. This is only relevant for Windows
Vista and higher.

• Window title [GUI Options]
The title of the application window.

• Show message when user cancels [GUI Options]
If selected, a message will be shown when the user cancels the installer application by
clicking on the "Cancel" button or closing the application frame.

• Cancel message [Configuration]
The message that is shown if the user cancels the installer application by clicking on
the "Cancel" button or closing the application frame. The options that are presented to
the user are "Cancel" or "Continue".

This property is only visible if "Show message when user cancels" is selected.

Configuring installer variables

The second tab in the configuration area for installer applications is the Installervariables
tab. Here, you can check the bindings for all detected installer variables and pre-define
installer variables. For more information, see the help topic on variables [p. 68].

An additional feature with respect to the variable selection dialog is that you can navigate
to a binding by selecting an element in the binding tree at the bottom and click on the
Go To Selection button.

173

Launcher integrations

Custom installer applications have a Launcher integrations tab in the configuration area
that helps you to start them when launchers are executed.

One way to start an installer application is programmatically, by using the install4j
API [p. 226]. To get the code snippet for starting the selected installer application, click on
the Start integration wizard button. The integration wizard will present a number of options
that control the condition and possible call backs from the installer application.

Another way to start an installer application is automatically, by defining a launchschedule
and a launch mode. The launch schedule is one of

• Always
Every time you start the launcher, the installer application will be started as well.

• According to update schedule
install4j provides a built-in update schedule registry that can be configured by the user
on a form screen with an "Update schedule selector" form component. Also, you can
programatically modify the update schedule through the class com.install4j.api.
update.UpdateScheduleRegistry in the API. The selected installer application will be
started only if the update schedule requires an update check.

• First run of any launcher in archive media file by the current user

For archive media files (such as a Windows ZIP file), no installer is available. To execute
a sequence of screens and actions when a launcher is started for the first time after
the archive has been extracted, use this launch schedule. It may be convenient to link
to screen groups in the installer to avoid duplicating configuration in your custom
installer application.

In your launcher, you can check for this condition with

com.install4j.api.launcher.ApplicationLauncher.isNewArchiveInstallation()

in case you want to perform some actions outside a custom installer application.

174

The launch mode is one of

• Blocking at start up
When the launcher is started, the selected installer application will be started first. When
the installer application terminates, the launcher will then start up, unless a "Shut down
calling launcher" action has been executed.

• Non-blocking at start up
When the launcher is started, the selected installer application will be started
immediately. The launcher continues to start up in parallel.

• When first window is shown
The selected installer application will be started when the first window is shown. This
works for AWT, Swing and SWT applications. If you have an SWT application, the "Uses
SWT" check box in the "Executable info" step of the launcher wizard [p. 41] must be
selected.

Just like with the API, the installer application can be started in the launcher process itself
or in a new process. By default, the installer application is started in the same process. If
the "Blocking at start up" or "Non-blocking at start up" launch modes are selected, the look
and feel is set to the system look and feel. For the "When first window is shown" launch
mode, the look and feel is not changed, so your own look and feel will be used. When the
installer application is executed in the same process, the "Shutdown calling launcher"
action has a different effect: The whole process will be terminated when the installer
application exits.

By default, the selected installer application is started for all launchers in your project. If
this is not desired, you can restrict the integration to selected launchers. Note that if "All
launchers" is selected and the project is merged into another project, the integration will
be performed for all launchers in the main project as well.

175

B.4 Configuring Screens
Screens are configured on the Installer->Screens & Actions step [p. 160]. A screen is a single
step in an installer application. It displays information to the user or gathers user input.

If a screen has attached actions [p. 182], there will be an expansion control to the left of
the screen icon that allows you to show the associated actions.

Some screens only make sense when corresponding actions are used later on in the
installer or uninstaller. For example, the "Services" screen will only be displayed at runtime
if there are "Install a service" actions present on a subsequent screen. If such a dependency
is not fulfilled after adding a screen, a corresponding notification is displayed.

Properties of screens

Common properties of screens are:

• Action elevation type [Privileges]
If any contained actions should run in the elevated helper process, if their "Action
elevation type" property is set to "Inherit from parent".An elevated helper process is
available on Windows and macOS if the process has been started without admin
privileges and the "Request privileges" action has been configured to require full
privileges.

• Style [GUI Options]
The default screen style for this installer application. Screens and screen groups can
override this style.

• Condition expression [Control Flow]
This expression is evaluated to decide whether the screen is displayed. If the expression
or script returns false, the current screen will be skipped. This expression or script should
not have any side-effects, it will be called while another screen is still being displayed.

• Rollback barrier [Control Flow]
If the screen should be a rollback barrier. When a rollback barrier is completed, none
of the preceding actions will be rolled back. You can use this property to prevent an

176

incomplete rollback of complex changes or to protect actions from rollback when the
user hits "Cancel" in the post-install phase.

• Exit code [Control Flow]
If the "Rollback barrier" property is selected, and a rollback terminates at this screen,
this property determines the exit code of the installer. By default, reaching a rollback
barrier during a rollback is considered a success, but you can signal a failure by
specifying a non-zero exit code here.

This property is only visible if "Rollback barrier" is selected.

• Validation expression [Control Flow]
This expression or script is called when the user clicks the next button. If it returns false,
the current screen will be displayed again. You can use this to validate user input. Error
messages are not displayed automatically, you can use the Util.showErrorMessage(String
errorMessage) method in your script.

• Quit after screen [Control Flow]
If the screen should have a "Finish" button instead of a "Next" button. The installer or
uninstaller will quit after this screen. The "Cancel" button will not be visible if this option
is checked.

• Back button [Control Flow]
Allowing the user to go back to previous screens can be problematic if the previous
screen has actions attached that cannot be executed multiple times. By default, every
action is just executed once, all actions have a property to allow multiple execution.
The default behavior is the "Safe back button", where the back button is hidden if the
previous screen has actions attached that cannot be executed multiple times.

• Wizard index [Screen Activation]
Every screen can set or change the current wizard index. The wizard index is an optional
panel on the left side of the wizard that shows overall installation progress. You can
leave the index unchanged as it was set by a previous screen, change the step in the
current wizard index, removed the current wizard index ot configure a new wizard index.
For conditional construction of a wizard index, please use the com.install4j.api.
context.WizardIndex class in the "Pre-activation" script.

• Step key
The key for the step in the wizard index that should be activated.

This property is only visible if "Wizard index" is set to "Activate another step".

• Steps
The steps that are displayed by the wizard index. Each step has a key that you can use
to switch to that step later on by setting the wizard index property to "Activate another
step" and specifying that key.

This property is only visible if "Wizard index" is set to "Set a new wizard index".

• Initial key
The key of the step in the wizard index that should be initially selected. Leave empty to
select the first step.

This property is only visible if "Wizard index" is set to "Set a new wizard index".

177

• Partially defined
If selected, the list of wizard index steps will be partially defined. This means that a "..."
entry will be appended at the bottom.

This property is only visible if "Wizard index" is set to "Set a new wizard index".

• Numbered
If selected, the steps in the wizard index are numbered.

This property is only visible if "Wizard index" is set to "Set a new wizard index".

• Maximum width
The maximum width of the wizard index in pixels. The preferred with is determined by
the longest step name, the maximum width is an upper bound for the actual width.

This property is only visible if "Wizard index" is set to "Set a new wizard index".

• Minimum width
The minimum width of the wizard index in pixels. The preferred with is determined by
the longest step name, the minimum width is a lower bound for the actual width.

This property is only visible if "Wizard index" is set to "Set a new wizard index".

• Background color
The background color for the index panel. Set to "None" to restore the default color.

This property is only visible if "Wizard index" is set to "Set a new wizard index".

• Foreground color
The foreground color for the index panel. Set to "None" to restore the default color.

This property is only visible if "Wizard index" is set to "Set a new wizard index".

• Background image
The image file for the background of the wizard index panel. Leave empty if no
background image is required.

This property is only visible if "Wizard index" is set to "Set a new wizard index".

• Image anchor
The anchor for the background image. The default value is "North".

• Pre-activation script [Screen Activation]
This script is called each time just before the screen is displayed.

• Post-activation script [Screen Activation]
This script is called each time just after the screen has been displayed. It is not invoked
in console or unattended mode.

Available screens

The following standard screens are available in install4j:

Empty form

An empty form to which form components can be added. By default, form components
are layouted along the vertical axis, but you can use layout groups for greater flexibility.

178

Form components with user input are bound to installer variables that can by referenced
by other elements in the installer, for example by actions.

Category: Form templates

Banner with header at the top

A form that has "Banner" as the default style and a configurable header label at the
top.

Directory selection

A form that asks the user to select a directory. All displayed messages are configurable.

Display PDF file

A form that displays a PDF file in an embedded cross-platform PDF viewer.

Display progress

A form that displays a progress bar with a status line capturing the progress information
of associated actions. The default post-activation script executes any associated
actions immediately when the screen is activated. All displayed messages are
configurable.

Display text

A form that displays text to the user, either plain text or HTML. All displayed messages
are configurable.

Program group selection

A screen that allows the user to select a program group on Microsoft Windows. All
displayed messages are configurable.

Category: Standard screens

Welcome

A screen that welcomes the user to the installation of your application. This screen
should be placed at the beginning of the installation

Display license agreement

A screen that displays a license agreement to the user, either plain text or HTML. The
license agreement must be accepted before the installation continues.

Installation location

The screen that asks the user where to install the application. This determines the
principal installation directory.

Installation type

A screen that displays a list of installation types that correspond to configurable set
of installation components. The default types "Full","Standard" and "Customize" are
provided by default, with localized names and descriptions. Installation components
are configured in the install4j IDE on the "Files->Installation Components" step

179

The "Installation components" screen may be hidden by this screen, depending on the
installation type selected by the user. This screen will not be shown if no installation
components are defined.

You can choose for each installation type if it should be customizable or not. If the
installation type that is selected by the user is customizable, the "Installation
components" screen will be shown if present, otherwise that screen will be skipped.
This condition can also be checked by inspecting the boolean value of the installer
variable sys.preventComponentCustomization.

Installation components

A screen that displays all installation components and asks the user which components
should be installed. This screen will not be shown if no installation components are
defined.

Create program group

A screen that allows the user to select the default program group. Under Windows, this
screen sets installer variables that influence "Create program group" and "Create start
menu entry" entry actions. Under Unix, the screen asks the user whether and where
symbolic links to launchers should to be created. Under macOS, the screen is not shown.

File associations

A screen that displays a list of all subsequent file association actions and asks the user
which associations should be made. This screen will not be shown if there are no
corresponding file association actions after this screen.

Additional confirmations

A screen that displays a list of confirmations as check boxes whose results can be used
in condition expressions for actions. While other types of form components can be
added to this screen, only check boxes and other simple elements are consistent with
the displayed text. For arbitrary forms, use the "Configurable form" screen instead.

Installation

The screen that displays the installation progress. Where possible, installation actions
should be added to this screen.

Display information

A screen that displays text to the user, either plain text or HTML. In contrast to the "Display
text" form template, all messages on this screen are pre-defined and localized.

Finish

A screen that tells the user that the installation is finished. This screen should be placed
at the end of the installation.

Uninstall Welcome

A screen that welcomes the user to the uninstallation of your application. This screen
should be placed at the beginning of the uninstallation.

Uninstallation

180

The screen that displays the uninstallation progress. Where possible, uninstallation
actions should be added to this screen.

Uninstallation failure

The screen that is displayed if the uninstallation was not completed successfully. Further
information regarding the uninstallation problems is displayed to the user. This screen
is not shown if the uninstallation was completed successfully or if it is placed before
the uninstallation screen. The uninstaller will terminate after showing this screen in
case of failure.

Uninstallation success

The screen that is displayed if the uninstallation was completed successfully.

181

B.5 Configuring Actions
Actions are configured on the Installer->Screens & Actions step [p. 160]. An action performs
a configurable unit of work in the installer application.

Actions are attached to screens [p. 176] or they are part of the "Startup sequence" that
allows you to perform actions before the installer or uninstaller is displayed. If any one of
these actions fails and has a "Quit on failure" failure strategy, the installer application will
not be shown.

Most often, actions are added to the "Installation" or "Uninstallation" screens. The advantage
of those screens is that they have a progress bar and a status display that is utilized by
actions. If a screen does not expose a progress interface, the status and progress messages
of attached actions are lost. This is no problem for near-instantaneous actions such as
setting an environment variable, but for time-consuming operations the user should be
informed about progress, even if it is only an indeterminate progress bar. As an alternative
to the "Installation" or "Uninstallation" screens, you can use "Display progress" screens to
create additional installation phases.

Some actions have an "affinity" to a particular screen and will suggest to add themselves
to that screen, such as the actions in the "Final options" category which would like to go
to the "Finish" screen. However, this is only a suggestion to guide you for the most common
use cases.

Some actions have an associated screen that allows the user to modify the behavior of
the action. For example, the "Install a service" action has a corresponding "Services" screen
where the user can decide whether the service should be installed and started when
booting. If such a relationship exists, a corresponding notification is displayed after adding
an action.

Properties of actions

Common properties of actions are:

• Action elevation type [Privileges]
If the action should run in the elevated helper process.An elevated helper process is
available on Windows and macOS if the process has been started without admin

182

privileges and the "Request privileges" action has been configured to require full
privileges.

• Condition expression [Control Flow]
This expression is evaluated to decide whether the action is executed. If the expression
or script returns false, the current action will be skipped. This expression or script should
not have any side-effects, it will be called while another screen is still being displayed.

• Rollback barrier [Control Flow]
If the action should be a rollback barrier. When a rollback barrier is completed, none of
the preceding actions will be rolled back. You can use this property to prevent an
incomplete rollback of complex changes or to protect actions from rollback when the
user hits "Cancel" in the post-install phase.

• Exit code [Control Flow]
If the "Rollback barrier" property is selected, and a rollback terminates at this action,
this property determines the exit code of the installer. By default, reaching a rollback
barrier during a rollback is considered a success, but you can signal a failure by
specifying a non-zero exit code here.

This property is only visible if "Rollback barrier" is selected.

• Can be executed multiple times [Control Flow]
If the action can be executed multiple times. If unselected, the action will only be
executed once and do nothing for subsequent invocations of the containing screen.
The default settings for screens ensure that a screen with actions that cannot be
executed multiple times is only shown once. However, if the "Back button" property is
changed of if you skip screens programmatically, a screen might be shown multiple
times.

• Failure strategy [Error Handling]
If an action fails (i.e. returns false), the installer or uninstaller can continue, quit, or ask
the user what to do. If you select something other than "Continue on failure", you should
enter an error message in the "Error message" property unless the action displays the
error itself.

For "Return to the parent screen", no further actions will be executed and the previous
screen will be displayed again. If the action is contained in the "Startup" node, the first
screen will be shown and in unattended mode the application will quit.

• Ask whether to retry the action
If the action fails, ask the user whether to retry the action.

This is one button in a message dialog that shows the error message and the available
options to react to the failure.

This property is only visible if "Failure strategy" is set to "Ask user".

• Ask whether to quit
If the action fails, ask the user whether to quit the installer application.

This is one button in a message dialog that shows the error message and the available
options to react to the failure.

This property is only visible if "Failure strategy" is set to "Ask user".

183

• Ask whether to ignore the failure
If the action fails, ask the user whether to ignore the failure and continue.

This is one button in a message dialog that shows the error message and the available
options to react to the failure.

This property is only visible if "Failure strategy" is set to "Ask user".

• Error message [Error Handling]
If the action fails, this error message is displayed to the user. Otherwise the action fails
silently.

Available actions

The following standard actions are available in install4j:

Category: Control

Change cancel button state

Changes the visibility and the enabled state of the cancel button. This action works in
GUI mode as well as in unattended mode when the -splash option has been passed
on the command line and the simple unattended progress dialog with a cancel button
is shown.

Run script

Runs a custom script. The script must return a boolean value. If it returns false, the
installation will be canceled.

Set a variable

Sets a variable by running a custom script. The script can return any java.lang.Object.

Set messages

Sets the messages in the progress interface.

Set the progress bar

Change the value of the progress bar or set it to indeterminate mode.

Sleep

Sleep a specified number of milliseconds. This is useful to ensure that a progress screen
is displayed for at least a certain period of time.

Category: Desktop integration

Add a desktop link

Create a link on the desktop to an installed executable or file. This action will be
automatically reverted by the 'Uninstall files' action.

Add a startup executable on Windows and macOS

184

Add an installed executable to the startup folder on Windows or to the login items on
macOS so that it will be started automatically when the user logs in. This action will be
automatically reverted by the 'Uninstall files' action.

Add an executable to the dock

Add an installed executable to the dock on macOS. This action will be automatically
reverted by the 'Uninstall files' action.

Create a Windows URL link

Create a URL link on Windows. This is a special text file with a .url link that is supported
by the Windows desktop, start menu, and explorer. To create links in the start menu,
the "Create program group" action can be used as well. This action will be automatically
reverted by the 'Uninstall files' action.

Create a file association

Create an association between a file extension and a launcher, so that the launcher
is invoked when the user double-clicks a file with the selected extension.

If the application has not yet been started, the arguments to the main method will
contain the file name. Subsequent invocations can be intercepted with the com.
install4j.api.launcher.StartupNotification class. This action will be
automatically reverted by the 'Uninstall files' action.

For macOS, file associations have to be defined on the "Executable info->macOS options"
step of the launcher wizard.

Create program group

Create standard program group entries on Windows and freedesktop.org compatible
UNIX desktops. This action will be automatically reverted by the 'Uninstall files' action.

Create start menu entry

Create a single start menu entry on Windows and Unix. For creating multiple program
group entries, please see the "Create program group" action. This action will be
automatically reverted by the 'Uninstall files' action.

Register Add/Remove item

Register an Add/Remove item in the Windows software registry.

If this action runs with elevated privileges, the uninstaller will be started with elevated
privileges by Windows and no unelevated actions can be performed. In the event that
you need to execute processes without elevation, set the "Action elevation type" property
to "Do not elevate". Note that the Add/Remove item will be registered for the current
user only in that case.

This action will be automatically reverted by the 'Uninstall files' action.

Register a URL handler

Register a URL handler for a custom scheme, so that the launcher is invoked when the
user clicks on a link with the specified scheme.

On Windows and Linux, the arguments to the main method will contain the URL. On
macOS, the arguments are available from the com.install4j.api.launcher.
StartupNotification class. If the "Allow only a single running instance of the

185

application" check box is selected on the "Java invocation" step of the launcher wizard,
subsequent invocations are intercepted by the com.install4j.api.launcher.
StartupNotification class on all platforms.

This action will be automatically reverted by the 'Uninstall files' action.

For macOS, URL handlers have to be defined on the "Executable info->macOS options"
step of the launcher wizard.

Category: File operations

Change Windows file rights

Changes access rights to files and directories on Windows.

If a helper process with elevated privileges has been created by the "Request privileges"
action, this action is pushed to the helper process. Please see the help topic on "Elevation
Of Privileges" for more information.

Copy files and directories

Copy files and directories. This action will be automatically reverted by the 'Uninstall
files' action.

Create a symbolic link

Creates a symbolic link. On Windows, symlinks can by default only be created with
elevated privileges.

Delete files and directories

Deletes files and directory. Directories can be deleted recursively.

Move files and directories

Moves files and directories. The newly created files are subject to removal by the
'Uninstall files' action.

Set the UNIX access mode of files and directories

Sets the UNIX access mode of files and directories. This action has no effect on Windows.

Set the modification time of files

Sets the modification time of files.

Set the owner of files and directories

Sets the owner and optionally the group of files and directories. This action has no
effect on Windows.

Category: Final options

Execute launcher

Execute an installed launcher and return immediately. This action is intended to be
placed on the "Finish" screen. A confirmation can be added automatically to the "Finish"
screen.

186

If the main installation process has been elevated by the "Request privileges" action,
this action is pushed to the original process with limited rights. Please see the help
topic on "Elevation Of Privileges" for more information.

Open PDF viewer

Displays a PDF file in a cross-platform PDF viewer. A separate window will be opened.

Reboot computer

Reboot the computer on Windows and macOS. This action will trigger a reboot that
takes place at the end of installation or uninstallation. By default, the user will be asked
whether to reboot or not.

Show URL

Show a URL in the default browser. This action is intended to be placed on the "Finish"
or the "Uninstallation success" screen.

If the main installation process has been elevated by the "Request privileges" action,
this action is pushed to the original process with limited rights. Please see the help
topic on "Elevation Of Privileges" for more information.

Show file

Show a file with the associated application. Usually, a text file or an HTML file is
appropriate. This action is intended to be placed on the "Finish" screen. A confirmation
can be added automatically to the "Finish" screen.

If the main installation process has been elevated by the "Request privileges" action,
this action is pushed to the original process with limited rights. Please see the help
topic on "Elevation Of Privileges" for more information.

Category: HTTP and network

Add a Windows firewall rule

Add a Windows firewall rule. This action will be automatically reverted by the 'Uninstall
files' action.

Download file

Download a URL and save it to a file

HTTP request

Make an HTTP request to a specified URL. All common HTTP request methods are
supported for REST calls. For mime types starting with text or containing "charset"
information, the response body can be saved to an installer variable. To download
large files, use the "Download file" action instead.

The action will succeed if an HTTP response code in the 2xx range is received, otherwise
it will fail. You can save the response code to a variable to inspect it in a later action.

Upload file

Upload a file to an HTTP server with a POST request.

Wait for HTTP server

187

Wait until an HTTP or HTTPS port becomes available. This is useful if you start a server,
for example with a "Start a service" action, and need to wait until the server is operational
before proceeding with the installation.

Wait for Socket

Wait until a socket can be connected to. This is useful if you start a non-HTTP server.
For HTTP and HTTPS, use the "Wait for HTTP server" action instead.

Category: JDBC

Check JDBC connection

Check if a connection can be made to the configured JDBC database. If no connection
can be made, the action will fail. If the action is attached to a form screen that queries
a database location, set its "Error message" property to an appropriate error message
and the "Failure strategy" property to "Return to the parent screen".

Execute SQL query

Execute a single SQL query and store the result in an installer variable. If only the first
row is taken, the row value is stored directly. Otherwise, the variable will contain an
instance of java.util.Listwith the row values. If the query is for a single column, the
row value is the Java object representation of the return type, e.g. java.lang.String
for VARCHAR or java.lang.Long for INT.

Execute SQL script

Execute a single SQL statement or a script of SQL statements.

JDBC container action

This action allows you to configure connection properties just once and then execute
a list of JDBC actions with the same connection.

Category: JSON files

Count occurrences in a JSON file

Count the occurrences of a JSONPath (1) expression in a JSON file and save the result
to an installer variable.

Modify JSON files

Modify parts of JSON files specified by a JSONPath (2) expression. Several modification
types are available.

Read value from a JSON file

Read one or multiple values from a JSON file as specified by a JSONPath (3) expression
and save the result to an installer variable.

(1) https://jsonpath.com/
(2) https://jsonpath.com/
(3) https://jsonpath.com/

188

https://jsonpath.com/
https://jsonpath.com/
https://jsonpath.com/

Category: Java preference store

Delete a node or key in the Java preference store

Delete an entire package node or a key-value pair in the Java preference store.

Load installer variables from the Java preference store

Load installer variables from the Java preference store that have been previously saved
by the "Save installer variables to the Java preference store" action.

Read a key from the Java preference store

Read the value of a key from the Java preference store and save it to an installer
variable. Only string values can be read.

Save installer variables to the Java preference store

Save installer variables to the Java preference store. This can be used to communicate
installer variables to the uninstaller or to installers with different application IDs.

Set a key in the Java preference store

Set a key-value pair in the Java preference store. The package node is created if
necessary. This is the most convenient way to communicate settings to related installers.
Only string values can be set.

Category: Miscellaneous

Add VM options

Adds VM options for a launcher by modifying or creating a .vmoptions file or by
changing the Info.plist file. This action will be automatically reverted by the 'Uninstall
files' action.

Check for running processes

Check for installed launchers and additional running processes on Windows and
macOS.

Modify an environment variable on Windows

Sets, appends to, prepends to or removes an environment variable on Windows. This
action can be automatically reverted by the 'Uninstall files' action.

Modify classpath

Changes the classpath of a launcher by modifying or creating a .vmoptions file or by
changing the Info.plist file. This action will be automatically reverted by the 'Uninstall
files' action.

Request privileges

Requests configurable administrator privileges. On Windows Vista and higher and on
macOS, the installer will be restarted with the requested privileges or a helper process
will be created that can perform certain actions in a privileged context. When you
restart the installer, you should not install files before this action.

189

Please see the help topic on "Elevation Of Privileges" for a detailed discussion of this
action.

Require installer privileges

Require the same privileges as the ones that were obtained during the installation. On
Windows Vista and higher and on macOS, the uninstaller or custom installer application
will be restarted with the requested privileges if necessary. This action only has an
effect if a "Load response file" action is executed previously.

Please see the help topic on "Elevation Of Privileges" for a detailed discussion of this
action.

Run executable or batch file

Runs an executable or a Windows batch file. The action can optionally wait for
termination of the executable.

Category: Persistence of installer variables

Create a response file

Create a response file at an arbitrary location to save user input for subsequent
installations. This file can be used with the -varfile command-line option.

Load a response file

Load a response file that has previously been saved with the "Create a response file"
action.

Modify a response file

Update all variables in an existing response file. The action does not delete variables
in the response file for which no installer variables are defined, but keeps them as they
are.

This action is useful for updating a response file from a custom installer application,
where not all installer variables are available.

Category: Properties files

Read a properties file

Read a properties file and save a java.util.Map object with the properties to an
installer variable. If you use a "Write properties to file" action to write the variable back
to disk, the comments on the existing property definitions will be preserved.

Remove keys from properties file

Remove selected keys from a properties file. The line separator of the properties file is
conserved.

Write properties to file

Write property definitions to a properties file. The properties can come from an installer
variable with a java.util.Map object, another properties file or from direct entry.

190

If the "Merge into existing file" property is selected, the new property definitions will be
added to the existing ones.

Category: Services

Install a service

Installs a service. On Windows, this is done by executing the service launcher with the
appropriate arguments. On Unix, if systemd is detected, a config file will be created in
/etc/systemd/system, otherwise a link will be placed in /etc/init.d. On macOS, a
LaunchDaemon will be created. This action will be automatically reverted by the
'Uninstall files' action.

If a helper process with elevated privileges has been created by the "Request privileges"
action, this action is pushed to the helper process. Please see the help topic on "Elevation
Of Privileges" for more information.

Start a service

Starts a service by executing the service launcher with the appropriate arguments.

If a helper process with elevated privileges has been created by the "Request privileges"
action, this action is pushed to the helper process. Please see the help topic on "Elevation
Of Privileges" for more information.

Stop a service

Stops a service by executing the service launcher with the appropriate arguments.

If a helper process with elevated privileges has been created by the "Request privileges"
action, this action is pushed to the helper process. Please see the help topic on "Elevation
Of Privileges" for more information.

Category: Text files

Fix line feeds

Changes the line feeds of text files to the platform-specific type.

Modify text files

Modify installed text files by replacing a search value in the selected files. This action
does not read the entire file into memory and can work on arbitrarily large text files.

Modify text files with regular expressions

Modify installed text files by applying a regular expression.

Read text from file

Read the content of a text file and save it to an installer variable. The variable value
will be of type String.

Replace installer variables in text files

Modify installed text files by replacing all occurrences of installer variables of the form
${installer:myVariable} with their current values. The action also replaces i18n

191

variables like ${i18n;myKey} and compiler variables like ${compiler:
myCompilerVariable}

Write text to a file

Write text to a new file or append text to an existing file.

Category: Update

Check for update

Load the update descriptor from a URL and save it to a variable. If successful, the
variable will contain an instance of com.install4j.api.UpdateDescriptor

Schedule update installation

Schedule a downloaded media file to be started upon the next start of a launcher
configured accordingly or by calling UpdateChecker.executeScheduledUpdate().

Shut down calling launcher

Shut down the launcher that called this application if it was started with the com.
install4j.api.launcher.ApplicationLauncher API.

Category: Windows registry

Change access rights for a key in the Windows registry

Changes access rights for a key in the Windows registry.

If a helper process with elevated privileges has been created by the "Request privileges"
action, this action is pushed to the helper process. Please see the help topic on "Elevation
Of Privileges" for more information.

Delete a key or value in the Windows registry

Delete a key or value in the Windows registry.

Read a value from the Windows registry

Read a value from the Windows registry and save it to an installer variable. The type
of the value depends on the type in the registry, it will be an instance of one of the
following classes: String, Integer, String[], byte[], WinRegistry.
ExpandString.

Set a value in the Windows registry

Set a value in the Windows registry. This action can also create the appropriate key if
necessary.

Category: XML files

Apply an XSLT transform

Transform an installed file by applying an XSLT stylesheet.

Count nodes in XML file

192

Count the occurrences of an XPath expression in an XML file and save the result to an
installer variable.

Insert XML fragment into XML files

Insert an XML fragment into the position defined by an XPath expression. The fragment
can replace an existing element node, or it can be inserted as a child or a sibling.

Read value from XML file

Read a string value from an XML file specified by an XPath expression and save the
result to an installer variable.

Remove nodes from XML files

Remove selected nodes from XML files by specifying an XPath expression.

Replace text in XML files

Modify installed XML files by selecting nodes with an XPath expression and applying a
regular expression on the selected values.

Category: ZIP files and archives

Create a ZIP file

Create a ZIP file from the specified source files and directories.

Extract a DMG file on macOS

Extracts the content of a DMG file to an arbitrary location on macOS.

Extract a TAR file

Extracts the content of a tar or tar.gz file to an arbitrary location.

Extract a ZIP file

Extracts the content of a ZIP file to an arbitrary location.

Install content of a ZIP file

Installs the content of an external ZIP file to an arbitrary location. This action will be
automatically reverted by the 'Uninstall files' action.

Modify a ZIP file

Modify the contents of a ZIP file with a configurable list of actions.

Download and install component

Download a specified downloadable component and install it. This action only works
for installation components that have been marked as "downloadable" on the "Options"
tab of the installation component configuration.

Note: The "Install Files" action already downloads and installs all selected downloadable
installation components. This action is intended for scenarios where an installation
component has to be downloaded after the "Install files" action has run. For example,
you could use this in a custom installer application to install optional files.

193

Execute previous uninstaller

Uninstalls the previous installation of this application in the selected installation directory
by executing the previous uninstaller.

Install files

Install all files in the distribution tree that are contained in the selected installation
components.

Uninstall files

Uninstall all installed files.

194

B.6 Configuring Screens And Actions Groups
Screen and action groups can be configured on the "Installer->Screens & Actions"
step [p. 160].

Actions and screens can be grouped in the tree of installer elements. Groups of the same
types can be nested, meaning that you can put a screen group into a screen group or an
action group into an action group.

You can nest as many levels of groups as you wish. Next to the label of the screen or action
group in the tree of installer elements the number of all contained screens or actions is
shown in bold where elements in nested groups are counted as well.

Grouping offers the following benefits:

• Organization
If you have many screens or actions, groups emphasize which elements belong together.
You can add a common comment to the group.

• Common condition
Groups have a "Condition expression" property that allows you to skip the group with a
common condition instead of having to repeat the condition for each contained element.

• Single link target
If you want to reuse a set of adjacent screens or actions in a different part of your project,
you can put them in a group and add a single link to that group instead of linking to
each element separately.

• Looping
A group has a "Loop expression" property that allows you to execute the group repeatedly
until the loop expression returns false.

• Jump targets (screen groups only)
When you jump to a screen programmatically with context.gotoScreen(...), it is
more maintainable to jump to a group instead of to a single screen. You can think of
the group as a label in this case.

195

Properties of screen and action groups

The common properties of screen and action groups are:

• Condition expression [Control Flow]
This expression is evaluated just before the screen is displayed. If the expression or script
returns false, the entire screen group will be skipped.

• Loop [Control Flow]
If selected, the screen group will be looped. With the child properties you can set an
expression that terminates the loop and configure a loop index that is available inside
the loop.

Note: If actions should be repeated in a loop, their "Can be executed multiple times"
property has to be selected. If form components in a screen should be re-initialized on
each loop, their "Reset initialization on previous" property has to be selected.

• Loop expression [Configuration]
This expression is evaluated when the end of the screen group is reached. If it returns
true, all screens will be repeated. If you leave the expression empty, no loop will be
performed.

This property is only visible if "Loop" is selected.

• Loop index start value [Configuration]
The start value for the loop index variable that is passed to the "Loop expression"

This property is only visible if "Loop" is selected.

• Loop index step [Configuration]
The step for the loop index variable that is passed to the "Loop expression". At the end
of each loop, this step is added to the loop index. It is added before the "Loop expression"
is evaluated. To decrement, specify a negative value.

This property is only visible if "Loop" is selected.

• Loop index variable name [Configuration]
If you want to use the loop index in a screen that is contained in the group, you can
optionally save the value to an installer variable. Specify the variable name to which
the value should be saved as a java.lang.Integer.

This property is only visible if "Loop" is selected.

• Style [GUI Options]
The default screen style for this installer application. Screens and screen groups can
override this style.

• Action elevation type [Privileges]
If any contained actions should run in the elevated helper process, if their "Action
elevation type" property is set to "Inherit from parent".An elevated helper process is
available on Windows and macOS if the process has been started without admin
privileges and the "Request privileges" action has been configured to require full
privileges.

In addition, action groups have the following properties:

196

• On error break group [Error Handling]
If selected, and one of the contained actions returns with an error, the control flow will
step out of the action group and continue with the next element after the group. This
behavior only takes effect if the problematic action has its failure strategy set to
"Continue on failure".

• Error message [Configuration]
If the action group fails, this error message is displayed to the user. Otherwise, the action
group fails silently.

This property is only visible if "On error break group" is selected.

• Failure strategy [Configuration]
The failure strategy that should be chosen if the action group fails. The "Error message"
property will be used for the option dialog. If you also define a "Default error message",
you will get two option dialogs, the first one from the action that causes the failure.

This property is only visible if "On error break group" is selected.

• Ask whether to ignore the failure [Configuration]
If an action fails, ask the user whether to ignore the failure and continue.

This is one button in a message dialog that shows the error message and the available
options to react to the failure.

This property is only visible if "Failure strategy" is set to "Ask user".

• Ask whether to quit [Configuration]
If an action fails, ask the user whether to quit the installer application.

This is one button in a message dialog that shows the error message and the available
options to react to the failure.

This property is only visible if "Failure strategy" is set to "Ask user".

• Ask whether to retry the action [Configuration]
If an action fails, ask the user whether to retry the action.

This is one button in a message dialog that shows the error message and the available
options to react to the failure.

This property is only visible if "Failure strategy" is set to "Ask user".

• Retry expression [Configuration]
If this expression is set and returns true, the action group is repeated. If the action group
is configured to loop, the loop index will not be incremented.

This property is only visible if "On error break group" is selected.

• Default error message [Error Handling]
A default error message used by all actions that have no dedicated error message.

197

B.7 Configuring Form Components
Form components are configurable units that can be added to a form screen. In this
chapter, the functionality and configuration options of the form components dialog are
discussed. The underlying concepts are discussed in a different help topic [p. 51].

Form elements are added by clicking the Add button.

In the popup window you can select whether to add

• a form component. Form components are made available by install4j or are contributed
by an installed extension [p. 232]. A registry dialog will be shown where you can select
the desired form component.

• a form component that is contained in your custom code. New types of reusable form
components can be developed with the install4j API [p. 226]. In your custom code
configuration [p. 165] you can specify code locations that are scanned for suitable
classes. A class selector will be shown where you can select the desired class.

• a layout group [p. 204], either a vertical group or a horizontal group. The new layout
group is initially empty. You can also create layout groups directly from a selection in
the tree of installer elements.

You can preview a form screen with the Preview button which is also available on the
property page of a screen. For screens that embed forms, the preview may not show the
actual screen. However, the layout of the form itself will be the same at runtime.

Properties of form components

Common properties of form components are:

• Insets [Layout]
This insets around the form component. The format is top;left;bottom;right, use the
drop-down button at the right side to show the insets editor.

• Initialization script [Initialization]
A script that initializes the form component. To configure the contained principal
component, such as a JCheckBox, use the configurationObject parameter (if available).
This script will run after the internal initialization of the form component, just before the
component appears on the screen. It will not be invoked in console mode.

198

• Reset initialization on previous [Initialization]
If set, the component will be initialized each time the user enters in the forward direction.
Otherwise, the initialization will be performed only once. This setting affects both the
internal initialization as well as the initialization script.

• Visibility script [Initialization]
A script that determines whether the form component will be visible or not. This works
for both GUI and console modes. In GUI mode, the script will be invoked each time just
before the form component is initialized.

Available form components

The following standard form components are available in install4j:

Category: Action components

Button

A standard button with an optional leading label. When the user clicks on the button,
an action script is executed.

Dark mode switcher

A button that switches between dark and light mode. If the current look and feel does
not support switching between dark and light mode, the button is invisible.

Hyperlink URL label

A label that displays a hyperlink. When the user clicks on the hyperlink, the appropriate
action is performed, depending on the protocol of the URL.

Hyperlink action label

A label that displays a hyperlink. When the user clicks on the hyperlink, an action script
is executed

Category: Labels and spacers

Horizontal separator

A horizontal separator with an optional label.

Key value pair label

A pair of labels. The first ('key') label aligns with other leading labels on the form, the
second ('value') label consumes the remaining horizontal space,

Label

A single label. It is left-aligned with leading labels from other form components and
extends beyond other leading labels.

Leading label

A form component that only has a leading label and no central component. This can
also be used to create standalone help tooltips.

199

Multi-line HTML label

A multi-line label that wraps text as needed and displays simple HTML. In particular,
you can include HTML links that open a browser.

Multi-line label

A multi-line label that wraps text as needed.

Spring

An invisible spring that can be used in horizontal and vertical layout groups to push
subsequent components to the right or to the bottom

Vertical spacer

An invisible vertical spacer of configurable height.

Category: Option selectors

Check box

A check box with an optional leading label. The user selection (Boolean.TRUE or
Boolean.FALSE) is saved to a variable.

Combo box

A combo box with an optional leading label. The user can enter arbitrary text into the
combo box. The user selection (the selected item as a string) is saved to a variable.

Drop-down list

A drop-down list with an optional leading label. The user selection (the selected index
as a java.lang.Integer) is saved to a variable.

List

A list with an optional leading label. The user selection (the selected indices) is saved
to a variable.

Radio button group

A number of radio buttons in a common button group with an optional leading label.
The user selection (the selected index as a java.lang.Integer) is saved to a variable.

Single radio button

A single radio button with an optional leading label. If selected, a specified string is
saved to a variable. If you place multiple instances of this form component on a form
screen and give them the same variable name, they will form a radio button group.

Category: Sliders and spinners

Slider

A slider with an optional leading label. The user input (a java.lang.Integer) is saved
to a variable.

200

Spinner of dates

A spinner with date and time values with an optional leading label. The user input is
saved to a variable.

Spinner of enumerated values

A spinner with enumerated values with an optional leading label. The user input is
saved to a variable.

Spinner of integer values

A spinner with integer values with an optional leading label. The user input is saved to
a variable.

Category: Special selectors and displays

Directory chooser

A directory chooser with an optional leading label. The user selection is saved to a
variable.

File associations selector

A form component that displays a list of all subsequent file association actions and
asks the user which associations should be made. This form component will be empty
if there are no corresponding file association actions after this screen.

File chooser

A file chooser with an optional leading label. The user selection is saved to a variable.

HTML or text display

A scroll panel that displays HTML or plain text. The HTML or plain text is easily localizable
because the file selection allows you to enter separate files for all supported languages.

Installation components selector

A form component that displays all installation components and asks the user which
components should be installed.

Installation directory chooser

An installation directory chooser with an optional display of required and free space.
The user selection is set as the installation directory.

License agreement

A form component that displays a license agreement to the user, either plain text or
HTML. The license agreement must be accepted before the next screen can be shown.

Log file viewer

A text area that shows the contents of a text file. The viewer follows additions to the file
like the UNIX command tail -f, with a configurable maximum number of displayed
lines.

201

The log file does not have to exist when the form is shown, it can be created later on.
Also, the file can be deleted and re-created. Modifications before the previously
observed end of the file will not be picked up by the viewer unless the length of the file
decreases.

PDF display

Displays a PDF file in an embedded cross-platform PDF viewer.

Program group selector

A form component that allows the user to select a program group on Microsoft Windows.

Progress display

An progress display that can show the progress of the actions attached to the
containing screen.

Update alert

A pair of radio buttons offering the user a choice whether to update an existing
installation or not. If the existing installation should be updated, the installer variable
sys.confirmedUpdateInstallation is set to true. Several standard screens use that
installer variable in their default condition expression.

Update schedule selector

Drop-down box that lets the user select an update schedule for your application. You
can use the com.install4j.api.update.UpdateScheduleRegistry class in your
application to check if you should launch an updater. Please see the Javadoc for more
information. Please note that simply adding this form component does not
automatically launch an updater at regular intervals.

Windows user selector

A component for selecting Windows users or groups in the native Windows user dialog.
Optionally, you can display a button to create a new user. The selection is saved as a
SID (1) to a string variable. If multiple selection is enabled, the result is a string array of
SIDs.

This component does not do anything in console mode, since it requires the native
Windows dialog for selecting users and groups.

Category: Text fields

Password field

A password text field with an optional leading label. The user input is displayed with '*'
characters. The user input is saved to a variable.

Text area

A text area with an optional leading label. The user input is saved to a variable.

Text field

A text field with an optional leading label. The user input is saved to a variable.

(1) https://en.wikipedia.org/wiki/Security_Identifier

202

https://en.wikipedia.org/wiki/Security_Identifier

Text field with date format

A text field with an optional leading label and a date format. The user input (a java.
util.Date) is saved to a variable.

Text field with format mask

A text field with an optional leading label and an arbitrary format mask. The user input
is saved to a variable. The default mask is that of an SSN. For more information, please
see the javadoc of javax.swing.text.MaskFormatter.

Text field with integer format

A text field with an optional leading label and an integer format. The user input is saved
to a variable with type java.lang.Long.

Text file editor

A text area for editing a file. If the file does not exist, a configurable initial text is presented
to the user and the file is created. The file is saved when the user clicks on the "Next"
button.

Console handler

Allows you to interact with the user in a console installer. All standard form components
expose appropriate behavior in console mode, however, there are situations where
you need to fine-tune your console installer with additional messages or questions. In
GUI or unattended mode, this form component does not have any effect.

203

B.8 Configuring Layout Groups
Layout groups can be configured in the form components [p. 198] configuration dialog.
This chapter discusses the configuration options for layout groups, for more information
on layout groups, see the corresponding help topic [p. 56].

You can create a layout group [p. 204] from selected form components with the Create
Horizontal Group and Create Vertical Group actions. The new group will be inserted in
place of the selected elements.

You can dissolve a group with the Dissolve Group action. This action is only enabled if the
selection consists of a single layout group. The elements contained in the group will be
inserted in place of the group. Nested groups will not be dissolved.

Grouping features

Form components can be grouped in horizontal and vertical layout groups, and you can
nest groups to an arbitrary depth.

Grouping offers the following benefits:

• Custom layout

Instead of a simple sequence of form components on a form screen, you can use
horizontal layout groups to put form components side-by-side. Nesting vertical and
horizontal form components allows you to achieve virtually any layout.

Sometimes, enclosing groups and sibling groups create a cell that cannot be entirely
filled by a layout group. With the "Anchor" property you determine where the group
should be placed in that case. By default, horizontal layout groups are anchored at
"West" and vertical layout groups are anchored at "North-West".

Layout groups have a configurable cell spacing. For vertical layout groups, this is the
vertical gap between two form components (0 pixels by default), for horizontal layout
groups this is the horizontal gap between two adjacent form components (5 pixels by
default)

For each layout group, you can specify insets that are inserted around the entire layout
group. By default, the insets are zero in all directions.

By default, a horizontal layout group aligns a leading label of its first form component
with the leading label of the first form component from a direct vertical parent group.
This is usually appropriate when horizontal groups are used to attach additional form

204

components to the right side. If this alignment is not desired, you can use the "Align first
label" property of a horizontal layout group to switch off the alignment.

Vertical layout groups always break the alignment of leading labels: Within a vertical
group, leading labels are aligned, but between vertical groups, the width of leading
labels is unrelated.

• Organization
If you have many form components on a screen, vertical groups emphasize which form
components belong together. You can add a common comment to the group.

• Common visibility script
Groups have a "Visibility script" property that allows you to hide the entire group with a
common condition instead of having to repeat the condition for each contained form
component.

• Single target for coupled form components
If a set of form components should be coupled to the selection state of a checkbox or
a single radio button, you can select the containing layout group as the target instead
of selecting all coupled form components separately.

• Styling
Layout groups have properties for setting background images and borders, as well as
background and foreground colors. Styles [p. 208] use layout groups to achieve visual
effects.

Properties of layout groups

Common properties of horizontal and vertical layout groups are:

• Image File [Configuration]
An image that is shown on the edge or as a background. Apart from an image that is
anchored to the center of the group, the image can optionally cut off an entire edge
from the group. In that case, it is possible to set a background color for the edge stripe
so that the image can blend into the surroundings. Can be empty.

To add a high-resolution image, create a file with double the resolution and an additional
@2x after the name (e.g. image.png and image@2x.png) next to the selected image. To
use different images in dark mode, add files with an additional _dark suffix (e.g.
image_dark.png and image@2x_dark.png)

The install4j runtime JAR file i4jruntime.jar contains a number of image files that
you can reference here by prefixing the icon file name with "icon:". For example, icon:
lock_open_32.png loads a 32x32 icon showing an open lock.

• Image anchor [Configuration]
The anchor where the image will be attached to in the layout group. If Center is chosen,
the image is always displayed in the background.

• Image edge [Configuration]
For corner anchors, you have to select either the horizontal or the vertical edge that will
optionally be filled with the image edge background color and that will be cut of from
the layout group if the image is not displayed in the background.

205

• Image edge background color [Configuration]
The background color that the image edge should be filled with. If the image terminates
with the same color, the image will blend with the background and the entire edge will
look like a single visual element.

Not available if the anchor is set to "Center"

• Image edge border [Configuration]
If selected, the image edge will be separated by a line border from the content area.

Not available if the image overlaps the contained components.

• Image edge border color [Configuration]
The color of the image edge border. Leave empty to choose the default separator color
of the current look and feel.

This property is only visible if "Image edge border" is selected.

• Image edge border width [Configuration]
The width of the image edge border in pixels.

This property is only visible if "Image edge border" is selected.

• Image insets [Configuration]
The insets around the image. The format is top;left;bottom;right, use the drop-down
button at the right side to show the insets editor.

• Overlap with contained components [Configuration]
If selected, the image will be used as a background image and form components
contained in the layout group will overlap with the image. Otherwise, the image edge
will be cut off from the layout group and form components will not overlap with the
image. In that case, the insets of the layout group will be applied to the actual content
area that excludes the image edge.

Not available if the anchor is set to "Center"

• Background color [Configuration]
The background color of the layout group. Can be empty.

• Foreground color [Configuration]
The foreground color of the layout group. Can be empty. If set, all contained form
components will use this foreground color except those that have an explicitly configured
foreground color.

• Border sides [Configuration]
On which sides a line border should be painted around the form component, a list of
"top", "right", "bottom" and "left", separated by semicolons. Use the drop-down button to
select the sides visually.

• Border color [Configuration]
The color of the drawn border sides. Leave empty to choose the default separator color
of the current look and feel.

• Border title [Configuration]
A title that is displayed in the top-left corner of the border. Leave empty if no title should
be displayed.

206

• Border width [Configuration]
The width of the drawn border sides in pixels.

• Visibility script [Initialization]
A script that determines whether form components in the group (and all descendant
components in nested groups) will be visible or not. This works for both GUI and console
modes. In GUI mode, the script will be invoked each time just before the form components
are initialized. Visibility scripts of nested form components can further hide single form
components, but they cannot show them if a parent layout group is already hidden.

• Insets [Layout]
The insets around the entire group. The format is top;left;bottom;right, use the drop-down
button at the right side to show the insets editor.

• Anchor [Layout]
The position in the available space where the group is anchored in the layout. This is
only relevant if the group takes less space than the cell that is created by the
surroundings.

• Cell spacing [Layout]
The cell spacing determines how many pixels are inserted between single components
in the layout group.

Vertical layout groups have the additional properties:

• Make children same width [Layout]
If all contained elements should have the same width.

and horizontal layout groups have the following specific properties:

• Align first label [Layout]
If the horizontal group is directly added to a vertical group or to the top-level of a form,
the leading label in the horizontal group is aligned with other leading labels in the vertical
parent group. If this alignment is not desired, you can deselect this property.

• Make children same height [Layout]
If all contained elements should have the same height.

Tabbed panes

In addition to horizontal and vertical layout groups, you can add tabbed panes to a form.
A tabbed pane is added by choosing Tabbed Panes->Add Tabbed Pane from the dropdown
menu displayed by the Add button. Below the tabbed pane, you have to add one or
more single tabs by choosing Tabbed Panes->Add Single Tab For Tabbed Pane. Each
single tab can then contain arbitrary form components or layout groups.

207

B.9 Configuring Styles
Styles determine how screens look like in GUI installers. For more information on styles,
see the corresponding help topic [p. 60].

Styles are added by clicking the Add button.

In the popup window you can select whether to add

• a configurable style. Styles can be constructed with a restricted set of the form
components [p. 198] for screens that do not take user input and some special form
components that are relevant in a styling context.

• a style that is contained in your custom code. New types of reusable styles can be
developed with the install4j API [p. 226]. In your custom code configuration [p. 165] you
can specify code locations that are scanned for suitable classes. A class selector will
be shown where you can select the desired class.

• a group for organizing styles, so you have a better overview of which styles belong
together.

For organizing styles in your project, you can create a group from selected styles with the
Create group from selection action and dissolve groups with the Dissolve Group action.
This action is only enabled if the selection consists of a single layout group. The elements
contained in the group will be inserted in place of the group. Nested groups will not be
dissolved.

You can preview a style with the Preview button which is also available on the property
page of a style.

Properties of styles

Form styles have the following properties:

• Standalone style
If selected, the style can be selected for installer applications, screen groups and screens.
If a style is not standalone, it can only be used in other styles.

• Fill horizontal space
If selected, all available horizontal space is filled by this style. This setting is also used
when it is nested in another style by a "Nested style" form component.

208

• Horizontal anchor
If "Fill horizontal space" is not selected, the style can be placed at different locations in
the available space.

This property is only visible if "Fill horizontal space" is selected.

• Fill vertical space
If selected, all available vertical space is filled by this style. This setting is also used when
it is nested in another style by a "Nested style" form component.

• Vertical anchor
If "Fill vertical space" is not selected, the style can be placed at different locations in the
available space.

This property is only visible if "Fill vertical space" is selected.

209

C Generated Installers

C.1 Installer Modes
Installers generated by install4j can be run in three modes:

• GUI mode
The default mode for installer applications is to display a GUI installer or uninstaller.

• Console mode
If the installer application is invoked with the -c argument, the interaction with the user
is performed in the terminal from which the installer was invoked.

• Unattended mode
If the installer is invoked with the -q argument, there is no interaction with the user and
the installation is performed automatically with the default values.

The flow of screens and action sequence is executed in the same way for all three modes.
If some actions or screens should not be traversed for console or unattended installations,
you can set their "Condition expression" properties to

!context.isConsole()

or

!context.isUnattended()

GUI mode

In GUI mode, the keyboard shortcut CTRL-SHIFT-L shows the log file in the Explorer on
Windows, in the Finder on macOS and in the file manager on Linux/Unix. This shortcut is
not advertised to the user, but you can communicate it to the user for debug purposes.

Console mode

Installers generated by install4j can perform console installations, unless this feature has
been disabled in the application configuration [p. 167] of the "Installer->Screens & Actions"
step. To start a console installation, the installer has to be invoked with the -c argument.

All standard screens and form components in install4j present their information on the
console and allow the user to enter information as in the GUI installer. Not all messages
in the style are displayed in the console installer. By default, only the subtitle of a screen
is displayed as the first message, but you can change this behavior with the "Console
screen change handler" script of the installer application.

The subtitle is appropriate to display in console mode, because all standard screens in
install4j have a question as their subtitle. If you add your own forms to the screen
sequence [p. 160], you should phrase their subtitles as questions to create a consistent
user experience for the console installer.

On Windows, the information of whether an executable is a GUI executable or a console
executable has to be statically compiled into the executable. Installers are GUI executables,
otherwise a console would be displayed when starting the installer from the explorer. This

210

is also the reason why the JRE supplies both the java.exe console executable and the
javaw.exe GUI executable on Windows.

However, a GUI executable can attach to a console from which it was started. GUI
executables are started in the background by default, which means that you have to use
the start command to put it in the foreground and be able to enter information:

start /wait installer.exe -c

If you develop new screens or form components, you have to override the method

boolean handleConsole(Console console) throws UserCanceledException

to implement the behavior for console mode. Displaying default data on the console and
requesting user input is made easy with the Console class that is passed as a parameter.

Unattended mode

Installers generated by install4j can perform unattended installations, unless this feature
has been disabled on the application configuration [p. 167] of the "Installer->Screens &
Actions" step. To start an unattended installation, the installer has to be invoked with the
-q argument. The installer will perform the installation as if the user had accepted all
default settings.

There is no user interaction on the terminal. In all cases, where the installer would have
asked the user whether to overwrite an existing file, the installer will not overwrite it. You
can change this behavior by passing -overwrite as a parameter to the installer. In this
case, the installer will overwrite such files. For the standard case, it is recommended to
fine-tune the overwrite policy in the distribution tree [p. 14] instead, so that this situation
never arises.

The installer will install the application to the default installation directory, unless you pass
the -dir parameter to the installer. The parameter after -dir must be the desired
installation directory, for example:

installer.exe -q -dir "D:\MyApps\My Application"

For the unattended mode of an installer, response files [p. 217] are an important instrument
to pre-define user input.

On Windows, the output of the installer is not printed to the command line for unattended
installation. If you pass the -console parameter after the -q parameter, the executable
will try to connect to the invoking console and display output to the user. This is useful for
debugging purposes.

If the installation was successful, the exit code of the installer will be 0, if no suitable JRE
could be found it will be 83 and for other types of failures it will be 1.

If you develop new screens or form components, you have to override the method

boolean handleUnattended()

in order to support unattended installations.

211

C.2 Command Line Options For Generated Installers
Installers generated by install4j recognize the following command line parameters:

ExplanationName

Show help for common command line
parameters. This will be shown in a message

-h or -help or /?

box, regardless of the default execution mode.
If the GUI display fails, it will be printed on the
console.

This option only applies to Windows. In GUI
mode, the default JRE search sequence [p. 219]

-manual

will not be performed and bundled JREs will not
be used either. The installer will act as if no JRE
has been found at all and display the dialog
that lets you choose a JRE. If you locate a JRE,
it will be used for the installed application.

On Unix, you can define the environment
variable INSTALL4J_JAVA_HOME_OVERRIDE
instead to override the default JRE search
sequence.

Executes the installer in console mode [p. 210].-c

Executes the installer in unattended
mode [p. 210].

-q

Forces the installer to be executed in GUI mode.
This is only useful if the default execution

-g

mode [p. 167] of the installer has been
configured as console mode or unattended
mode.

If the installer is executed in unattended mode
and -console is passed as a second

-console

parameter, status messages will be printed on
the console from which the installer was
invoked.

Only valid if -q is set. In the unattended
installation mode, the installer will not overwrite

-overwrite

files where the overwrite policy [p. 14] would
require it to ask the user. If -overwrite is set,
all such files will be overwritten. The default
value for this option can be changed with the
system property -Dinstall4j.
quietOverwrite=true

Only valid if -q is set. In the unattended
installation mode, the installer will not fail if an

-nofilefailures

error occurs during a file installation. The default
value for this option can be changed with the

212

ExplanationName

system property -Dinstall4j.
noFileFailures=true

Only valid if -q is set. In unattended installation
mode, the installer will perform the installation

-wait <timeout in seconds>

immediately. On Windows, this can lead to
locking errors if the installer is called by an
updater or by a launcher. If -wait is specified,
the installer application will wait until all
installed launchers and installer applications
(including the updater) have shut down. If this
does not happen within the specified timeout,
the installer application exits with an error
message.

Only valid if -q is set. Sets a different installation
directory for the unattended installation mode.

-dir <directory>

The next parameter must be the desired
installation directory.

The directory can be absolute or relative. If it is
relative, it will be resolved relative to the media
file.

Only valid if -q is set. Instead of being
completely quiet in unattended installation

-splash <title>

mode, a small window with a progress bar and
the specified title will be shown to inform the
user about the progress of the installer
application. This is useful if you start the installer
application programmatically and do not
require user input.

Only valid if -q and -splash are set. By default,
in unattended mode, no alerts are shown. This

-alerts

includes messages boxes, error alerts and
questions. By setting this command line
parameter, alerts are enabled for unattended
executions with a progress dialog.

Change the temporary directory for the installer
application on Windows. An installer may

-temp <directory>

extract a lot of files, and it also extracts
executables to its temporary directory. If the
default temporary directory of the system is not
suitable for this purpose, you can change the
directory with this parameter. The specified
directory must exist and must be writable. This
is useful for troubleshooting problems caused
by antivirus software.

213

ExplanationName

Do not set the native look and feel but use the
default. In some rare cases, the native look and

-Dinstall4j.nolaf=true

feel is broken and prevents the use of the
installer or any other Java GUI application.

By default, install4j catches all exceptions,
creates a "crash log" and informs the user about

-Dinstall4j.debug=true

the location of that log file. This might be
inconvenient when debugging an installer, so
this system property switches off the default
mechanism and lets exceptions be printed to
stderr.

install4j creates a log file prefixed with i4j_log
in the temporary directory when an installer

-Dinstall4j.log=<path>

application is executed. This log file can be
helpful for debugging purposes. If your installer
contains an "Install files" action and terminates
successfully, the log file is copied to
<installation dir>/.install4j/
installation.log, otherwise it will be deleted
after the installer application terminates.

With the -Dinstall4j.log=<path> the log file
will be written to the file specified with <path>
instead and will not be deleted in any case. If a
relative path is specified, it will be resolved
relative to the installer media file for installers
and relative to the working directory for
uninstallers and custom installer applications.

As an alternative to -Dinstall4j.log=<path>,
you can ask the installer or the installer

-Dinstall4j.keepLog=true

application to not delete the temporary log file
under any circumstances.

For situations where you cannot modify the
command line arguments, you can set the
environment variable INSTALL4J_KEEP_LOG=
true.

If set, each message in the log file is prepended
with a time stamp.

-Dinstall4j.logTimestamps=true

In addition to the log file created by the installer
application, you can duplicate all log messages
to stderr with this argument.

-Dinstall4j.logToStderr=true

By default, the installer will write the log file in
the default encoding of the system where the

-Dinstall4j.logEncoding=<character set
name>

installer is running. If you wish to choose a
different encoding, you can pass this VM

214

ExplanationName

parameter to the installer. Some common
character set names are

• UTF-8
• UTF-16
• ISO-8859-1

The class java.nio.charset.
StandardCharsets lists the encodings that are
guaranteed to be available in any JRE.

In unattended mode, status messages of
actions that are displayed in the installer are

-Dinstall4j.suppressStdout=true

printed on stdout. To suppress these messages,
you can set this VM parameter.

In unattended mode, detailed messages
regarding file installations are not printed on

-Dinstall4j.detailStdout=true

stdout. To enable these messages, you can set
this VM parameter.

In unattended mode, a reboot may be
undesirable. To prevent reboots, you can set
this VM parameter.

-Dinstall4j.suppressUnattendedReboot=true

Overrides the language selection for a
multi-language installer. The language

-Dinstall4j.language=<ISO code>

selection dialog will not be displayed in this
case, unless the specified language is not
included in the installer.

Debugging the installer application can be
done by passing -agentlib:jdwp=transport=

-Dinstall4j.helperDebugPort=<port>

dt_socket,server=y,suspend=n,address=
<port> on the command line, on Windows this
argument has to be prefixed with -J.

However, this will not debug the elevated helper
process started by the "Request privileges"
action. By setting the install4j.
helperDebugPort VM parameter, the same
-agentlib parameter is passed to the JVM of
the helper process, and you can then attach to
it with a debugger. If you debug both the
unelevated and the elevated JVM at the same
time, you have to assign different ports and
start two separate debugging sessions.

Forces the installer locale to be detected from
the "Format" language setting and not from the

-Dsun.locale.formatasdefault=true

215

ExplanationName

"Display language" setting in the Windows
"Region and Language" control panel.

Specifies a VM parameter, for example
-J-Xmx512m. Can be specified more than once.

-J<VM parameter>

You can set further arbitrary system properties
with standard command line parameters. There
is no need to prefix them with -J on Windows.

-DpropertyName=value

You can set arbitrary installer variables with the
-V parameter. If you pass -VvariableName=

-VvariableName=value

value, you can use the variable value by
inserting ${installer:variableName} in text
fields in the install4j IDE. The variable value will
be a java.lang.String object.

Instead of repeatedly using the >-V
command-line option, you can specify a

-varfile <fileName>

property file containing the variables you want
to set. This option shares the same mechanism
with response files [p. 217].

On macOS, you can use the INSTALL4J_ARGUMENTS environment variable to pass
arguments to the installer.

On Unix, the environment variable INSTALL4J_TEMP determines the base directory for
self-extraction. If the environment variable is not set, the parent directory of the installer
media file is used.

216

C.3 Response Files
With a response file, you can change the default user selection in all screens. A response
file is a text file with name-value pairs that represent installer variables. All screens and
form components provided by install4j ensure that user input is bound to appropriate
installer variables that are registered for being written to the response file.

Installer variable values are of the general type java.lang.Object. In a response file, only
variables with values of certain types can be represented: In addition to the default type
java.lang.String, the types java.lang.Boolean, java.lang.Integer, java.util.Date,
java.lang.String[] and int[] are supported.

In order to let the installer runtime know about these non-default types, the variable name
in the response file is followed by a '$' sign and an encoding specifier like 'Integer' or
'Boolean'.

Response file variables are variables that have been registered with

String variableName = ...;
context.registerResponseFileVariable(variableName);

in the installer. All variables that are bound to form components are automatically
registered as response file variables. Also, system screens register response file variables
as needed to capture user input.

All installer variables live in the same name space. If you use an installer variable more
than once for different user inputs, the response file only captures the last user input. If
you would like to optimize your installers for use with a response file, you have to make
sure that the relevant variable names are unique within your installer.

A response file can be used to

• Configure the installer for unattended execution mode
• Change the default settings in the GUI and console installer
• Get additional debugging information for an installation

When applying a response file to an installer, all variable definitions are translated into
installer variables [p. 68]. The response file shares the same mechanism with the variable
file offered by the -varfile [p. 212] command-line option. You can add the contents of a
response file to a variable file and vice versa.

Generating response files

There are two ways to generate a response file:

• A response file is generated automatically after an installation is finished. The generated
response file is found in the .install4j directory inside the installation directory and
is named response.varfile. When you request debugging information from a user,
you should request this file in addition to the installer log file.

• install4j offers a "Create a response file" action [p. 182] that allows you to save the
response file to a different file in addition to the automatically generated response file.
Here, you can also specify variables that you would not like to be included in the response
file.

217

Applying response files

When an installer is executed, it checks whether a file with the same name and the
extension .varfile can be found in the same directory and loads that file as the response
file. For example, if an installer is called hello_setup.exe on Windows, the response file
next to it has to be named hello_setup.varfile.

You can also specify a response file explicitly with the -varfile [p. 212] installer option.

Response files work with all three installer modes [p. 210], GUI, console and unattended.

Response file variables

The variables that you see in the response file are realized as installer variables as soon
as the response file is loaded. You can use these installer variables to access or change
user selections on system screens. For example, the "Create program group" screen on
Windows binds the user selection for the checkbox that asks the user whether to create
the program group for all users to the variable sys.programGroup.allUsers. To access
the current user selection from somewhere else, you can use the expression

context.getBooleanVariable("sys.programGroup.allUsers")

To change that selection, you can invoke

context.setVariable("sys.programGroup.allUsers", Boolean.FALSE)

218

C.4 How Installers Find A JRE
Installers generated by install4j are native executables or shell scripts and can start running
without a JRE. However, the installer itself requires a JRE to perform its work and so the first
action of the installer is to locate a JRE that is suitable for both the installer and your
application. In this process it performs the following steps:

1. Look for a staticallybundledJRE. If a statically bundled JRE is included with the installer,
it will unpack it and use it. First, this JRE is unpacked to a temporary directory. Later it is
copied to the jre directory in the installation directory of your application. No other
installer generated by install4j with a different application id will find this JRE. It will not
be made publicly available, for example, in the Windows registry.

2. Look for a suitable JRE in the configured search sequence. The installer uses the same
search sequence and Java version constraints as your launchers which are configured
for the entire project [p. 41]. The "Previous installations" search is only performed by the
installer and searches for installations with the same application id. If it finds a JRE from
a different installation directory, the "Install files" action will copy it as a private JRE to
the current installation directory.

3. If no JRE has been found, the installer notifies the user. If the "Search Windows registry
and standard locations" entry is part of the search sequence, it will display information
on how to alternatively provide a JRE or provide a "Locate" button on Windows.

219

C.5 HTTP Requests

Actions that perform HTTP requests

install4j includes several actions that can perform HTTP or HTTPS requests:

• The "Install files" action downloads installation components that have been marked as
"Downloadable" if the data files option has been set to "Downloadable" as well in the
media file wizard.

• The "Check for updates" action downloads the update descriptor updates.xml from
the specified web server to check if there is a new version available.

• The "Download file" action downloads the specified file from the web server.
• the "Upload file" action uploads a specified file with a POST request.
• The "HTTP request" action performs generic HTTP requests.
• The "Wait for HTTP server" action waits until a specified HTTP or HTTPS port becomes

available.

When creating an HTTP/HTTPS connection to the requested resource there are three
different concerns that may require user interaction: Proxy selection, proxy authentication
and server authentication.

Proxy selection and authentication

On Windows, installer applications use native code to perform HTTP requests, so the native
Windows proxy dialog will be shown. The proxy configuration of the operating system is
used, and the system properties for setting an HTTP proxy in Java do not apply. This has
the advantage that a previously saved proxy password does not have to be entered by
the user.

On other platforms, HTTP requests are made through the Java HttpClient for Java 11+ or
a URLConnection for lower Java versions. If a proxy can be auto-detected from the system
settings, it is used automatically. If the proxy requires credentials, an authentication dialog
will be shown. User input in this dialog will be cached for the duration of the process. If the
proxy uses basic authentication, then HTTPS connections can only be tunneled if the VM
parameter

-Djdk.http.auth.tunneling.disabledSchemes=

is set with an empty value as shown above. This is done automatically for installer
applications, but not for generated launchers where you would have to set this VM
parameter explicitly. If you do that, you should read about its security impact (1) in case
you develop your own implementation of java.net.Authenticator.

Entering proxy data is supported in console mode as well. In unattended mode, there is
no user interaction, so the proxy information has to be provided to the installer via
command line arguments. The following system properties for proxy configuration can
be used:

-DproxyHost=<host name>
-DproxyPort=<port number>

If the proxy requires credentials, you also have to specify
(1) https://bugzilla.redhat.com/show_bug.cgi?id=1386103

220

https://bugzilla.redhat.com/show_bug.cgi?id=1386103

-DproxyAuthUser=<user name>
-DproxyAuthPassword=<password>

Except for the native Windows network connection, the above properties can also be used
to configure the proxy from outside. Furthermore, the global Java proxy properties

-Dhttp.proxyHost=<host name>
-Dhttp.proxyPort=<port number>
-Dhttp.proxyUser=<user name>
-Dhttp.proxyPassword=<password>

and the corresponding properties with the "https" prefix are also used for HTTP and HTTPS
connections respectively. If you would like to use these properties on Windows as well, you
can disable the native Windows network connection with the system property
-Dinstall4j.noWinInetConnection=true.

Server authentication

The download URL can be password-protected with basic HTTP authentication. In this
case, the user has to supply a username and a password.

Neither the username nor the password is cached by install4j. In unattended mode you
have to pass the arguments

-DserverAuthUser=<user name>
-DserverAuthPassword=<password>

You can set these system properties via

System.setProperty("serverAuthUser", "<user name>");
System.setProperty("serverAuthPassword", "<password>");

programmatically.

221

C.6 Updates
On the "Installer->Update Options" step, you can configure how an installer should behave
in the event of an update. An update occurs when the user installs an application into a
directory where an installation with the same application ID already exists.

Typically, minor upgrades of an application should be installed into the same directory
as earlier installations. The default behavior of install4j is to suggest the previous installation
directory and program group, so that the user is guided into installing the application into
the same directory. If this behavior is not desired, you can switch off these suggestions or
change the application ID on the "Installer->Update Options" step.

Updates into the same installation directory

The following points are of interest with respect to updates into the same installation
directory:

• Generated installers will refuse to install on top of installations with a different application
ID by default. You can change this behavior with the "Validate application id" property
of the installation directory chooser on the "Installation location" screen.

• Generated installers will detect if any of the previously installed launchers are still running
and will ask the user to shut down these applications. This happens when the "Install
files" action or a "Check for running processes" action is executed.

• Deployed services will be stopped and uninstalled before the installation. This happens
when the "Install files" action is executed. You can optionally stop your services earlier
with the "Stop a service" action if your update process requires it.

• During an update, the installation databases will be merged, so that files, menu entries,
file associations and other modifications from old installations can still be uninstalled
when the uninstaller is executed.

• After an update, only the uninstallation actions of the newer installation will be executed
when the uninstaller is executed. However, the auto-uninstall actions from previous

222

installations will be executed, too, for example, the uninstallation of a service that was
registered by an "Install service" action during the installation.

If you would like to uninstall the previous installation before installing any new files, you
can add the "Execute previous uninstaller" action before the "Install files" action. In this
context, the uninstallation policies [p. 14] that exclude updates are important. With these
uninstallation policies, you can preserve certain files for updates, but uninstall them when
the user manually invokes the uninstaller. The uninstaller invoked by the "Execute previous
uninstaller" action is running in unattended mode. You can use

!context.isUninstallForUpgrade()

to exclude certain actions for an update uninstaller.

Add-on installers

install4j offers two types of installers that can be selected on the "Installer->Update options"
step:

• Regular installers
This option generates standalone installers. If the "Detect previous installation directory"
check box is selected and a previous installation can be detected on the computer, the
installer will suggest the directory of that previous installation. In that case, the "Update
alert" form component on the "Welcome" screen will ask the user if the previous
installation should be updated.

• Add-on installers

This generates an installer that can only be installed on top of an installation with a
specified application ID. An add-on installer does not have a separate uninstaller. This
is useful to distribute additional files that do not change the version number of the
installation.

If the add-on installer type is selected, you have to specify the application ID for the
base application.

223

C.7 Error Handling

Debugging on Windows

On Windows, when an installer is executed it always generates a log file in the temp
directory that contains information about the JRE search sequence and can be used for
debugging purposes. The name of the log file starts with i4j_nlog_. If you have a problem
with JRE detection or the installer startup, send this log file along with your support request.

It is also possible to generate this native debug log file for the generated Windows
launchers. To switch on logging, define the environment variable

INSTALL4J_LOG=yes

and look for the newest text file whose name starts with i4j_nlog_ in the temp directory.
This is done silently, without notifying the user and is also suitable for situations where
launchers are called automatically or repeatedly.

An easier way for a user to create a log file is to start the launcher with the argument

/create-i4j-log

The launcher will notify the user where the log is created and will offer to open an explorer
window with the log file selected. After the message box is closed, the launcher will continue
to start up.

Debugging on macOS

Similar to Windows, macOS launchers also support the INSTALL4J_LOG=yes environment
variable definition for debug logging. Rather than writing a log file, they write to the system
log. You can display the system log by starting the "Console" application which is located
in /Applications/Utilities.

Setting the environment variable can be done by opening a terminal and executing

launchctl setenv INSTALL4J_LOG=yes

Then all newly started applications in the Finder will have this environment variable set.
The current terminal will not be affected until you quit the Terminal application and start
it again.

Rather than setting the environment variable for all install4j launchers, you can set it for
a particular invocation only. To do that, call the Contents/MacOS/JavaApplicationStub
inside the application bundle and prefix the call with the definition of the environment
variable. For an application bundle "MyApp.app", the call looks like this:

INSTALL4J_LOG=yes MyApp.app/Contents/MacOS/JavaApplicationStub

In this case, the log output will also be written to the terminal. Using /usr/bin/open will
not work with this technique, because the latter gets the environment variables from the
Finder.

Note that logging only works for GUI launchers and not for command line and service
launchers which are implemented as Unix shell scripts. There is no command line argument
that activates logging, like on Windows.

224

Error logs

If an exception is thrown in the installer, it prepares an error log and informs the user about
its location

You can force the installer to print exceptions to stderr for debugging purposes with the
-Dinstall4j.debug=true command-line option [p. 212].

Installation log

All installer applications generate an installation log that can be used for debugging
purposes. After a successful installation the log file is saved to

<installation dir>/.install4j/installation.log

For an uninstaller or if the installer exited before the "Install files" action was run, you can
find it in the temporary directory if you pass -Dinstall4j.keepLog=true to the installer
or uninstaller. The file is prefixed i4j_log.

If you would like the installer to log to stderr as well, you can pass -Dinstall4j.
logToStderr=true to the installer. Both arguments can also be useful for debug installers
and uninstallers, where they have to be passed as VM parameters.

Error handling of Actions

You can define the error handling for every installation or uninstallation action separately.
Mor information is available in the DMG options and files on screens and actions [p. 25].

Return values

The process of an installer returns 0 if the installation was completed successfully, 1 if the
installation fails and 83 if the installer could not find a suitable JVM to run. These exit codes
are useful when checking the result of an unattended installation [p. 210].

225

D API

D.1 API For Installer Applications
There are two different use cases where the install4j API is required: Within expression/script
properties [p. 30] in the configuration GUI and for the development of custom elements
in install4j. The development of custom elements in install4j is rarely necessary for typical
installers, most simple custom actions can be performed with a "Run script" action, and
most custom forms can be realized with a "Customizable form" screen.

If you would like use your IDE while writing more complex custom code, you can put a
single call to custom code into expression/script properties. The location of your custom
code classes must be configured on the "Installer->Screens & Actions->Custom Code"
step, so install4j will package it with the installer and put in into the class path. In this way
you can completely avoid the use of the interfaces required to extend install4j.

Expression/script properties

Using expression/script properties in install4j is required for wiring together screens and
actions [p. 25] as well as for the conditional execution of screens and actions. The most
important element in this respect is the context which is an instance of

• com.api.install4j.context.InstallerContext
in an installer

• com.api.install4j.context.UninstallerContext
in an uninstaller

The context allows you to query the environment and the configuration of the installer as
well as to perform some common tasks.

See the documentation of the com.install4j.api.context package for the complete
documentation of all methods in the context. Some common applications include:

• Setting the installation directory
By using context.setInstallationDirectory(File installationDirectory) in the
installer context, you can change the default installation directory for the installer.
Typically, this call is placed into a "Run script" action on the "Startup" screen.

• Getting and setting installer variables
The getVariable(String variableName) and setVariable(String variableName,
Object value) methods allow you to query and modify installer variables. Note that
besides the "Run script" action, there is also a "Set a variable action" where you don't
have to call setVariable yourself.

• Conditionally executing screens or actions
Often, condition expressions for screens and actions check the values of variables. In
addition, the context provides a number of boolean getters that you can use for
conditionally executing screens and actions depending on the installer mode and
environment. These methods include isConsole(), isUnattended() and others.

226

• Navigating between screens
Depending on the user selection on a screen, you might want to skip a number of
screens. The goForward(...), goBack(...) and goBackInHistory(...) methods
provide the easiest way to achieve this.

Many other context methods are only useful if you develop custom elements for install4j.

Also have a look at the com.install4j.api.Util class which offers a number of utility
methods that are useful in expression/script properties.

Development environment

To develop custom elements in your IDE, you have to add the install4j API to the compilation
class path. The entire install4j API is contained in the single artifact with maven coordinates

group: com.install4j
artifact: install4j-runtime
version: <install4j version>

where the install4j version corresponding to this manual is 11.0.3.

Jar, source and javadoc artifacts are published to the repository at

https://maven.ej-technologies.com/repository

You can either add the API to your development class path with a build tool like Gradle or
Maven, or use the JAR file

resource/i4jruntime.jar

in the install4j installation.

To browse the Javadoc, go to

javadoc/index.html

For a general overview on how to start developing with the install4j API, how to set up your
IDE and how to debug your custom elements, see the API overview in the javadoc.

Developing custom elements for install4j

install4j provides four extension points: actions, screens, form components and styles

All actions, screens and form components in install4j use this API themselves. To make
your custom elements selectable in the install4j IDE, you first have to configure the custom
code locations on the "Installer->Screens & Actions->Custom Code" step. When you add
an action, screen or form component, the first popup gives you the choice on whether to
add a standard element or search for suitable elements in your custom code.

227

If you want to ship your custom code to third parties, consider packaging an install4j
extension [p. 232], which displays your custom elements alongside the standard elements
that are provided by install4j and allows you to add dependency JAR files that are included
in the installers if any of the contained elements are used in a project.

Serialization

install4j serializes all instances of screens, actions and form components with the default
serialization mechanism for JavaBeans.

To learn more about JavaBeans serialization, visit

• https://docs.oracle.com/javase/8/docs/api/java/beans/XMLEncoder.html (1) for API
documentation on the long-term persistence mechanism for JavaBeans.

• https://www.oracle.com/technical-resources/articles/java/persistence4.html (2) for
information on how to write your own persistence delegates. In your beaninfos for
screens, actions and form components, you can specify a list of additional persistence
delegates for non-default types. Writing custom persistence delegates will generally
not be necessary unless you want to serialize special types from third party libraries.

Compiler variables are replaced in the serialized representation of a bean. In this way,
compiler variable replacement is automatically available for all properties of type java.
lang.String. The values of installer variables and localization keys are determined at
runtime, so you have to call the utility methods in com.install4j.api.beans.
AbstractBeanbefore you use the values in the installer or uninstaller. For more information
on variables, see the separate help topic [p. 68].

Internationalization

install4j offers custom localization files in the install4j IDE to localize your own messages.
com.install4j.api.context.Context.getMessage(String key) gives access to all
messages.

If you develop your own user-configurable screens, actions or form components, you can
replace all custom localization keys and installer variables in property values with calls
(1) https://docs.oracle.com/javase/8/docs/api/java/beans/XMLEncoder.html
(2) https://www.oracle.com/technical-resources/articles/java/persistence4.html

228

https://docs.oracle.com/javase/8/docs/api/java/beans/XMLEncoder.html
https://www.oracle.com/technical-resources/articles/java/persistence4.html

to the com.install4j.api.beans.AbstractBean.replaceVariables(...)methods. All
abstract base classes for beans extend com.install4j.api.beans.AbstractBean.

The locale of the installer will always be set to the language selected by the user or
configured for the media file, not the locale of the system that the installer is running on.
You can call com.install4j.api.context.Context.getLanguageId() to find out what
language your installer is running with.

Testing and debugging

To test and debug screens, actions and form components for your installer, enable the
Create additional debug launcher build option in the "Build" section. After the build,
your media file output directory will contain directories with the name debug_[name of
the media file without the file extension] for each media file that you have built.

The debug directories contain

• the Windows batch files debug_installer.bat and debug_uninstaller.bat for
Windows media files

• the shell scripts debug_installer.sh and debug_uninstaller.sh for media files of
Unix-based platforms

These scripts start the installer and the uninstaller with a plain java invocation. All exceptions
are directly printed to stderr, and no separate error log files are created.

The file user.jar in the debug directory contains all your custom code. For interactive
development, you will not want to rebuild the project after each modification of your
custom code. You can set up the installer or the uninstaller in your IDE by

• setting the working directory to the debug directory
• including your own code in the class path
• including i4jruntime.jar in the class path
• including user.jar in the class path. Your own code will also be contained in user.jar, but

the IDE typically places project code at the beginning of the class path so it will override
equivalent classes in user.jar.

• using the main class com.install4j.runtime.installer.Installer for the installer
or com.install4j.runtime.installer.Uninstaller for the uninstaller

• passing the VM parameter -Dinstall4j.debug=true

Note that the working directory for the executed java process must be the debug directory,
otherwise both the installer as well as the uninstaller will not work.

This procedure allows for an edit-compile-debug cycle that is much faster than building
the media file and running the installer. In addition, output on stderr and stdout can be
captured, and you can debug your screens, actions and form components this way.

229

D.2 API For Generated Launchers
Generated launchers in install4j have some features that you can interact with from your
own code. The corresponding API is contained in the com.install4j.api.launcher
package. This chapter gives an overview of the most important use case, the detailed
documentation is contained in the Javadoc.

install4j's launcher API is automatically available to an application deployed with install4j.
For compiling your application, you have to add the runtime classes to your class path.
You can learn how to set up a dependency in build systems in the API overview.

Receiving Startup Events in Single Instance Mode

If you have enabled the single instance mode [p. 41] for your executable, the application
can only be started once. For a GUI application, the existing application window is brought
to front when a user executes the launcher another time.

The scope of the single instance check can be per-user or globally across all users. For
the per-user scope, the "Per session on Windows" setting controls whether multiple RDP
sessions for the same user on Windows can support one instance per session or only one
instance across all sessions.

In single instance mode, you may want to receive notifications about multiple startups
together with the command line parameters. If you have associated your executable with
a file extension, you will likely want to handle multiple invocations in the same instance
of your application. Alternatively, you might want to perform some action when another
startup occurs.

To do that, create a class that implements the com.install4j.api.launcher.
StartupNotification.Listener interface and register it with com.install4j.api.
launcher.StartupNotification.registerStartupListener(listener). Your listener
will then be notified when another startup occurs. See the Javadoc for more information.

Startup notifications only work when the same user starts the executable again. With the
global scope, a startup of a different user will not produce a startup notification. On macOS,
this setting only applies to console launchers, for GUI launchers, the macOS operating
system enforces single instance mode if the user starts and application bundle from the
Finder. With the /usr/bin/open command line tool and the -n option, the user can
circumvent single instance mode.

Controlling the Splash Screen from your Application

If you have enabled a splash screen [p. 41] for a launcher, you will want to hide it once
the application startup is finished. The splash screen will be hidden automatically as soon
as your application opens the first AWT, JavaFX or SWT window. See the Javadoc for more
information.

However, you might want to hide the splash screen programmatically by calling com.
install4j.api.launcher.SplashScreen.hide() or update the contents of the status
text line on the splash screen with com.install4j.api.launcher.SplashScreen.
writeMessage(...)during the startup phase to provide more extensive feedback to your
users. Also, if the UI subsystem is not loaded by the system class loader, install4j cannot
automatically detect displayed windows and you have to hide the splash screen
automatically. For example, this is the case for eclipse RCP applications.

Reading compiler and installer variables from response files

All installer variables that are registered for response files will be saved to the file
.install4j/response.varfile just before the installer exits. This includes all variables

230

that are bound to form components and variables for which you have called context.
registerResponseFileVariable(variableName).

Some of these variables will contain user input that you need at runtime. You can use the
com.install4j.api.launcher.Variablesclass to access the variable values. The variable
values from the response file are fixed, and its backing file is usually not writable by the
user. If you want to update the variable values at runtime, you can save variables to the
preference store with a "Save installer variables to the preference store" action. The com.
install4j.api.launcher.Variables class has methods for reading and saving these
variables from the preference store.

In addition, all compiler variable values can be retrieved at runtime. See the Javadoc for
detailed information.

Starting installer applications from your launchers

Installer applications like update downloaders are separate executables and can be
started manually by the user. Most often, however, they will be launched by one of the
generated launchers. install4j offers a configurable launcher integration mechanism that
automatically executes an installer application when a launcher is started. For greater
flexibility, you may want to execute the installer application from your code
programmatically. On the "Installer->Screens & Actions" step, when an installer application
is selected, the integration wizard on the "Launcher integration" tab produces code that
uses the com.install4j.api.launcher.ApplicationLauncher class.

There are two ways to start installer applications: In-process and out-of-process. For an
in-process invocation, the installer application will use the look and feel of your JVM. The
AWT subsystem will be initialized which may be undesirable if you use a different UI toolkit
like JavaFX. For greater isolation, out-of-process invocations are recommended. The
ApplicationLauncher API offers both options. In both cases you can supply a callback that
is notified when the installer application exits or if a "Shutdown calling launcher" action in
the installer application request a shutdown of the launcher.

In addition, the ApplicationLauncher class provides a mechanism to run an installer
application the first time a launcher from an archive installation is started. Archives do
not have an installer, but you may still want to run some install4j actions, for example, to
configure a file association. With theApplicationLauncher.isNewArchiveInstallation()
method you can check at startup if this is the first time that the launcher is being executed.

231

D.3 Extensions

Introduction

All standard actions, screens and form components in install4j use the installer API [p. 226]
themselves. With this API you can create new elements that are displayed in the standard
registries by packaging a JAR file with a few special manifest entries and putting that JAR
file into the extensions directory of your install4j installation.

Configurability

An extension to install4j will likely need to be configurable by the user. install4j uses the
JavaBean specification (1) to control the user presentation of properties in the install4j IDE.
Screens, actions and form components correspond to beans in this context.

Optionally, you can add BeanInfo classes. A BeanInfo class next to the bean itself describes
which properties are editable and optionally gives details on how they should be presented.
See the documentation of the com.install4j.api.beaninfo package for the complete
documentation on how to develop BeanInfo classes. Also, samples/customCode/src in
the installation directory contains sample beans with associated BeanInfo classes.

JAR manifest

In order to tell install4j which classes are screens, actions or form components, you have
to use the following manifest keys:

• Install-Action
for actions implementing com.install4j.api.actions.InstallAction

• Uninstall-Action
for actions implementing com.install4j.api.actions.UninstallAction

• Installer-Screen
for screens implementing com.install4j.api.screens.InstallerScreen

• Uninstaller-Screen
for screens implementing com.install4j.api.screens.UninstallerScreen

• Form-Component
for form components implementing com.install4j.api.formcomponents.
FormComponent

• Style-Component
for form components implementing com.install4j.api.formcomponents.
FormComponent that should also be available in styles. Such form components should
not take any user input because they will have a different life-cycle in styles than in
screens.

Note that usually you do not implement these interfaces yourself, but rather extend one
of the abstract base classes.

A typical manifest with one action and one screen looks like this:

(1) http://www.oracle.com/technetwork/articles/javaee/spec-136004.html

232

http://www.oracle.com/technetwork/articles/javaee/spec-136004.html

Depends-On: driver.jar common.jar

Name: com/mycorp/actions/MyAction.class
Install-Action: true

Name: com/mycorp/screens/MyScreen.class
Installer-Screen: true
Uninstaller-Screen: true

If you only have named sections and no global section in your manifest file, the first line
must be an empty line since it separates the global keys from the named sections.

The Depends-On manifest key can specify a number of relative JAR files separated by
spaces that must be included when the extension is deployed. That key can also occur
separately for each named section.

As you see in the example for the screen, each class can have multiple keys if the
appropriate interfaces are implemented.

Localization

Extensions can provide localized messages. During development, you can keep these
messages in the custom localization file of the project that you use for testing purposes.
When packaging the extensions, these custom localization files have to be given special
names and be put into a particular location in the extension JAR file.

The names of the extension localization files have to be the same as those of the system
localization files in the resource/messagesdirectory, for example messages_en.utf8and
similarly for other languages. The java.util.Properties file encoding is also supported
if the file name has a .properties extension, like messages_en.properties.

When creating the extension JAR file, all extension localization files have to be put into the
directory messages. No special directives in the manifest are required. Dependencies
included with the Depends-On manifest key are not scanned for extension localization
files.

Extension deployment

On startup, install4j will scan the manifests of all JAR files that it finds in the extensions
directory. Any screens, actions or form components that are found in the manifests are
added to the standard registries. If a bean cannot be instantiated, the exception is printed
to stderr which is captured in <temp directory>/install4j_error.log and no further
error is displayed.

If any of those screens, actions or form components are selected by the user, the required
JAR files are deployed with the generated installers. This means that installing extensions
does not create an overhead for installers that do not use them.

233

E Command Line Tools

E.1 Install4j Command Line Compiler
install4j's command line compiler install4jc[.exe] can be found in the bin directory
of your install4j installation. It operates on project files with extension .install4j that
have been produced with the install4j IDE. (install4j[.exe]). The install4j command
line compiler is invoked as follows:

install4jc [OPTIONS] [config file]

A quick help for all options is printed to the terminal when invoking

install4jc --help

In order to facilitate usage of install4jc with automated build processes, the destination
directory for the media files and the application version can be overridden with
command-line options. Furthermore, you can achieve internationalization and powerful
customizations with compiler variables [p. 68]. As a last resort, since the file format of
install4j's config files is xml-based, you can achieve arbitrary customizations by replacing
tokens or by applying XSLT stylesheets to the config file.

Options for the install4j command line compiler

The command line compiler has the following options:

• -h or --help
Displays a quick help for all available options.

• -V or --version
Displays the version of install4j in the following format:

install4j version X.Y, built on YYYY-MM-DD

• -v or --verbose
Enables verbose mode. In verbose mode, install4j prints out information about internal
processes. If you experience problems with install4j, make sure to include the verbose
terminal output with your bug report.

• -q or --quiet
Enables quiet mode. In quiet mode, no terminal output short of a fatal error will be
printed.

• -t or --test
Enables test mode. In test mode, no media files will be generated in the media file
directory.

• -i or --incremental
Enables incremental test execution. A test installer [p. 11] for the current platform is
updated with the latest screens, actions and form components and executed

234

immediately. Because the files are taken from a previously built media file, the
compilation is very fast.

• -g or --debug
Create additional debug installers for each media file. For each built media file, a
directory named like the media file will be created in the media file output directory.

• -p or --preserve
Do not delete the temporary directory that the compiler uses for staging all files and
launchers.

• -w or --fail-on-warning
If a warning is printed and this option is specified, the build will fail at the end. It does
not fail immediately, so you can see all warnings and fix them all at once. The exit code
in this case is 2 instead of 1 for an actual error and 0 for a successful execution.

• -n or --faster
Disable LZMA and Pack200 compression. If you have enabled LZMA or Pack200
compression on the "General Settings->Media File Options" step, this allows you to create
development builds much faster, since LZMA and Pack200 are expensive compression
algorithms.

• -u or --disable-signing
Disable code signing. If you have configured code signing [p. 148], this allows you to skip
code signing for a build. In that case you do not have to enter the passwords for the
key stores.

• -j or --disable-bundling
Disable JRE bundling. If you have configured JRE bundles [p. 96] for any media files,
those bundles will not be used and the installer will be built without a contained JRE.
This speeds up the build and the installation.

• --win-keystore-password=<password>
Set the Windows keystore password for the private key that is configured for code
signing [p. 148]. If code signing is enabled for Windows media files and this option is not
set, the command line compiler will prompt you for the password.

• --mac-keystore-password=<password>
Set the macOS keystore password for the private key that is configured for code
signing [p. 148]. If code signing is enabled for macOS media files and this option is not
set, the command line compiler will prompt you for the password.

• --disable-notarization
Disable notarization of macOS media files. If you have enabled notarization for code
signing [p. 148] , this option allows you to skip notarization.

• -L or --license=<key>
Update the license key on the command line and exit. This is useful if you have installed
install4j on a headless system and cannot start the GUI. <key> must be replaced with
your license key. If you use floating licenses, replace <key> with FLOAT:server where
"server" is the host name or IP address where the floating license server is installed. For
floating licenses, you can choose the requested edition by passing --windows-edition
or --multi-platform-edition.

235

The config file that contains the license key has a platform-specific location:

• Windows: %LOCALAPPDATA%\install4j\v<version>\config.xml
• macOS: ~/Library/Application Support/install4j/v<version>/config.xml
• Linux/Unix: .config/install4j/v<version>/config.xml, the root directory may be

modified by the environment variable XDG_CONFIG_HOME

Note that you can also set the environment variable INSTALL4J_LICENSE_KEY to set
the license key just for the current invocation.

• -r <string> or --release=<string>
Override the application version defined in the "General Settings->Application Info" step.
<string>must be replaced with the actual version number. Version number components
can be alphanumeric and should be separated by dots, dashes or underscores.

• -d <string> or --destination=<string>
Override the output directory for the generated media files. <string>must be replaced
with the actual directory. If the directory contains spaces, you must enclose <string>
in quotation marks.

• -s or --build-selected
Only build the media files which have been selected in the install4j IDE. By default, all
media files are built regardless of the selection in the "Build" step.

• -b <list> or --build-ids=<list>
Only build the media files with the specified IDs. <list>must be replaced with a comma
separated list of numeric IDs. The IDs for media files can be shown in the install4j IDE by
choosing Project->Show IDs from the main menu. Examples would be:

-b 2,5,9
--build-ids=2,5,9

• -m or --media-types=<type>[,<type>]...
Only build media files of the specified type. <type> must be replaced with a media file
type recognized by install4j. To see the list of supported media types, execute

install4jc --list-media-types

. Examples would be:

-m win32,macos,macosFolder
--media-types=win32,macos,macosFolder

• -D <name>=<value>[,<name>=<value>]...
Override a compiler variable [p. 68] with a different value. You can override multiple
variables by specifying a comma separated list of name value pairs. <name> must be
the name of a variable that has been defined on the "General Settings->Compiler
Variables" step. The value can be empty.

236

To override the platform-specific value for a variable add the prefix windows:, macos:
or unix: before the variable name. To override a variable for a specific media file
definition, you can add the prefix ID: to specify the ID of the media file. The IDs for media
files can be shown in the install4j IDE by choosing Project->Show IDs from the main
menu.
Examples would be:

-D MYVARIABLE=15,OTHERVARIABLE=
-D windows:MYVARIABLE=winValue,macos:MYVARIABLE=macValue
"-D MYVARIABLE=15,OTHERVARIABLE=test,8:MEDIASETTITLE=my title"

A special system variable that you can override from the command line is sys.
languageId. sys.languageId must be set to the ISO code of the language displayed
in the language selection dialog and determines the principal installer language [p. 86]
for the project or the media file.

• -f <file> or --var-file=<file>
Load variable definitions from a file. This option can be used together with the -D option,
which takes precedence if a variable occurs twice. The file can contain

• variable definitions
One variable definition per line of the form NAME=VALUE.

• blank lines
blank lines will be ignored.

• comments
lines that start with # will be ignored.

The file is assumed to be encoded in the UTF-8 format. Should you require a different
encoding you can prefix the filename with CHARSET:, where CHARSET is replaced with
the name of the encoding.

Instead of a single variable file you can also specify a list of files separated by
semicolons. The optional charset prefix must be specified for each file separately.
Examples would be:

-f varfile.txt
--var-file=ISO-8859-3:varfile.txt
--var-file=one.txt;two.txt
--var-file=ISO-8859-3:one.txt;ISO-8859-1:two.txt

• -M or --list-media-types
Prints out a lists of supported media types for the --media-types option and quits.

237

E.2 Command Line Tool For Pre-Created JRE Bundles
To automate the creation of pre-created JRE bundles [p. 96], you can use the command
line utility createbundle[.exe] in the bindirectory of your install4j installation. The bundle
creation tool is invoked as follows:

createbundle [OPTIONS] [JRE home directory]

The available options are:

-h, --help Displays this help.
-o, --output Output directory, default is the current directory.
-v, --version=<VERSION> JRE version to be used in the bundle file name.
 The default is the version as reported by the JRE.
-i, --id Sets custom id for bundle file name.
 The default is the empty string.
-u, --unpacked Create bundle with unpacked JAR files as required
 for the macOS single bundle archive.
-r, --jdk-release Release of JDK that provides the JDK tools. Only
 =<RELEASE> required if the JRE does not contain the jlink tool
 and if the JRE version is 9 or higher. This is not a
 version number, but a release string as shown on the
 "JRE Bundles" step in the install4j IDE.
-p, --jdk-provider-id JDK provider ID for the JDK that is specified with
 =<ID> --jdk-release. By default, "Adoptium" is used.
-m, --add-modules Add a comma-separated list of modules to the JRE
 bundle. Can be passed more than once.
-s, --add-module-set Add a set of modules to the JRE bundle, either a
 =min|jre|all|none minimum set, a typical JRE, all modules, or none.
 The default is "jre".
-j, --add-jmod=<path> Add a JMOD file to the JRE bundle. Can be passed
 more than once.
-d, --add-jmod-dir Add a directory with JMOD files to the JRE bundle.
 =<path> Can be passed more than once.

There are Ant [p. 255] and Gradle [p. 239] tasks as well as a Maven Mojo [p. 246] tasks that
you can use to call this command line application from your build system.

238

E.3 Using Install4j With Gradle
You can execute the install4j compiler from gradle (1) with the install4j Gradle plugin. To
make the Gradle plugin available to your build script, you have to apply the install4j Gradle
plugin:

plugins {
 id "com.install4j.gradle" version "X.Y.Z"
}

If you do not want to use the Gradle plugin repository for this purpose, the Gradle plugin
is distributed in the file bin/gradle.jar.

The plugin has two parts: The global configuration with the top-level install4j {...}
configuration block and tasks of type com.install4j.gradle.Install4jTask.

The global configuration block can specify defaults for task properties that are applied
to all install4j tasks, for example, the optional install4j installation directory, if no
auto-provisioning is desired:

install4j {
 installDir = file("/path/to/install4j_home")
}

Task parameters

The install4j task supports the following parameters, many of which are explained in
greater detail for the command line compiler [p. 234].

GlobalRequiredDescriptionAttribute

YesNoThe install4j installation directory. If
this parameter is omitted, an

installDir

install4j installation with the same
version as the used plugin will be
auto-provisioned. Auto-provisioned
install4j distributions will be saved
under <Gradle use home>/
install4j/dist.

On macOS, the installation directory
is the path of the application
bundle, for example
/Applications/install4j.app.
The actual command line compiler
is located under /Applications/
install4j.app/Contents/
Resources/app/bin/install4j in
that case.

NoYesThe install4j project file that should
be built.

projectFile

(1) https://gradle.org

239

https://gradle.org

GlobalRequiredDescriptionAttribute

NoNoCorresponds to the --var-file
command-line option. Specify the

variableFiles

list of variable files with variable
definitions.

NoNoA map of variable definitions. These
definitions override compiler

variables

variables [p. 68] in the project and
correspond to the -D
command-line option. Definitions
with variable elements take
precedence before definitions in the
variable file referenced by the
variableFiles parameter.

The names of the variables must
have been defined on the "General
Settings->Compiler Variables" step.
The values can be of any type,
toString() will be called on each
value to convert the value to a
java.lang.String. For example:
[variableOne: "One",
variableTwo: 2].

NoNoCorresponds to the --release
command-line option. Enter a

release

version number like "3.1.2". Version
number components can be
alphanumeric and should be
separated by dots, dashes or
underscores.

NoNoCorresponds to the --destination
command-line option. Enter a

destination

directory where the generated
media files should be placed.

NoNoCorresponds to the --build-ids
command-line option. Enter a list

buildIds

of media file ids. The IDs for media
files can be shown in the install4j IDE
by choosing Project->Show IDs from
the main menu. For example: [12,
24, 36].

YesNo, verbose
and quiet

Corresponds to the --verbose
command-line option. Either true
or false.

verbose

cannot both
be true

240

GlobalRequiredDescriptionAttribute

YesCorresponds to the --quiet
command-line option. Either true
or false.

quiet

YesCorresponds to the --license
command-line option. If the license

license

has not been configured yet, you
can set the license key with this
attribute.

Note that you can also set the
environment variable
INSTALL4J_LICENSE_KEY to set the
license key just for the current
invocation.

YesNo, test and
incremental

Corresponds to the --test
command-line option. Either true
or false.

test

cannot both
be true

YesCorresponds to the --incremental
command-line option. Either true
or false.

incremental

YesNoCorresponds to the --debug
command-line option. Either true
or false.

debug

YesNoCorresponds to the --preserve
command-line option. Either true
or false.

preserve

YesNoCorresponds to the --faster
command-line option. Either true
or false.

faster

YesNoCorresponds to the
--disable-signingcommand-line
option. Either true or false.

disableSigning

YesNoCorresponds to the
--disable-bundling

disableBundling

command-line option. Either true
or false.

YesNoCorresponds to the
--win-keystore-password
command-line option.

winKeystorePassword

241

GlobalRequiredDescriptionAttribute

YesNoCorresponds to the
--mac-keystore-password
command-line option.

macKeystorePassword

YesNoCorresponds to the
--disable-notarization
command-line option.

disableNotarization

YesNoCorresponds to the
--build-selectedcommand-line
option. Either true or false.

buildSelected

YesNoCorresponds to the --media-types
command-line option. Enter a list

mediaTypes

of media types. To see the list of
supported media types, execute
install4jc --list-media-types.

YesNoA list of VM parameters for the
install4j command line compiler

vmParameters

process. For example:
["-DproxySet=true",
"-DproxyHost=myproxy",
"-DproxyPort=1234",
"-DproxyAuth=true",
"-DproxyAuthUser=buildServer",
"-DproxyAuthPassword=
iq4zexwb8et"] sets an HTTP proxy
that is required for code signing.

The "Global" column shows if a parameter can also be specified in the global install4j
{...} configuration block. Definitions in the task override global definitions.

Examples

Simple example:

install4j {
 installDir = file("/opt/install4j")
}
task media(type: com.install4j.gradle.Install4jTask) {
 projectFile = file("myProject.install4j")
}

More complex example:

242

if (!hasProperty("install4jHomeDir")) {
 File propertiesFile =
file("${System.getProperty("user.home")}/.gradle/gradle.properties")
 throw new RuntimeException("Specify install4jHomeDir in $propertiesFile")
}

boolean dev = hasProperty("dev")

install4j {
 installDir = file(install4jHomeDir)
 faster = dev
 disableSigning = dev
 winKeystorePassword = "supersecretWin"
 macKeystorePassword = "supersecretMac"

 if (dev) {
 mediaTypes = ["windows"]
 }
}

task media(type: com.install4j.gradle.Install4jTask) {
 dependsOn "dist" // example task that prepares the distribution for install4j

 projectFile = "myProject.install4j"
 variables = [majorVersion: version.substring(0, 1), build: 1234]
 variableFiles = ["var1.txt", "var2.txt"]
}

The "hello" sample project includes a Gradle build script that shows how to set up the
install4j task. To install the sample projects, invoke Project->Open Sample Project from
the install4j IDE. When you do this for the first time, the sample projects are copied to the
"Documents" folder in your home directory.

In the samples/hello directory, execute

gradle media

to start the build. If you have not defined install4jHomeDir in gradle.properties next
to build.gradle, the build will fail with a corresponding error message.

Configuration cache

By default, the install4j tasks in the install4j Gradle plugin are never up to date and will run
on every execution. This is because the task would have to perform a dry run to get a list
of input files.

However, once you add file inputs to the install4j task, regular up-to-date checking will
be done. File inputs are specified with method calls on the inputs property of a task:

task media(type: com.install4j.gradle.Install4jTask) {
 inputs.dir(stagingDir)
 inputs.files(file1, file2)
 ...
}

Then the task will be up to date if the inputs of its properties and your custom inputs are
up to date with respect to the last task execution. In this way you can use the Gradle
configuration cache which is otherwise supported by the install4j task.

243

Creating JRE bundles

To create a JRE bundle from your Gradle build script, use the com.install4j.gradle.
CreateBundleTask and and set its javaHome property to the JRE that you want to create
a bundle for.

The CreateBundleTask invokes the createbundle command line executable [p. 238] in the
install4j installation and has the following properties:

RequiredDescriptionAttribute

YesThe home directory of the JRE that should be
bundled

javaHome

NoCorresponds to the --output command-line
option.

outputDirectory

NoCorresponds to the --version command-line
option.

version

NoCorresponds to the--idcommand-line option.id

NoCorresponds to the--unpackedcommand-line
option.

unpacked

NoCorresponds to the --jdk-release
command-line option.

jdkRelease

NoCorresponds to the --jdk-provider-id
command-line option.

jdkProviderId

NoCorresponds to the --add-modules
command-line option.

addModules

NoCorresponds to the --add-module-set
command-line option.

addModuleSet

NoCorresponds to the--add-jmodcommand-line
option.

jmodFiles

NoCorresponds to the --add-jmod-dir
command-line option.

jmodDirs

NoLike the vmParameters property of the
Install4jTask

vmParameters

Example:

244

task createBundle(type: com.install4j.gradle.CreateBundleTask) {
 javaHome = "/usr/lib/jvm/jre-11/jre"
 outputDirectory = "/home/build/projects/myProject/jreBundles"
 version = "11"
 id="j3d"
 jmodDirs = ["jmods"]
 jmodFiles = ["one.jmod", "two.jmod"]
}

245

E.4 Using Install4j With Maven
You can execute the install4j compiler from maven (1) with the install4j Maven plugin.

The install4j maven plugin is available from the following repository:

<pluginRepositories>
 <pluginRepository>
 <id>ej-technologies</id>
 <url>https://maven.ej-technologies.com/repository</url>
 </pluginRepository>
</pluginRepositories>

Compile Mojo parameters

The compile Mojo supports the following parameters, many of which are explained in
greater detail for the command line compiler [p. 234].

RequiredDescriptionParameter

YesThe install4j project file that should be built.

User property of type java.io.File:
install4j.projectFile

projectFile

NoAttach generated installers. Uses the media file
ID as the classifier.

User property of type boolean: install4j.attach

attach

NoOnly build the media files with the specified IDs,
separated by commas.

Corresponds to the --build-ids
command-line option.

buildIds

User property of type java.lang.String:
install4j.buildIds

NoOnly build the media files which have been
selected in the install4j IDE.

Corresponds to the --build-selected
command-line option.

buildSelected

User property of type boolean:
install4j.buildSelected

NoCreate additional debug installers for each
media file.

Corresponds to the --debug command-line
option.

debug

User property of type boolean: install4j.debug

(1) https://maven.apache.org/

246

https://maven.apache.org/

RequiredDescriptionParameter

NoThe output directory for the generated media
files. By default, this is set to ${project.build.

destination

directory}/media, so this flag is always
passed to the install4j compiler.

Corresponds to the --destination
command-line option.

User property of type java.io.File:
install4j.destination

NoDisable JRE bundling.

Corresponds to the --disable-bundling
command-line option.

disableBundling

User property of type boolean:
install4j.disableBundling

NoDisable Notarization for macOS media files.

Corresponds to the --disable-notarization
command-line option.

disableNotarization

User property of type boolean:
install4j.disableNotarization

NoDisable code signing.

Corresponds to the --disable-signing
command-line option.

disableSigning

User property of type boolean:
install4j.disableSigning

NoIf a warning is printed and this option is
specified, the build will fail at the end.

Corresponds to the --fail-on-warning
command-line option.

failOnWarning

User property of type boolean:
install4j.failOnWarning

NoDisable LZMA and Pack200 compression.

Corresponds to the --faster command-line
option.

faster

User property of type boolean: install4j.faster

NoEnables incremental test execution. The
parameters "test" and "incremental" cannot
both be true.

Corresponds to the --incremental
command-line option.

incremental

247

RequiredDescriptionParameter

User property of type boolean:
install4j.incremental

NoThe location of the install4j installation. If not
specified, an install4j distribution with the same

installDir

version as this plugin will be auto-provisioned.
Auto-provisioned install4j distributions will be
saved under $HOME/.install4jDist.

User property of type java.io.File:
install4j.home

NoPass JVM arguments to the install4j command
line compiler.

jvmArguments

Noinstall4j license key. If the license has not been
configured yet, you can set the license key with
this attribute.

Corresponds to the --license command-line
option.

license

User property of type java.lang.String:
install4j.license

NoSet the macOS keystore password for the
private key that is configured for code signing.

Corresponds to the--mac-keystore-password
command-line option.

macKeystorePassword

User property of type java.lang.String:
install4j.macKeystorePassword

NoOnly build media files of the specified types,
separated by commas.

Corresponds to the --build-ids
command-line option.

mediaTypes

User property of type java.lang.String:
install4j.mediaTypes

NoPreserve the temporary staging directory.

Corresponds to the--preservecommand-line
option.

preserve

User property of type boolean: install4j.preserve

NoEnables quiet mode. The parameters "verbose"
and "quiet" cannot both be true.

Corresponds to the --quiet command-line
option.

quiet

User property of type boolean: install4j.quiet

248

RequiredDescriptionParameter

NoOverride the application version. By default, this
is set to ${project.version}, so this flag is

release

always passed to the install4j compiler unless
you set it to the special string #project.

Corresponds to the --release command-line
option.

User property of type java.lang.String:
install4j.release

NoSkip execution.

User property of type boolean: install4j.skip

skip

NoEnables test mode. In test mode, no media files
will be generated in the media file directory. The

test

parameters "test" and "incremental" cannot
both be true.

Corresponds to the --test command-line
option.

User property of type boolean: install4j.test

NoLoad variable definitions from files.

Corresponds to the--var-filecommand-line
option.

variableFiles

NoOverride compiler variables with different
values.

Corresponds to the -D command-line option.

variables

NoEnables verbose mode. The parameters
"verbose" and "quiet" cannot both be true.

Corresponds to the --verbose command-line
option.

verbose

User property of type boolean: install4j.verbose

NoSet the Windows keystore password for the
private key that is configured for code signing.

Corresponds to the--win-keystore-password
command-line option.

winKeystorePassword

User property of type java.lang.String:
install4j.winKeystorePassword

Example

A minimal example is:

249

<build>
 <plugins>
 <plugin>
 <groupId>com.install4j</groupId>
 <artifactId>install4j-maven</artifactId>
 <version>11.0.3</version>
 <executions>
 <execution>
 <id>compile-installers</id>
 <phase>package</phase>
 <goals>
 <goal>compile</goal>
 </goals>
 <configuration>

<projectFile>${project.basedir}/src/main/installer/myProject.install4j</projectFile>
 </configuration>
 </execution>
 </executions>
 </plugin>
 </plugins>
</build>

Compilation can be skipped by setting the install4j.skip property on the command
line:

mvn -Dinstall4j.skip

Using profiles for configuring parameters

If you do not wish to auto-provision an install4j installation, it is recommended to configure
the installation location in settings.xml with the install4j.home user property:

<profiles>
 <profile>
 <id>development</id>
 <properties>
 <install4j.home>/path/to/install4j</install4j.home>
 </properties>
 </profile>
</profiles>

<activeProfiles>
 <activeProfile>development</activeProfile>
</activeProfiles>

Further parameters that are recommended to be configured in settings.xml are the
license key and the passwords for code signing. The license key configuration is only
required if it was not configured manually in advance for the user that is running the build.

Note that you can also set the environment variable INSTALL4J_LICENSE_KEY to set the
license key just for the current invocation.

250

<profiles>
 <profile>
 <id>development</id>
 <properties>
 <install4j.license>CHANGEME</install4j.license>
 <install4j.winKeystorePassword>SECRET</install4j.winKeystorePassword>
 <install4j.macKeystorePassword>SECRET</install4j.macKeystorePassword>
 </properties>
 </profile>
</profiles>

<activeProfiles>
 <activeProfile>development</activeProfile>
</activeProfiles>

Passing the build class path to the project

A common use case is the need to add all dependency JAR files from the build class path
to the distribution tree. To do that, you first have to execute the "build-classpath" goal of
the "maven-dependency-plugin" to set a property with the class path:

<plugin>
 <artifactId>maven-dependency-plugin</artifactId>
 <version>3.1.2</version>
 <executions>
 <execution>
 <phase>generate-sources</phase>
 <goals>
 <goal>build-classpath</goal>
 </goals>
 <configuration>
 <outputProperty>my.classpath</outputProperty>
 </configuration>
 </execution>
 </executions>
</plugin>

In the configuration of the install4j plugin, you then pass this property as a compiler
variable:

<configuration>
 ...
 <variables>
 <externalClassPath>${my.classpath}</externalClassPath>
 </variables>
</configuration>

On the "Files->Define distribution tree" step in the install4j step, you can add entries of type
"Compiler variable" [p. 14]. This type of entry will split the variable value with a configurable
path separator and add all contained files. Continuing the above example, you have to
add a compiler variable entry with the compiler variable name "externalClassPath" and
the default path list separator ${compiler:sys.pathlistSeparator} to add all the
dependency JAR files to the selected location in the distribution tree.

Attaching media files

Media files compiled by install4j can be attached to the Maven project when the "attach"
parameter is set to true.

251

Attached files will be installed into the local repository and will also be deployed. The
classifier for each deployed media file is the media file ID.

Creating JRE bundles

To create a JRE bundle from your Maven build, use the createbundle Mojo and set its
javaHome property to the JRE that you want to create a bundle for.

The createbundle Mojo supports the following parameters, many of which are explained
in greater detail for the command line compiler [p. 234].

RequiredDescriptionParameter

YesThe home directory of the JRE that should be
bundled.

User property of type java.io.File:
install4j.bundleJavaHome

javaHome

NoAdd a set of modules to the JRE bundle, one of
"MIN", "JRE", "ALL", "NONE". Corresponds to the
--add-module-set command-line option.

User property of type com.install4j.
buildtools.ModuleSet: install4j.addModuleSet

addModuleSet

NoComma-separated list of modules to be added
to the JRE bundle. Corresponds to the
--add-modules command-line option.

User property of type java.lang.String:
install4j.addModules

addModules

NoOptional custom ID for the bundle. Corresponds
to the --id command-line option.

User property of type java.lang.String:
install4j.bundleId

id

NoThe location of the install4j installation. If not
specified, an install4j distribution with the same

installDir

version as this plugin will be auto-provisioned.
Auto-provisioned install4j distributions will be
saved under $HOME/.install4jDist.

User property of type java.io.File:
install4j.home

NoJDK provider ID for the JDK that is specified with
jdkRelease. Corresponds to the
--jdk-provider-id command-line option.

User property of type java.lang.String:
install4j.jdkProviderId

jdkProviderId

NoRelease of a JDK that provides the JDK tools.
Required only if the bundled JRE does not

jdkRelease

252

RequiredDescriptionParameter

contain the jlink tool. Corresponds to the
--jdk-release command-line option.

User property of type java.lang.String:
install4j.jdkRelease

NoDirectories with JMOD files to be added to the
JRE bundle. Corresponds to the--add-jmod-dir
command-line option.

jmodDirs

NoJMOD files to be added to the JRE bundle.
Corresponds to the--add-jmodcommand-line
option.

jmodFiles

NoPass JVM arguments to the install4j command
line compiler.

jvmArguments

NoOutput directory for the bundle. Corresponds
to the --output command-line option.

User property of type java.io.File:
install4j.bundleOutputDir

outputDirectory

NoSkip execution.

User property of type boolean: install4j.skip

skip

NoCreate a bundle with unpacked JAR files,
required for macOS single bundle archives.

unpacked

Corresponds to the--unpackedcommand-line
option.

User property of type boolean:
install4j.bundleUnpacked

NoJRE version to be used, if different from the
detected version. Corresponds to the--version
command-line option.

User property of type java.lang.String:
install4j.bundleVersion

version

An example that shows the usage of this Mojo is:

253

<build>
 <plugins>
 <plugin>
 <groupId>com.install4j</groupId>
 <artifactId>install4j-maven</artifactId>
 <version>11.0.3</version>
 <executions>
 <execution>
 <id>create-jre-bundle</id>
 <phase>package</phase>
 <goals>
 <goal>createbundle</goal>
 </goals>
 <configuration>
 <javaHome>/usr/lib/jvm/jre-11/jre</javaHome>
 <outputDirectory>/home/build/projects/myProject/jreBundles</outputDirectory>

 <jmodFiles>
 <param>one.jmod</<param>
 <param>two.jmod</<param>
 </jmodFiles>
 </configuration>
 </execution>
 </executions>
 </plugin>
 </plugins>
</build>

254

E.5 Using Install4j With Ant
To integrate install4j with your Ant script (1) use the Install4JTask that is provided in
$INSTALL4J_HOME/bin/ant.jar and set theCreateBundleTask projectFile parameter
to the install4j project file that you want to build.

To make the install4j task available to Ant, you must first insert a taskdef element that
tells Ant where to find the task definition. Here is an example of using the task in an Ant
build file:

<taskdef name="install4j"
 classname="com.install4j.Install4JTask"
 classpath="C:\Program Files\install4j\bin\ant.jar"/>

<target name="media">
 <install4j projectFile="myapp.install4j"/>
</target>

On macOS, the ant.jar file is inside the application bundle, for the default application
directory the full path is /Applications/install4j.app/Contents/Resources/app/bin/
ant.jar

The taskdef definition must occur only once per Ant build file and can appear anywhere
on the top level below the project element.

Note that it is possible to copy the ant.jar archive to a location outside the install4j
installation directory. In that case, an install4j installation with the same version as the
ant.jar file will be auto-provisioned. Auto-provisioned install4j distributions will be saved
under $HOME/.install4jDist.

Task parameters

The install4j task supports the following parameters:

RequiredDescriptionAttribute

YesThe install4j project file that should be built.projectFile

No, verbose
and quiet

Corresponds to the --verbose command-line
option. Either true or false.

verbose

cannot both be
trueCorresponds to the --quiet command-line

option. Either true or false.
quiet

Corresponds to the --fail-on-warning
command-line option. Either true or false.

failOnWarning

YesCorresponds to the --license command-line
option. If the license has not been configured

license

yet, you can set the license key with this
attribute.

Note that you can also set the environment
variable INSTALL4J_LICENSE_KEY to set the
license key just for the current invocation.

(1) https://ant.apache.org

255

https://ant.apache.org

RequiredDescriptionAttribute

No, test and
incremental

Corresponds to the --test command-line
option. Either true or false.

test

cannot both be
trueCorresponds to the --incremental

command-line option. Either true or false.
incremental

NoCorresponds to the --debug command-line
option. Either true or false.

debug

NoCorresponds to the--preservecommand-line
option. Either true or false.

preserve

NoCorresponds to the --faster command-line
option. Either true or false.

faster

NoCorresponds to the --disable-signing
command-line option. Either true or false.

disableSigning

NoCorresponds to the--win-keystore-password
command-line option.

winKeystorePassword

NoCorresponds to the--mac-keystore-password
command-line option.

macKeystorePassword

NoCorresponds to the --disable-notarization
command-line option.

disableNotarization

NoCorresponds to the --release command-line
option. Enter a version number like "3.1.2".

release

Version number components can be
alphanumeric and should be separated by dots,
dashes or underscores.

NoCorresponds to the --destination
command-line option. Enter a directory where
the generated media files should be placed.

destination

NoCorresponds to the --build-selected
command-line option. Either true or false.

buildSelected

NoCorresponds to the --build-ids
command-line option. Enter a list of media file

buildIds

ids. The IDs for media files can be shown in the
install4j IDE by choosing Project->Show IDs from
the main menu.

NoCorresponds to the --media-types
command-line option. Enter a list of media

mediaTypes

types. To see the list of supported media types,
execute install4jc --list-media-types.

256

Contained elements

• The Install4JTask can contain variable elements. These elements override compiler
variables [p. 68] in the project and correspond to the-Dcommand-line option. Definitions
withvariableelements take precedence before definitions in the variable file referenced
by the variablefile parameter.

The variable element supports the following parameters:

RequiredDescriptionAttribute

YesThe name of the variable. This must be the
name of a variable that has been defined

name

on the "General Settings->Compiler
Variables" step.

YesThe value for the variable. The value may
be empty.

value

NoThe ID of the media file for which the
variable should be overridden. The IDs for

mediaFileId

media files can be shown in the install4j
IDE by choosing Project->Show IDs from
the main menu.

Example:

<install4j projectFile="myapp.install4j">
 <variable name="MY_VARIABLE" value="15"/>
 <variable name="OTHER_VARIABLE" value="test" mediaFileId="8"/>
</install4j>

• The install4j task can contain variablefile elements. These elements read text
files containing compiler variables definitions. They correspond to the --var-file
command-line option

The variablefile element supports the following parameters:

RequiredDescriptionAttribute

YesThe path of the variable
file.

file

• The install4j task can contain vmParameter elements. These elements set VM
parameters for the install4j command line compiler process.

The vmParameter element supports the following parameters:

RequiredDescriptionAttribute

YesThe value of the VM parameter.value

Example for setting an HTTP proxy (an internet connection is required for Windows code
signing):

257

<install4j projectFile="myapp.install4j" winKeystorePassword="Kajjs7sgLg22">
 <vmParameter value="-DproxySet=true"/>
 <vmParameter value="-DproxyHost=myproxy"/>
 <vmParameter value="-DproxyPort=1234"/>
 <vmParameter value="-DproxyAuth=true"/>
 <vmParameter value="-DproxyAuthUser=buildServer"/>
 <vmParameter value="-DproxyAuthPassword=iq4zexwb8et"/>
</install4j>

Complete example

The "hello" sample project includes an Ant build script that shows how to set up the install4j
task. To install the sample projects, invoke Project->Open Sample Project from the install4j
IDE. When you do this for the first time, the sample projects are copied to the "Documents"
folder in your home directory.

In the samples/hello directory, execute

ant media

to start the build. If you have not defined install4jHomeDir in build.xml, the build will
fail with a corresponding error message.

Creating JRE bundles

To create a JRE bundle from your Ant build script, use the CreateBundleTask that is
provided in $INSTALL4J_HOME/bin/ant.jar and set the javaHome parameter to the JRE
that you want to create a bundle for.

The CreateBundleTask invokes the createbundle command line executable [p. 238] in the
install4j installation. Just like for the Install4JTaskabove, a taskdef element is required:

<taskdef name="createbundle"
 classname="com.install4j.CreateBundleTask"
 classpath="C:\Program Files\install4j\bin\ant.jar"/>

<target name="media">
 <createbundle javaHome="c:\Program Files\Java\jre"/>
</target>

The CreateBundleTask task supports the following parameters:

RequiredDescriptionAttribute

YesThe home directory of the JRE that should be
bundled

javaHome

NoCorresponds to the --output command-line
option.

outputDirectory

NoCorresponds to the --version command-line
option.

version

NoCorresponds to the--idcommand-line option.id

258

RequiredDescriptionAttribute

NoCorresponds to the--unpackedcommand-line
option.

unpacked

NoCorresponds to the --jdk-release
command-line option.

jdkRelease

NoCorresponds to the --jdk-provider-id
command-line option.

jdkProviderId

NoCorresponds to the --add-modules
command-line option.

addModules

NoCorresponds to the --add-module-set
command-line option.

addModuleSet

The CreateBundleTask task can contain vmParameter elements like the Install4JTask
as well as jmod elements with the following parameters:

RequiredDescriptionAttribute

Either file or dir
must be set,
but not both

Corresponds to the--add-jmodcommand-line
option.

file

Corresponds to the --add-jmod-dir
command-line option.

dir

Example:

<createbundle javaHome="/usr/lib/jvm/jre-11/jre"
 outputDirectory="/home/build/projects/myProject/jreBundles"
 version="11"
 id="j3d">
 <jmod dir="/home/build/projects/myProject/jmods">
 <jmod file="/home/build/projects/myProject/otherJmods/one.jmod">
 <jmod file="/home/build/projects/myProject/otherJmods/two.jmod">
</createbundle>

259

	Introduction
	Concepts
	Projects
	Building projects
	Distributing files
	File sets and components
	Screens and actions
	Scripts
	Generated launchers
	Form screens
	Layout groups
	Styles
	Look & feel
	Variables
	Localization
	VM parameters
	JRE bundles
	Services
	Elevation of privileges
	Merged projects
	Auto-update functionality
	Checking for updates
	Background auto-updates
	Version numbers
	Media files
	Data files
	Code signing
	Apple App Store Submission
	Styling of DMGs on macOS

	Configuring installer beans
	Screens & actions step
	Custom code
	Configuring applications
	Configuring screens
	Configuring actions
	Configuring groups
	Configuring form components
	Configuring layout groups
	Configuring styles

	Generated installers
	Installer modes
	Command-line options
	Response files
	JRE search
	HTTP requests
	Updates
	Error handling

	API
	Installer API
	Launcher API
	Extensions

	Command line tools
	Command line compiler
	Pre-Created JRE Bundles
	Gradle plugin
	Maven plugin
	Ant task

