@Jtechnologies

®

The definitive guide to install4j

Building professional installers on the JVM

© 2025 ej-technologies GmbH. All rights reserved.

Index

Introduction 4
A Concepts 5
Al Projects 5
A.2 Building projects 1
A.3 Distributing files 14
A4 File sets and components 2]
A.5 Screens and actions 25
A.6 Scripts 30
A.7 Generated launchers 41
A.8 Form screens 51
A.9 Layout groups 56
A.10 Styles 60
Al Look & feel 66
A2 Variables 68
A3 Localization 86
Al4 VM parameters 91
A5 JRE bundles 96
A.16 Services 102
A.17 Elevation of privileges 107
A.18 Merged projects 13
A9 Auto-update functionality 119
A.20 Checking for updates 124
A.21 Background auto-updates 130
A.22 Version numbers 134
A.23 Media files 137
A.24 Data files 144
A.25 Code signing 148
A.26 Apple App Store Submission 153
A.27 Styling of DMGs on macOS 156
B Configuring installer beans 160
B.1 Screens & actions step 160
B.2 Custom code 165
B.3 Configuring applications 167
B.4 Configuring screens 176
B.5 Configuring actions 182
B.6 Configuring groups 195

B.7 Configuring form components 198

B.8 Configuring layout groups 204
B.9 Configuring styles 208
C Generated installers 210
C.1 Installer modes 210
C.2 Command-line options 212
C.3 Response files 217
C.4 JRE search 219
C.5 HTTP requests 220
C.6 Updates 222
C.7 Error handling 224
D API 226
D.1Installer API 226
D.2 Launcher API 230
D.3 Extensions 232
E Command line tools 234
E.1 Command line compiler 234
E.2 Pre-Created JRE Bundles 238
E.3 Gradle plugin 239
E.4 Maven plugin 246

E.5 Ant task 255

Introduction To Install4j

What is install4j?

install4j is a professional tool for building installers for multiple platforms, especially for
applications that run on the Java Virtual Machine.

Main features that distinguish install4j are:

+ Flexible configuration of screens and actions

In your installers you can define your own flow of installer screens and installer
actions [p. 25| to gather user input and initialize your installation with it. Configurable
form screens [p. 51] allow you to create arbitrary forms that work in GUI and console
mode [p. 210]. A rich set of configurable actions handles a variety of tasks and is
extensible with the API [p. 226].

« Generation of native launchers

install4j generates native launchers for console, GUI and service executables [p. 102].
These launchers offer variety of features such as flexible module and classpath
configuration, version-specific VM parameters [p. 91, icons, splash screens and much
more. At runtime, there is launcher API [p. 230] that interacts with some of these features
and with the variable system of the installer.

+ Auto-update functionality

The requirements for automatic updates [p. 119] are very individual, so install4j offers a
template-base mechanism for update-downloaders. Update downloaders are fully
configurable installer applications with their own flow of screens and actions, that can
handles interactive auto-update, mandatory auto-update at startup and background
update.

+ Bundling of Java Runtime Environments

Bundling a Java runtime [p. 96] is made easy with the pre-build JRE bundles and the
bundle creation tools in install4j. JRE bundles can also be downloaded on the fly if no
JRE installation is found.

The install4j Ul is delivered as a desktop application. Building installers is not only possible
in the IDE, but also with the command line compiler [p. 234] as well as the plugins for
Gradle [p. 239], Maven [p. 246] and Ant [p. 255].

How do | continue?

The "Concepts” section is intended to be read in sequence, with later help topics building
on the content of previous ones. The sections at the end are optional readings that should
be consulted if you need certain features.

We appreciate your feedback. If you feel that there's a lack of documentation in a certain
area or if you find inaccuracies in the documentation, please don't hesitate to contact us
at support@ej-technologies.com.

mailto:support@ej-technologies.com

A Concepts

A.1Projects Overview

Project files

A project in install4j is the collection of all information required to build media files, the
deliverables that can be distributed to the target platforms. A project is saved to a single
XML file with an . i nstal | 4] extension. Project files are platform-independent, you can
open and compile them on any supported platform. The compilation step will produce
the media files from the project definition. All paths that you enter in install4j are saved
as absolute paths by default. This allows you to move the project file to a different location
on your computer, and the compilation will still work. If you wish to use your project file on
multiple computers or platforms or compile your launchers with automatic build agents,
itis more convenient to use relative paths. On the "General Settings->Project Options” step,
install4j provides an option to convert all paths to relative paths when you save your
project.

install4j keeps a list of recently opened projects under Project->Reopen. By default, install4j
opens the last project on startup. This behavior can be changed in the preferences dialog
by choosing Project->Preferences from the main menu. You can pass the name of a project
file as a command line parameter to install4j to open it on startup. Also, the command
line compiler [p. 234] expects the project file name as its argument.

Contents of a project

The following paragraphs give a high-level overview of the elements that you can configure
ininstall4j. Each of the configuration sections in install4j as shown in the screenshots below
represents a top-level concept in install4j.

Typically, a project defines the distribution of a single application. An application has an
automatically generated application ID [p. 222] that allows installers to recognize previous
installations.

At the core of the project definition is the sequence of installer screens and actions [p. 25].
They determine what the users see, what information they can enter and what the installer
does. install4j offers a lot of flexibility regarding the configuration of your installer. Besides
creating traditional application installers, install4j is equally suited to create small
applications that modify the target system in some way.

O [N f A
g (i)

Save

Project

% 5 ® & 0

Dry Test Stop Show
Run Installer Build IDs

o BRI -
Build
Project

New
Project

Open
Project

Project
Report

Undo Redo Help

Screens & Actions

7

General Settings

In this step, you configure the screens and actions that are displayed in the installer and
uninstaller, updater and in custom applications. Install4j offers a rich set of screens and

Files
Define Distribution Tree b Installer (8 screens) (1D instal.. | ConfigEAtIoN
e File [Default]
View Results =\ Startup (2 actions) b4 Excluded variables specialUserAccount
File Options _-83‘ Welcome (1 action) [ID 47] o) Ove.rwn'te st.rategy Do not overwrite comma...
X Register variables for ...
. Load a response file [ID ...
Installation Components — Error Handling
#* Installation location (2 acti... g Failure strategy Continue on failure
g Launchers 4k Installation components [ID. Error message
T D5 Control Flow
% Create program group (ID 5 Condition expression context.getBooleanVariable
Installer @ Query greeting [Form] [ID 73] Rollback barrier
. g Senvice options [Form] [ID 1 Can be executed mult...
4 Screens & Actions E i X yb Privileges
Styles Installation (13 actions) [ID Action elevation type Inherit from parent [Do
"3 Finish (1 action) (1D 60]
Load a response file
Look & Feel t Uninstaller (5 screens) [ID uni

Load a response file that has previously been saved

Custom Code with the "Create a response file" action.

@‘ Standalone update downloade.... o
o

#5% Backaround update download...

lindate Ontinnc

Idle

The install4j runtime is localized into many languages. You can configure your installers
to support one or multiple languages [p. 86].

2 ®mH o - (2]
Ao o o & & = d
v
New Open Save Project o . Buid Dy Test Stop show
Project Project Project Report Project Run Installer Build Ds
General Settings Languages \N 7

In this step, you can specify the languages that the generated installers should support.

Application Info Your installers can have a fixed language or they can be multi-language installers.

4 JRE Bundles
Principal language:

MK 7

Custom localization file: 4

English [en]
Search Sequence

Languages

Media File Options Choose additional languages for the installer:

Language Custom localization file
Code Signing guag 0 +
French [fr]
Compiler Variables Italian [it]
Merged Projects Polish [pl]
Project Options
Files
If you define additional languages, the installer will ask the user to choose a language with the default
Launchers . .
selection set according to the system locale.
Skip language selection dialog if auto-detected locale matches a supported language @
Installer Language selection always in principal language @
Idle

Most installers install files to a dedicated directory and optionally to several existing
directories on the target computer. That's what the "Files" section [p. 14] in the install4j IDE
is for. Here, you define a "distribution tree”, and optionally “installation components” which
can also be downloaded on demand [p. 144].

.') * H 28]
O s op
M 0 O o % 5 @ Ll O
New Open Save Project . . Build Dry Test Stop Show Help
Project Project Project Report Project Run Installer Build IDs
3 General Settings Define Distribution Tree P4
v
In this step, you collect all files and directories that you would like to distribute with your
Fil media files. Use drag and drop to move entries in the definition tree.
iles
Define Distribution Tree @ Default file set r
/¥ Installation directory
View Results bin
File Options classes .
Content of \build
Installation Components source
Content of .\src
9 Launchers @ VM options (1D 1148] >
¥ Installation directory
M ${installervmoptionsTargetDirectory}
Installer File .\vmoptions\hello.vmoptions (overwrite: never)
" Media
Build
2
&
Idle)

The actual installation of these files is handled by the “Install files” action which is part of
the default project template. If your installers should not install any files, you can remove
that action and ignore the "Files" configuration section. When the "“Install files” action is
executed, it creates an uninstaller. The uninstaller offers the same flexibility as the installer
and is configured in the same way.

Unless the installed files are only static data, you will need application launchers to allow
the user to start your application. You can define one or several application launchers in
the "Launchers” section [p. 41]. Launchers generated by install4j have a rich set of
configuration options including an optional splash screen or advanced features like a
single instance mode. Configured launchers can also be "services" that run independently
of logged-on users. install4j offers special installation screens and actions for services.

> = H ; | o
O o, 2)
M 0 O o ® » @ & X
New Open Save Project . Buid Dy Tet stop | show Edit Rename | Delete Cop
Project Project Project Report Project Run Installer Build Ds Launcher Launcher | Launcher Launche
—_—
jl General Settings Launchers \N 7

In this step, you can configure one or more executables to launch your application. Use

Files drag and drop to reorder your launchers in the list.

9 Launchers 9 @-

New launcher Hello World Command Line [ID 4]

e s

. Media Hello World GUI [ID 5] Hello World Service [ID 19]

Installer

(S)

@' Build

Idle)

install4j has many advanced features concerning bundling of JREs or the runtime-detection
of aninstalled JRE. Bundling of JREs [p. 96] is configured on the "JRE bundles” step and can
be refined on a per-media file basis. If you do not wish to bundle a JRE, you define Java
version constraints and a search sequence [p. 41] for both your installers and your
generated launchers. In this way, you ensure that the launchers run with the same JRE as
your installers.

O 'S 24]
H, o T } o N » M c)
New Open Save Project . . Build Dry Test stop Show Help
Project Project Project Report Project Run Installer Build IDs
- .
« | General Settings Search Sequence Without Bundled JRE
H d A 304

For media files without a bundled JRE, you can define version requirements and a search
Application Info sequence for the JRE that will be used to run the installers and the generated launchers.

4 JRE Bundles

Java Version 7]
Search Sequence
Minimum version: = 11 (N 7]
Languages
Maximum version: > @

Media File Options
Allow JREs with a beta version number &)

Code Signing
. . JRE S h S
Compiler Variables earch sequence 7]
. Previous installations +
Merged Projects 5 Search Windows registry and standard locations
Project Options A Environment variable JAVA_HOME

A Environment variable JDK_HOME

Files
9 Launchers

Installer

Idle)

Finally, the media file definitions define the actual executables that you distribute. They
capture platform-specific information and provide several ways to override project settings.
You typically define one media file for each platform. Multiple media files for the same
platform can be added as needed. Media files are either installers or archives. Archives
simply capture the launchers and the distribution tree. They are a limited way to create
a distribution and might not be suitable if you rely on the flexibility that is offered by
installers.

O 'S

General Settings

2l

Files

e 24]

H o © 5 B » d ©

New Open Save Project Bu.lld Dry Test Show Help

Project Project Project Report Project Run Installer IDs
Media

In this step, you can configure media files for various platforms to distribute your
application. Use drag and drop to reorder your media files in the list.

Launchers > =L
9 &) AE
New media file Windows 64-bit [ID 463]
= Installer
. ; Media Linux RPM [ID 9] Linux Deb Archive [ID 1677]

= =+,
55 Build | 4
e macOS Folder [ID 11] macOS Single Bundle Archive [ID 2060]

Unix Installer [ID 12]

Idle)

Project reports

install4j projects can become quite complex, especially the definition of the installer can
be very hierarchical with hundreds of nested elements each of which may have important
configuration in their properties. To check all your project settings on a single page, or to
print out your project definition, install4j offers a project report. The @ action to create
such areportis available in the toolbar. When you generate a report, an HTML file is written
to disk together with a directory named i nst al | 4j _i mages that holds all referenced
image files.

If you are looking for certain text value in a property or a particular piece of code in one
of your scripts, use the search functionality in the browser when viewing the exported
report to cover all parts of the project.

IDs of project elements

All elements in projects that can be referenced at runtime, like installation components,
launchers, screens, actions, form components or media files have an automatically
assigned ID. You can toggle the display of IDs globally in the toolbar. You may need to use
IDs when using the APl in scripts. Scripts are written in plain Java in a code editor provided
by install4j.

(o] > e, 24]
o B w5 z|| @
New Open Project Build Dry Test show | .
Project Project Report Project Run Installer Ds P
e . .
gl General Settings Application Info y 4

If you would rather not reference automatically generated IDs in your scripts, you can
specify your own custom IDs. Custom IDs can be assigned by using the "Rename” action
for the selected element and selecting the "Custom ID" check box in the rename dialog.
Custom IDs must not start with a number. The numeric internal ID is never discarded. If
you disable the custom ID at a later point, the ID will be reverted to the previous numeric
ID.

Rename X
Please enter a name for the component:

Hello World Application »

Custom ID: | helloApp

The "Insert ID" action in the script editor inserts custom IDs instead of the numeric IDs. All
get. .. Byl d() methods in the APl accept both the custom ID and the internal numeric ID.

This means that you can set a custom ID without breaking anything in the project.

p
Select ID of Configuration Component X

Available IDs:

File sets
Installation components

Hello World Application [ID helloApp]

-t Source Files [ID 41]
Launchers
Applications, Screens & Actions

Filter: Q-

o o e

Undo in all views

All changes in the install4j IDE can be undone with the undo toolbar button. The arrow on
the right side opens a list of changes in a popup menu for inspection. Selecting one of
these entries undoes all changes up to anincluding the selected change. The same feature
is available for redoing undone changes.

o mHo[Pc & & 5 0 Ele

New Open Save Project . Build Dry Test Stop Show

] y ¥ Undo Redo ; Help
Project Project Project Report Project Run Installer Build IDs
Changed property "Condition expression” of "Load a response file" action
General Settings Renamed installation component \N £
Added additional language taller and

Files Added additional language zens and

Added additional language
Define Distribution Tree ¥ installer (8 screens) [ID install +

Configuration

10

A.2 Building Projects

You can build a project from the IDE or from the command line. The command line compiler
executable is bi n/i nst al | 4] c and takes the project name as an argument. On macOs,
that directory is inside the application bundle and can be shown in the Finder with the
"Tools" toolbar button. That same toolbar button also allows you to create symlinks for all
command line tools in/ usr /1 ocal / bi n so they can be directly invoked in a terminal.

There are plugins for Gradle [p. 239], Maven [p. 246] and Ant [p. 255] for configuring the build
in a way that is idiomatic for the respective build systems. In the end, all plugins invoke
the command line compiler and for each command line compiler option there is a
corresponding setting in the build system plugins.

When you start a build, install4j will check if all required information has been entered. If
the build has been started from the install4j IDE, the corresponding step will be activated,
and the offending setting will be focused, so it is recommended to try out your builds in
the IDE first.

Build modes

There are three different build modes that correspond to different toolbar buttons in the
install4j IDE or different command-line options in the command line compiler.

O 'S 24 i
0 B B »] ©
New Open Project Build Dry Test Show
Project Project Report Project Run Installer IDs

v . -
é] General Settings Application Info -

When a % regular build is started, the media files [p. 137] are built and placed in the media
file output directory that is configured on the "General Settings->Media File Options” step.

Previous media files are overwritten, but a single build may not produce the same media
file twice. On the "Customize project defaults->Media file name” step of the media wizard,
you can adjust the media file name if the global pattern resolves to the same name for
multiple media files. You can also use a compiler variable [p. 68] for the media file output
directory and override it for each media file to avoid name clashes.

Media Wizard - Windows X
1. Media file type Customize name for media file
2. Installer options
3. Data files You can override the name of the media file that was defined in the general settings
4. Executable processing step of install4j. If unsure, choose the standard name option.
5. Bundled JRE
undie X . Standard name
6. Customize project defaults
© Custom name

+ Compiler variables myCustomFileName » Copy Default

+ Media file name

« Principal language

« Exclude components

« Downloadable components

« Exclude files

« Exclude launchers

« Exclude installer elements

« Look & Feel

« Auto-update options
7. Finished

@ Help 4 Back Next » Finish Cancel

il

If you just want to check if the build will not produce any errors or warnings, you can start
a 4 dry run. The media files will be built in the temporary directory but not moved to their
final location. For command line builds, use the - - t est option.

Building media files can take a long time, especially if you package a lot of files that have
to be collected and compressed. To facilitate faster development, install4j offers to » build
an installer incrementally. The corresponding command-line option is - -i ncr enent al .

This build mode is intended for testing changes that you make in the installer
configuration [p. 160] such as adding, removing or modifying screens, actions and form
components.

The action looks for the first media file in the "Media" step that can be run on the current
platform and has an installer media file type [p. 137]. The media file must be already built,
otherwise the action will terminate with an error message.

All scripts are recompiled and the installer configuration files are regenerated. The installed
files are taken from the full build of the media file. If you change the definition of the
distribution tree [p. 14] and expect to see these changes in the installer, you have to rebuild
the media file with a regular build.

When the build is complete, the installer is started, so you can try out your changes
immediately. With respect to a full build, the compilation time is reduced substantially,
typically to a couple of seconds. A full build can take several minutes, depending on the
number of files that are included and the selected type of compression.

Selective building of media files

Instead of building all media files, you can build only a subset by explicitly selecting the
desired media files on the "Build” step.

Build <
In this final step of your install4j configuration, the launchers and the media files are built. Please adjust the build options as
needed.
:3. Build Options &) Build Selection
Sta:;u’\d Enable extra verbose output ?) Build all 2 & Windows 64-bit
Do not delete temporary directory ?) © Build selected: 2 F8 Linux RPM
. . Linux Deb Archi
e Disable LZMA and Pack200 compression &) 8 Linux Deb Archive
E e v] + macOS Folder

Disable code signing 7 5 macOs Single Bundle Archive
Disable JRE bundling % Unix Installer

Dry Run

Create additional debug installer

7
7

Build output:

This selection is persistent, but the command line build will still build all media files unless
you pass the - - bui | d- sel ect ed option. This allows you to build a suitable media file in
the IDE for testing without impacting the command line build on your build server.

To specify media files from the command line, pass the - -bui I d-ids=I1 D[, | D] or the
--nmedi a-t ypes=T[, T] option. IDs of media files are visible in the "Media" step if the "Show
IDs" toolbar toggle button is selected. Selecting media files by their media type ID is useful

12

if you build different media files on different platforms. The --1i st-nedi a-types
command-line option prints the full list of supported media types and exits.

Faster builds during development

During development, you can speed up your build by compromising on the size of the
produced media files. By switching off LZMA and Pack200 compression?p. 137], builds times
can be reduced by 50% and more. By disabling JRE bundling, the generated installer will
start up faster, because the JRE does not have to be unpacked. Finally, disabling code
signing will prevent dialogs that ask for keystore passwords from being shown.

Build Options
Enable extra verbose output

Do not delete temporary directory

Disable LZMA and Pack200 compression
Disable code signing

Disable JRE bundling

COO0OO0OO

Create additional debug installer

All these options for making builds faster are also available for the command line compiler,
the corresponding options are --faster for disabling advanced compressions,
- di sabl e- bundl i ng forignoring JRE bundles and - - di sabl e- si gni ng for building without
code signing.

Trouble-shooting build failures

By default, basic progress information is shown in the build output and warning messages
are highlighted. Any error will stop the build, and the command line compiler will exit with
a non-zero return code. For debugging purposes, there are two options that give access
to more detailed information.

Build Options

Enable extra verbose output

Do not delete temporary directory

Disable LZMA and Pack200 compression
Disable code signing

Disable JRE bundling

CQOO0OO0O O

Create additional debug installer

With the - -verbose option, install4j prints more information about interesting events
during the build. For example, all compiler variable replacements are shown in detail. If
the source of an error message is not clear, switching on verbose mode can give you
more context about the compilation phase that caused the failure. In addition, a
compilation failure that occurs while verbose mode is enabled will print the entire stack
trace to the build output.

Secondly, the install4j compiler prepares its artifacts in a temporary directory which is
deleted after the build completes. With the - - preser ve option you can ask install4j to
keep this temporary directory so that you can inspect intermediate artifacts.

13

A.3 Distributing Files

In the "Files” step of the install4j IDE, you define your distribution tree, collecting files from
different places to be distributed in the generated media files. In addition, you can optionally
define installation components.

On the "Define Distribution Tree" step, you add and edit the structural elements that make
up the distribution tree. You can create your own directory structure and "mount” directories
from your file system or add single files into arbitrary directories. With drag and drop and
double-clicking on nodes you can modify an existing distribution tree.

Define Distribution Tree L G 4

In this step, you collect all files and directories that you would like to distribute with your media files. Use drag and drop to move
entries in the definition tree.

@ Default file set
/¥ Installation directory
bin
classes
Content of .\build
source
Content of .\src
@ VM options (1D 1148)
/7 Installation directory
M $finstaller.vmoptionsTargetDirectory}
File .\vmoptions\hello.vmoptions (overwrite: never,

On the "View Results” step, you then see the actual file tree as it will be collected and
distributed by the generated media files [p. 137]. Go to this step to check whether your
actions on the "Define Distribution Tree" step actually produce the desired results.

View Results L G 4

In this step, you can check whether the definition of the distribution tree is correct. The tree shows a read-only representation of
all distributed files.

Files in distribution tree:

@ Default file set ()
/¥ Installation directory
bin
[Launcher] hello_cli
[Launcher] hello_gui
[Launcher] hello_service
classes
source
[Installer application] updater
[Installer application] configureGreeting
@ VM options
/¥ Installation directory
@ $finstallervmoptionsTargetDirectory}
hello.vmoptions

Root container nodes

The top-level nodes in the distribution tree are called file sets. There is one "Default file
set” node that cannot be deleted or renamed. The relative paths of all files that are added

14

to a file set must be unique. See the help topic on file sets and installation
components [p. 21| for more information on how to use file sets.

Within a single file set, it causes an error at build time if the installation paths for two files
collide. For example, if you have added the contents of two different directories into the
same folder in the distribution tree and both directories contain afile fi | e. t xt, building
the project will fail with a corresponding error message. In this case, you have to exclude
the file in one of the directory entries. This is only an issue for files, subdirectory hierarchies
on the other hand are merged and can overlap between multiple directory entries and
explicitly added folders.

You can create new file sets with the @ New File Set action in the * add menu on the right
side. Each file set has its own “Installation directory” root. If you define custom roots that
should be present in multiple file sets, you have to duplicate them.

The child nodes of a file set are called installation roots. Their location is resolved when
the installer runs. There are two types of roots:

« The default root of the distribution tree is labeled “Installation directory” and has a
/7 specialicon. This is the directory where your application will be installed on the target
system. The actual directory location is dependent on user actions at the time of
installation. In regular installers, a user can select an arbitrary directory where the
application should be installed. For Linux package media files, a user can override the
default directory with command line parameters. For archives, the files are simply
extracted into a common top-level directory.

@ Default file set
/¥ Installation directory

@ VM options [ID 1148]

For installers, the installation directory will only be created if you execute an “Install files”
action in the installer configuration [p. 160]. By default, the "Install files" action is added
to the “Installation” screen. If your installer should not create an installation directory,
you can ignore this root and remove the “Install files” action.

More information on the various installer modes is available in the corresponding help
topic [p. 210].

+ If your application needs to install files into directories outside the main installation
directory, you can add customroots to the distribution tree. This is done with the * New
Root action in the " add menu on the right side or in the context menu. The actual

location of this root is defined by its name and has to resolve to a valid directory at
runtime.

@ Default file set
@ VM options [ID 1148]

Installation directo
I/‘ $finstallervmoptionsTargetDirectory} I

There are several possibilities for using custom roots. The nhame of a custom root can
be

15

+ afixed absolute path known at compile-time

This works for custom environments where there is a fixed policy for certain locations.
For example, if you have to install some files to D: \ apps\ nyapp, you can enter that
path as the name for your custom root.

If you build installers for different platforms, that root is likely to be different for each
platform. In that case, you can use a compiler variable [p. 68] for the name of the
custom root and override its value for each media file on the "Customize project
defaults->Compiler variables” step of the media wizard.

 aninstaller variable that you resolve at runtime

If you would like to install files into the directory of an already installed application,
such as a plugin for your own application, you can use an installer variable that you
resolve at runtime. Installer variables have an installer: prefix, such as
${installer:rootDir},and can be setin a variety of ways [p. 68].

The most common case would be to add a "Directory selection” screen to the screen
sequence [p. 160] and set its variable name property to the variable that you have
used as the name of the custom root. For the above example, that would berootDi r,
without the ${i nstal l er: ...} variable syntax.

Alternatively, you could use a "Set a variable” action to determine the location
programmatically.

 a pre-defined installer variable

install4j offers several variables for "magic folders” that point to common directories,
such as ${i nstal | er: sys. user Home} which resolves to the user home directory or
${installer:sys.systen82Dir} which resolves to the systenB2 directory on
Windows. Have a look at the "Cross-platform variables” category in the installer
variables selector for a list of variables that are suitable for all platforms.

Select Installer Runtime Variable X
Installer runtime variables for: Edit

» Installer v

Predefined Variables Bound Variables

v @ Cross-platform variables

P> sys.confirmedUpdatelnstallation
P sys.date

P> sys.desktopDir

P> sys.docsDir

P> sys.downloadsDir

P> sys.fileSeparator

P sysjavaHome

B> sys.javaVersion

Filter:

Initial Value

Description

@ Help OK Cancel

If a custom installation root is not bound at runtime or if it points to an invalid directory,
the contained files will not be installed and there will be no error messages. If you require

16

error handling, you can use a "Run a script’ action before the "Install files" action with
the appropriate error message and failure strategy.

For archive media file types, custom installation roots are not installed. If you require
these custom roots for your installation, you cannot use archives.

An alternative way to redirect installed files to different directories is to use the "Directory
resolver” property of the “Install files" actions. Also, the “File filter" property of that action
can be used to conditionally install files. The use of these properties is only recommended
if you require their full flexibility. Otherwise, using custom installation roots and installation
components [p. 21| is a better approach.

Content nodes

Adding files to the distribution tree is done with the ** Add Files And Directories action in
the % add menu on the right side or in the context menu. In the first step of the file wizard
you choose the source or the files:

« With a directory entry, you recursively add the contents of a selected directory. You
have the possibility of excluding certain files and subdirectories and exclude files based
on their file suffix. In the configuration wizard you can override the default settings for
the overwrite and uninstall policies as well as the Unix file and directory modes.

Modify Entry in the Distribution Tree X
1. Select type Select directory to add to the distribution tree

2. Select directory

3. Installation options Please select a directory that contains files you would like to distribute. The

4. Excluded files and directories contents of that directory will be added recursively to the currently selected

5. Exclude suffixes position in the distribution tree.

6. Finished
mnishe Selected directory: = .\build >

Where would you like to add the files that are contained in the selected
directory?

© Add directly to the currently selected node in the distribution tree

Add to subdirectory:

&) Help 4 Back Next p Finish Cancel

« Alternatively, you can add a number of single files, possibly from different locations,
into a single directory. Each selected file will be added as a separate node that has its
own settings and can be moved independently in the distribution tree.

Modify Entry in the Distribution Tree X

1. Select type Select files to add to the distribution tree

2. Select files

3. Installation options Please select any number of files from arbitrary locations. The selected files will
4. Finished be added to the currently selected position in the distribution tree.

Selected files:

Avmoptions\hello.vmoptions r

@ Help 4 Back Next p Finish Cancel

With the * Copy action you can add a file list from the system clipboard. The file list
must consist of file entries that are separated by line breaks or the standard path
separator (*;" on Windows and " on Unix). Each file entry can either be absolute or
relative. On the first occurrence of a relative path, a directory chooser is shown where

you select the root directory against which all further relative paths should be resolved.

+ Finally, files can be passed externally through a compiler variable. This can be useful
if you collect lists of files in your build tool and want to use that information to
dynamically build the distribution tree. The command line compiler [p. 234] as well as
the Gradle [p.239], Maven [p. 246] and Ant [p. 255] plugins have mechanisms for setting
compiler variables for the build.

The string that separates different files in the variable value is configurable and set to
the platform-specific path separator by default.

Add Files and Directories X
1. Select type Specify the compiler variable that should be read

2. Compiler variable

3. Installation options The compiler variable must exist at compile-time and contain a list of JAR files,
4. Finished separated with the specified separator.

For missing files, a warning will be printed during the build

Compiler variable: | myVariable AN ?]
Path list separator: = ${compiler:sys. pathlistSeparator} [N 7]
@ Help 4 Back Next p Finish Cancel

Folder nodes

Fixed folder nodes can occur below the root nodes to build nested directory structures.
Using the "Edit entry” action on a fixed folder node allows you to edit the unix mode of the
folder.

18

Folder Properties X

Access Rights

The default setting for the Unix directory mode can be adjusted on the
“File Options" step.

Override default Unix mode:

Usually, a directory structure will be copied from a staged distribution directory, but fixed
folders are useful under several circumstances. For example, if you want to apply different
top-level prefix directories, you can add corresponding folder.

Also, fixed folders and single files in fixed folders have a higher precedence than folders
and files from directory entries. In this way, you override settings for certain folders or files.
For example, if a "contents of a directory” node includes the file a/ b/ c. txt, you can
manually add nested folders a and b and then add the single file node c. t xt . You could
then set a different overwrite or uninstall policy for the file. Also, you could override the
Unix mode of the directories.

Compiler variables as directory or file names

Using compiler variables [p. 68] as directory or file names in the distribution tree allows
you to make compile-time conditional includes. The following rules apply:

- ifadirectory node resolves to the empty string after variable replacement, the directory
and any contained entries will not be included in the distribution.

- ifthe source directory of a "contents of directory” node resolves to the empty string after
variable replacement, no files will be included by that entry.

- if the file name of a single file node resolves to the empty string after variable
replacement, no file will be included.

For conditions that are evaluated at runtime or for adding platform-dependent files, you
should use files sets [p. 21] instead.

File options

On the "File options” step, a number of settings determine the behavior of the installer and
uninstaller. When files are already present, you can choose a number of strategies for the
"Install files” actions by changing the "Default overwrite policy”. Similarly, the "Uninstall files”
action decides what to do for installed files based on the "Default uninstall policy” setting.
On Unix, the "Install files” action assigns permissions to installed files and directories as
configured in the default Unix file and directory modes on this step. All these options can
be overridden in the configuration of the content nodes.

Other available options concern the compilation phase. You can choose the source of
the file modification times, specify a global pattern of files and directories that should be
ignored when collecting files and select a strategy for what should happen if some specified
files are missing at build time.

19

File Options

In this step, you can define options that apply to all files in the distribution tree. All settings can be overridden in "Installation
options” step of the file wizard.

Global Excludes

Global exclude pattern:

Installation Options

Default overwrite policy: Always ask except for update v @
Default uninstall policy: If created v @
Default Unix file mode: 644 Reset To Default @
Default Unix directory mode: = 755 Reset To Default (2]

Use unix mode of the source files instead when built on Linux/macOS @
Launcher overwrite policy: If newer otherwise ask v @

File Attributes
File modification times of installed files: Keep original file modification times
© Use build timestamp
Preserve symbolic links within the distribution tree €

Build Options

What to do when files are missing at build time: ' Print a warning and continue v = @

20

A.4File Sets And Installation Components

install4j offers two mechanisms to group files: File sets and installation components. File
sets are configured in the distribution tree [p. 14| and can be used in a variety of use cases
as building blocks for your installers. Installation components are presented to the user
at runtime and mark certain parts of the distribution tree that have to be installed if the
user chooses an installation component.

Both file sets and installation components are optional concepts that can be ignored if
they are not required for an installer project: There is always a "Default file set” to which
you can add files in the distribution tree and on the “Installation components” step you do
not have to add any components.

File sets

File sets are a way to group files in the distribution tree. When you need to select files in
other parts of the install4j IDE, you can select the file set node instead of selecting single
files and directories. Each file set has a special Installation directory” child node that maps
to the installation directory selected by the user at run time. Custom installation roots are
defined separately for different file sets. If you require the same installation root in two
different file sets, you simply define the same root twice.

@ Default file set -
/¥ Installation directory
Content of .\dist
@ Files for Windows 8 [ID 45]
/¥ Installation directory
bin
Content of .\win8\bin
Vad ${installer:sys.system32Dir}
File \win8\driver.dll (shared
& Files for Windows 10 [ID 47]
/¥ Installation directory
bin
Content of .\win10\bin
Vad ${installer:sys.system32Dir}
File \win10\driver.dll (shared

The installation of file sets can be toggled programmatically at run time. The code snippet
to disable the installation of a file set at run time is

context.getFil eSet Byl d("123"). set Sel ect ed(fal se);

if the ID of the file set is "123". You could insert this snippet into a "Run script” action that is
placed before the "Install files" action on the Installer->Screens & Actions step [p. 160]. File
set IDs can be displayed by toggling the "Show IDs" toolbar button.

A common use case is to exclude platform-specific files from certain media files. You can
define file sets for different platforms and exclude all unneeded file sets in the "Customize
project defaults->Exclude files" step in the media wizard. This is an example of how to use
file sets at design time in the install4j IDE.

Within one file set, all relative paths must be unique. However, the same relative path can
be present in different file sets. Suppose you have different DLL files for Windows 8 and for
Windows 10 and higher. You can create two file sets so that the installer contains both
alternative versions. Once you find out whether you run on Windows 8 or on Windows 10
and higher, you can disable the file set that should not be installed with the code snippet

21

shown above. By default, all included file sets are installed. If the same relative path occurs
twice, it is undefined which version is used. In this case you have to make sure to disable
the file sets that are not appropriate.

Installation components

If you define installation components, the installer can ask the user which components
should be installed. In the configuration of an installation component, you mark the files
that are required for this component. A single file or directory can be required by multiple
installation components.

Base application [ID 124] r

Source code [ID 125]
Demos

4 Demo 11D 127]
4 Demo 2 [ID 128]

Files Options Description — Dependencies

All files in the distribution tree
© Selected files:

-ﬁ Demo 3 [ID 129] b4 @ Default file set
¥ Installation directory
bin
demo
X lib

source
@ Files for Windows 8
2 @ Files for Windows 10

Installation components are defined in a folder hierarchy. This means you can have groups
of installation components that are enabled or disabled with a single click. Most options
in the configuration of an installation component are used by the “Installation components”
screen [p. 176]. They decide how the installation component is presented to the user,
whether it should be initially selected or mandatory, and if it has dependencies on other
installation components that should be automatically selected. To internationalize the
name of the component for different media files, use custom localization keys [p. 68].

The user will only be able to choose installation components if an “Installation components
selector” form component is present somewhere in the installer. The “Installation
components” screen that is part of the default project template contains that form
component and is only displayed at runtime if you have defined any installation
components.

Installer (7 screens) [ID instal . N Ny
() [B Contains 2 form components 5 Configure @® Preview

t Startup (1 action) x

it Welcome (1 action) [ID 2] Installation Components

,;:J Installation location (1 ac...
.'x‘ Installation type [ID 23]
.'x‘ Create program group [ID

Installation (3 actions) [

Selection change script
Control Flow
Condition expression
Validation expression
Rollback barrier

Quit after screen

Back button Safe back button

3 Finish[ID 12] GUI Options
r . / Style Inherit from parent [Default style]
Uninstaller (4 screens) [ID un.., ' .
Privileges

Installation components

A screen that displays all installation components and asks the user which components
should be installed. This screen will not be shown if no installation components are defined.

22

Another important feature of installation components is that they can be marked as
"downloadable”. If you configure the download option [p. 144] in the "Data files" step of the
media wizard, separate data files will be created for the downloadable components.

o Base application [ID 124] + Files Options Description Dependencies
Source code [ID 125]
Demos Initially selected for installation @

4 Demo 11D 127]
o Demo 2 (1D 128]
4 Demo 3[1D 129] % Initially hidden o

I Downloadable component IO

User can change selection state @

install4j also offers a two-step selection for installation components: In the first step, the
user is asked for the desired "installation type”. An installation type is a certain selection
of installation components. Typical installation type sets are [Full, Minimum, Customize]
or [Server, Client, All]. The display and the configuration of installation types is handled by
the "Installation type” screen.

4 Installer (7 screens) [ID instal + :’é:ﬁ el EEs
~ | Startup (1 action) X
T,r‘ Welcome (1 action) [ID 2]) ¢ Properties

Tg‘ Installation location (1 ac...

) Y Installation types are defined by a configurable set of components. The first installation
Installation type [ID 213] type is selected by default.

%k | Installation components [€9 sisnrullinstalation) (1D 214] +
’f Create program group [ID {é;’"\. ${i18n:StandardInstallation} [ID 215]
Installation (3 actions) | o {i;! ${i18n:CustomInstallation} [ID 216]
3 Finish[ID 12]

Y
} Uninstaller (4 screens) [ID un dt

For each configured installation type, you can decide whether the user should be able to
further customize the associated installation component selection in the “Installation
components” screen or not. If the installation type is not customizable, the installer variable
sys. prevent Conponent Cust oni zati on is set to true and a subsequent “Installation

components” screen is not displayed.

23

Configure Installation Type X

Name: ${i18n:Fullinstallation}| »

Custom ID:
Components Description

© Allinstallation components
Default installation components

Specific installation components:

®
&

i

User can customize component selection in "Installation Components” screen

The IDs of installation components can be used in expressions, scripts and custom code
if you want to check whether the installation component has been selected for installation
or not. A typical condition expression for an action would be

context. getlnstall ati onConponent Byl d("123").isSel ect ed()

if the ID of the component is "123". In this way you can conditionally execute actions
depending on whether a component is selected or not.

24

A.5 Screens And Actions

With screens and actions you configure two separate aspects of the installer: the user
interface that is displayed by your installer and uninstaller on the one hand and the actual
installation and uninstallation on the other hand. Each screen can have a list of actions
attached that are executed when the user advances to the next screen.

install4j offers a wide variety of pre-defined screens and actions that you can arrange
according to your needs. Some of these screens and actions are generic and can be used
as programming elements, such as the "Form” [p. 51| screen and the "Run script” action.

While this chapter presents an overview of the concepts related to the screen and action
system, a later section in the documentation [p.160] discusses how to configure the related
beans in the install4j IDE in detail.

Installer applications

Building an install4j project creates media files which are either installers or archives. An
installer is defined by a sequence of screens and actions and is executed when the user
executes the media file. Installers usually install an uninstaller which removes the
installation. The uninstaller, too, is a freely configurable sequence of screens and actions.
Archives do not have an installer or uninstaller, and the user extracts the contained data
with other tools.

In addition to the installer and uninstaller, you can define custom installer
applications [p. 167] that are added to the distribution tree. These custom installer
applications can use the same screens and actions that the installer can use. Unlike
installer and uninstaller, they are also added to archives. They can be used to write separate
maintenance applications for your installations that are either invoked directly by the user
or programatically by your application.

Installer (8 screens) [ID installer] o v

¢ Properties

5 Uninstaller (5 screens) [ID uninstaller] x

1> ‘Q? Standalone update downloader [Custom applica... ilfe} ap [nstaller Variables

73 Background update downloader [Custom applic...
> 9 P PP W Launcher Integration

»JF Configure greeting [Custom application] (2 sere...

Executable

Create executable (v]
Executable name updater
Executable directory
Single instance (v]
" File set Default file set
d Executable icon [customized icon]
Execution Modes
Allow unattended mode v]

Progress interface creation ...
Allow console installations (V]
Fall back to console mode o... [
Nicahla rAancnala mada An W
Custom application

A custom installer application is installed by the installer. Users can start
it manually or it can be executed programmatically from your own code
/ via the API.

The most common use case for custom installer applications is to create auto-updaters.
Auto-updaters are described in detail in a separate help topic [p. 119].

Executing first-run tasks for archives

Another important use-case for custom installer applications is to create a first-run installer
for archives. While there is no need to install files to the installation directory in the case

25

of an archive, there will usually be screens and actions that set up the environment of
your application.

In order to avoid the duplication of screens and actions, install4j offers the possibility to
create links to screens and actions. In this way, a custom installer application can include
a partial set of the screens and actions in the installer. Such a first-run installer should be
added to the .install 4] runtime directory so that it is not exposed as part of the
application. This is done by specifying its "Executable directory” property as the empty
string.

Such afirst-run installer application is invoked programatically with the com i nst al | 4j .

api . | auncher. Appl i cati onLauncher utility class. To determine whether any of the
generated launchers of an installed archive are run for the first time, call

Appl i cati onLauncher.i sNewAr chi vel nstal | ati on()

at the beginning of your main method. If it returns true, call | aunchApplication or
I aunchAppl i cati onl nProcess to execute the installer application. Check the Javadoc
for detailed information about this API.

Control flow

At runtime, install4j instantiates all screens and actions and organizes the screen flow
and action execution. There are a number of aspects regarding this control flow that you
can customize in the install4j IDE.

Both screens [p.176] and actions [p. 182] have an optional "Condition expression” property
that can be used to conditionally show screens and execute actions. Screens have a
"Validation expression” property that is invoked when the user clicks on the "Next" button
allowing you to check whether the user input is valid and whether to advance to the next
screen. These are the most commonly used hooks in the control flow for “programming”
the installer.

Installer (5 screens) [ID installer N Ny
. (¢) [er] Contains 4 form components = Configure ® Preview
=\ Startup (1 action) x
> Welcome (1 action) [ID 2] Update Alert
= . . . Alert f date installati v
#r Installation location (1 action) [ID 8] criTor upcate Instaration]
) Control Flow
%% |Installation components [ID 12] ' Condition expression
Installation (3 actions) [ID 15] Validation expression
| il g Rollback barrier
. nstallfiles [ID 17] Quit after screen
@ Create program group [ID 18] 3 Back button
o A
10F Register Add/Remove item [ID 19] GUI Options
. / Style Banner
b Fini 20 . .
% Finish (ID 20] d Customize banner image
3 Uninstaller (4 screens) [ID uninstaller] Privileges
Action elevation type Inherit from parent [Do not elevate]
Screen Activation
Pre-activation script
Post-activation script
Welcome
A screen that welcomes the user to the installation of your application.
This screen should be placed at the beginning of the installation
4

All "expression” properties in install4j can be simple Java expressions or scripts of Java
code as described in the help topic on scripts [p. 30].

Another hook into the control flow regarding screens is the ability to declare every screen
as a "Finish” screen, meaning that the "Next" button will be replaced with a "Finish” button

26

and the installer will quit after that button is pressed. Consider applying the "Banner” style
to the screen in that case because it alerts the user that a special screen has been reached.

If you use a series of screens to get user input, users expect to be able to go back to
previous screens in order to review or change their input. This is fine as long as no actions
are attached to the screen. When actions have been executed, the question arises what
should happen if the user goes back to a screen with actions and clicks on "Next" again.

By default, install4j executes actions only once, but that may not be what you want if the
actions operate on the user input in a screen. Because install4j has no way of knowing
what should happen in this case, it applies a "Safe back button” policy by default: if the
previous screen had actions attached, the back button is not visible. You can change this
policy for each screen, either making the back button always visible or always hidden.
The "Can be executed multiple times” property of each action is relevant in the case where
you make the back button always visible for the next screen.

Installer (5 screens) [ID installer] o Configuration § §
N Item name ${compiler:sys.fullName} ${compile...
=\ Startup (1 action) X Icon source Installer icon
_,:‘ Welcome (1 action) [ID 2] e Error Handling

- . . R Failure strategy Continue on failure
“r Installation location (1 action) [ID 8]

. Error message

& Installation components [ID 12] 7 Control Flow
Installation (3 actions) [ID 15] Condition expression
Rollback barrier
y -
. Install files (ID 17] Can be executed multiple times
»

10} Create program group [ID 18]] Privileges

o Register Add/Remove item [ID 19] Action elevation type Elevate to maximum available privil...

= Y4
%k Finish [ID 20] d

r Uninstaller (4 screens) [ID uninstaller] Register Add/Remove item
Register an Add/Remove item in the Windows software registry.
If this action runs with elevated privileges, the uninstaller will be started
with elevated privileges by Windows and no unelevated actions can be
performed. In the event that you need to execute processes without
elevation, set the "Action elevation type" property to "Do not elevate".
Note that the Add/Remove item will be registered for the current user

N only in that case.

This action will be automatically reverted by the 'Uninstall files' action.

.

Rollback behavior

At any time in the installation sequence the user can hit the "Cancel” button. The only
exception in the standard screens is the "Display progress” form template screen where
the "Cancel” button has been disabled. install4j is able to completely roll back any
modification performed by its standard actions.

However, the expectation of a user might not be that the installation is rolled back. Consider
a series of post-installation screens that the user doesn't feel like filling out. Depending
on the installer, the user may feel that installation will work even if the installer is canceled
at that point. A complete rollback would then not be desirable. For this purpose, install4j
offers the concept of a "rollback barrier”. Any action or screen can be a rollback barrier
which means that any actions before and including that action or screen will not be rolled
back if the user cancels later on.

By default, only the “Installation screen’ is a rollback barrier. This means that if the user
cancels while the actions attached to the installation screen are running, everything is
rolled back. If the user cancels on any of the following screens, nothing that was performed
on or before the installation screen is rolled back. With the "Rollback barrier” property of
actions and screens you can make this behavior more fine-grained and customize it
according to your own needs.

27

Error handling

Every action has two possible outcomes: failure or success. If an action succeeds, the next
action is invoked. When the last action of a screen is reached, the next screen is displayed.
What should happen if an action doesn't succeed? This depends on how important the
action is to your installation. If your application is not able to run without the successful
execution of this action, the installer should fail and initiate a rollback. However, many
actions are of peripheral importance, such as the creation of a desktop link. Declaring
that the installer has failed because a desktop link could not be created and rolling back
the entire installation would be counterproductive. That's why the failure of an action is
ignored by install4j by default. If a possible failure of an action is critical, you can configure
its "Failure strategy” to either ask the user on whether to continue or to quit immediately.

Item name ${compiler:sys.fullName} ${compile...
Icon source Installer icon

Failure strategy Continue on failure

Error message

Condition expression
Rollback barrier
Can be executed multiple times

Action elevation type Elevate to maximum available privil...

Standard actions in install4j fail silently, for example, the "Create a desktop link" action will
not display an error message if the link could not be created. For all available failure
strategies, you can configure an error message that is displayed in the case of failure.
The “Install files” action has its own, more granular failure handling mechanism that is
automatically invoked after the installation of each file.

Standard screens and form templates

install4j offers a series of standard screens that are fully localized and serve a specific
purpose. These standard screens have a preferred order. When you insert such a screen,
it will insert itself automatically in the correct position. This order is not mandated, you can
re-order the screens in any way you like, however, they may not yield the desired result
anymore. If, for example, you place the "Services" screen after the screen with the “Install
service" actions (typically the “Installation” screen), the "Services" screen will not be able
to modify the service installations anymore and the default values are used.

28

Select an Installation Screen X

Available screens:
= Display text
= Program group selection
Standard screens
& Welcome
i Display license agreement
% Installation location
Installation type
% Installation components
i Create program group
% File associations
% Additional confirmations

Installation
i+ Display information
% Finish
Filter:
Description

Insert after selection

oK Cancel

The form templates don't have a fully defined purpose, their messages are configurable
and empty by default. For example, the "Display progress” screen is similar to the
“Installation” screen, however, the title and the subtitle are configurable. For templates
also do not have any restriction with respect to how many times they can occur. While
the "Installation” screen (and other screens) can occur only once for an installer, the
"Display progress” screen could be used multiple times.

Select an Installation Screen X

Available screens:

-‘1 Empty form
Form templates
_1} Banner with header at the top
3 Directory selection
_1} Display progress
3 Display text
=} Program group selection
Standard screens

& Welcome

i Display license agreement
Installation location

Installation type

% Installation components

¢ _Create nroaram aroun,

Filter:

Description
Insert after selection
oK Cancel

Form templates are built with form components and can be a starting point for developing
your own screen. Forms allow you to freely define the contents of a screen and are
described in a separate help topic [p. 51].

29

A.6 Scripts

All configurable beans on the Installer->Screens & Actions [p. 160] step have script properties
that allow you to customize their behavior, such as executing some code when a button
is clicked or a custom initialization of a text field. Also, control flow in the screen and action
system is done with scripts and expressions.

Design-time JDK

By default, install4j uses the bundled JRE [p. 96] for compiling scripts up to the Java major
version that install4j runs with itself. For JRE bundles with higher Java major versions,
install4j uses the current JRE instead.

For special requirements, you can invoke "Settings->Java Editor Settings” in the script
editor and select a different JDK for that purpose. The list of available design-time JDKs
is saved globally for your entire install4j installation and not for the current project. The
only information saved in your project is the name of the JDK configuration. In this way,
you can bind a suitable JDK on other installations and on other platforms.

Java Editor Settings X

Editor Settings

Tab size: 4 &

Code Completion Popup Settings
2 Auto-import classes during code completion
2 Insert method stubs when completing constructors for abstract classes

[Show suggestions as you type

A

Popup height: 10 | & entries

Code Formatting Settings

Use Eclipse formatting profile &)

2 Format block when entering a closing brace

Display Code Problems
None Errors only € @ Errors and Warnings @

JDK For Code Editor ?)
Automatic JRE download &)

© DK | JDK 21.0 [C:\Users\ingo\jdks\jbrsdk-21.0.2-b375.1] v Configure JDKs

The design-time JDK is used for the following purposes:

« Code completion
The Java code editor will show completion proposals for classes and methods in the
JDK runtime library from the design-time JDK.

« Context-sensitive Javadoc help

If the design-time JDK from the bundled JRE configuration is used, the corresponding
Javadoc from the Oracle website is shown.

If you manually configure a design-time JDK, you can enter a Javadoc directory to get
context-sensitive Javadoc help in the code editor for all classes in the JDK runtime
library. By default, context-sensitive Javadoc help is only available for the install4j API.

30

Configure JDKs X

Available JDKs for code completion and script compilation:

Name @ Java Home Directory @ Javadoc Directory @ Java Version

JDK 21.0 C:\Users\ingo\jdks\jbrsdk-21.0.2-b375.1 | https://docs.oracle.com/en/java/javas... |21.0.2

© Help m Cancel

« Code compilation

install4j uses a bundled eclipse compiler, so it does not use the compiler from the
design-time JDK. However, it needs a runtime library against which scripts entered in
the installer configuration [p. 25] are compiled. The version of that JDK should correspond
to the minimum Java version for the project. This is automatically the case if the
design-time JDK from the bundled JRE configuration is used. For a manually selected
design-time JRE, if its minimum Java version is higher than the minimum Java version
of the project, runtime errors can occur if you accidentally use newer classes and
method.

The code editor

The Java code editor is shown for script properties on the Installer->Screens &
Actions [p.160] step for any configurable bean including screens, actions, form components
and groups, or when you edit the code for static fields and methods on the
Installer->Screens & Actions->Custom Code [p. 165] step.

Settings Edit Search Code Help Edit X
- —
S |2 . E L2 0 % ©
3{* a= - S m =
Insert Insert Code . Test
0 Redo Copy Cut Paste \ible D Gallery Find Replace L Help

Please enter an expression (no trailing semicolon) or a script (ends with a return statement) that consists of
regular Java code. The following parameters are available:

- com.install4j.api.context.InstallerContext context
- com.install4j.api.actions.InstallAction action

The expected return type is boolean

Condition expression:

1 context.getBooleanVariable ("sys.confirmedUpdateInstallation™) =

The box above the text editor shows the available parameters as well as the required
return type. If parameters or return types are classes - and not primitive types - they will

31

be shown as hyperlinks. Clicking on such a hyperlink opens the Javadoc in the external
browser.

To get more information on classes from the cominstall4j.* packages, choose

Help->Show API Documentation from the menu and read the help topic for the install4j
API [p. 226].

A number of packages can be used without using fully qualified class names. Those
packages are:

+ java.util.*

+ java.io.*

+ javax.swing.*

« com.install4j.api.*

« com.install4j.api.beans.*

« com.install4j.api.context.*
« com.install4j.api.events.*
« com.install4j.api.screens.*
« com.install4j.api.actions.*
« com.install4j.api.formcomponents.*
« com.install4j.api.update.*
« com.install4j.api.windows.*
« com.install4j.api.unix.*

You can put a number of import statements as the first lines in the text area to avoid using
fully qualified class names. For example:

i mport java.aw . Col or;
i nport java.aw .Event Queue;

Event Queue. i nvokeLater(() -> {
JTextField textField =

(JText Fi el d) f or nEnvi r onnent . get For mConponent Byl d("123") . get Confi gurati onObj ect () ;
text Fi el d. set Backgr ound(Col or. RED) ;

1)

If the gutter icon in the top right corner of the dialog is green, your script is going to compile
unless you have disabled error analysis in the Java editor settings that are accessible in
the menu of the script editor dialog.

In some situations, you may want to try the actual compilation. Choosing Code->Test
Compile from the menu will compile the script and display any errors in a separate dialog.
Saving your script with the OK button will not test the syntactic correctness of the script.
When your install4j project is compiled, the script will also be compiled and errors will be
reported.

Expressions or scripts

Java code properties can either be expressions or scripts. install4j automatically detects
whether you have entered an expression or a script.

An expression does not have a trailing semicolon and evaluates to the required return
type. For example:

32

I context.isUnattended() && !context.isConsole()

The above example would work as the condition expression of an action and skip the
action for unattended or console installations.

A script consists of a series of Java statements with a return statement of the required
return type as the last statement. For example:

i f (!context.getBool eanVari abl e("enterDetails")) {
cont ext . goForward(2, true, true);
}

return true;

The above example would work as the validation expression of a screen. If the variable
with name "enterDetails” is not set to t r ue, it would skip two screens forward, checking the
conditions of the target screen as well as executing the actions of the current screen.

Script parameters

The primary interface to interact with the installer or uninstaller is the context which is
nearly always among the available parameters. The context provides information about
the currentinstallation and gives access to variables, screens, actions and other elements
of the installation or uninstallation. The parameter is of type

e cominstall4j.api.context.InstallerContext for screens and actions in the
installation mode

- cominstall4j.api.context.UninstallerContext for screens and actions in the
uninstallation mode

« cominstall4j.api.context. Context for form components.

Apart from the context, the available parameters include the action, screen or form
component to which the Java code property belongs. If you know the implementation
class, you can cast to it and modify the object as needed.

Many other useful static methods are also contained in the class com i nstal | 4j . api .
Uil , for example, OS detection methods or methods to display messages in a way that
works for all installer modes:

if (Wil.isMacOs()) {
Util.showar ni ngMessage("This warning is only shown on macCS");

}

Editor features

The Java editor offers the following code assistance powered by the eclipse platform:

« Code completion

Code->Complete Code or the corresponding keyboard shortcut brings up a popup
with code completion proposals. Also, typing any character shows this popup if the
"Show suggestions as you type" setting is enabled and completions are available.

33

1String greeting = ((String)context.getVariable ("personName")).trim();
2
3if (context.getVariable ("greetingOption") .equals ("world")) {

4 greeting = "world";
5} else if (greeting.trim().length() == 0) {
6 formEnvironment.getFormComponentById("77") .requestFocus () ;
7 Util.showMessage ("Please enter a name.");
® return fa @ . uErrorMessage (String message) void
12 ' () showMessage (String message) void
11 context.setvd () showMessage (String message, int messageType) void
12 return true; @ showOptionDialog(String message, String options[], int messageType) int
() showPath (String path) void
) showUrl (URL url) void

() showWarningMessage (String message) void

While the popup is displayed, you can continue to type or delete characters with
Backspace and the popup will be updated accordingly. "Camel-hump completion” is
supported, meaning typing NPE and invoking code completion will propose
Nul | Poi nt er Excepti on among other classes. If you accept a class that is not
automatically imported, the fully qualified name will be inserted unless the "Auto-import
classes during code completion” setting is enabled, in which case an import statement
will be added at the top if required.

The completion popup can suggest:

« O variables and default parameters. Default parameters are displayed in bold font.
« @ packages (when typing an import statement).

+ O Classes. When a constructor for an abstract class is completed, method stubs are
inserted if the "Insert method" stubs setting is enabled.

+ © Fields (when the context is a class).
@ Methods (when the context is a class or the parameter list of a method).

+ Code templates that expand when the TAB key is pressed. An example is "serr” or
"syserr” for writing to stderr with System err. printin().

« Static methods in special utility classes like cominstall4j.api.Uil, com
instal | 4j . api . Syst em nf o or others. For example, if you start typing "show", then
thecominstall 4j.api.Uil.showMessage(...) methods will be suggested.

You can configure code completion behavior in the Java editor settings.

34

Java Editor Settings X

Editor Settings

Tab size: 4| &

Code Completion Popup Settings
Auto-import classes during code completion
Insert method stubs when completing constructors for abstract classes

Show suggestions as you type
a

Popup height: 10 |5 entries

Code Formatting Settings

Use Eclipse formatting profile €

Format block when entering a closing brace

Display Code Problems
None Errors only € © Errors and Warnings ()

JDK For Code Editor (2]
© Automatic JRE download @

JDK | [Select one] Configure JDKs

Parameter info

When the caret is in the arguments of a method call, Code->Parameter Info or the
corresponding keyboard shortcut brings up a popup with information about the various
overloaded signatures. The argument at the caret is shown in bold font. If you just
performed code completion, the selected signature will be selected in the popup.

1String greeting = ((String)context.getVariable ("personName")).trim();
2

3if (context.getVariable ("greetingOption") .equals ("world")) {

4 greeting = "world";

5} else if (greeting.trim().length() == 0) {

6 formEnvironment.getFormComponentById("77") . requestFocus () ;

7 Util.showMessage ("Please enter a name.");

8 return false;

showMessage (String message)

9}
10

11 context.setVariable ("greeting”, greeting);

showMessage (String message, int messageType) void

12 return true;

Caret highlighting

Other usages of the element at the caret are highlighted in the editor with corresponding
markers in the gutter. Write and read occurrences of fields and variables are colored
differently.

Code-sensitive selection

With Edit->Extend Selection and Edit->Shrink Selection or their corresponding keyboard
shortcuts you can select containing code blocks. Invoke the actions repeatedly to cycle
through larger and smaller blocks.

Problem analysis

The code that you enter is analyzed on the fly and checked for errors and warning
conditions. Errors are shown with red underlines in the editor and with red stripes in the

35

right gutter. Warnings, such as unused variable declarations, are shown with yellow
underlines in the editor and with yellow stripes in the right gutter. Hovering the mouse
over an error or warning in the editor as well as hovering the mouse over a stripe in the
gutter area displays the error or warning message.

The status indicator at the top of the right gutter is green if there are no warnings or
errors, yellow if there are warnings but no errors and red if there are errors. In the latter
case, the code will not compile and the installer cannot be generated. You can configure
the threshold for problem analysis in the Java editor settings.

For moving between problems, the actions Code->Navigate to Previous Highlighted
Problem and Code->Navigate to Next Highlighted Problem with separate keyboard
shortcuts are available.

When the caret is on a problem location, quick fixes may become available and can
be invoked with Code->Quick Fix or the corresponding keyboard shortcut. A popup will
be displayed with possible actions to fix the problem. When using the mouse, you can
click on the floating lightbulb to show the popup.

Settings Edit Search Code Help Edit X
/ = = 0 9 Y e
= p = 16 IR
d = - C m G
Insert Insert Code) Test
copy o pase | EEL T ey Find Replace (Help

=—_ Please enter an expression (no trailing semicolon) or a script (ends with a return statement) that consists of
‘Tm regular Java code. The following parameters are available:
J

- com.install4j.api.context.InstallerContext context
- com.install4j.api.screens.InstallerScreen screen
- com.install4j.api.formcomponents.FormEnvironment for

The expected return type is boolean

Validation expression:

]
((String) context.getVariable ("personName")) .trim() -
local variable "greeting"
"greetingOption") .equals ("world")) { -
g.trim().length() =— 0) {
6 formEnvironment.getFormComponentById("77") .requestFocus () ;
7 Util.showMessage ("Please enter a name."); L
8 return false;
9}
10
S PRI SRR U0 DR PRI P S S

Quick fixes include:

« Removing invalid or unused imports

« Terminating unterminated strings

« Declaring unresolved variables

« Adding imports for unresolved types

+ Fixing type mismatches

« Adding missing return statements

+ Fixing instance access to static members
+ Correcting visibility of overridden methods
« Correcting invalid modifiers

« Fixing invalid abstract methods

« Adding unimplemented methods

« Removing unused local variables

36

« Removing unnecessary casts
+ Removing dead code

Context-sensitive Javadoc

Help->Show Javadoc or the corresponding keyboard shortcut opens the browser with
the Javadoc page that describes the element at the cursor position. Javadoc for the
Java runtime library can only be displayed if a design-time JDK is configured and a
valid Javadoc location is specified in the design-time JDK configuration.

Code formatting

Code->Complete Code or the corresponding keyboard shortcut reformats the selected
code or the entire code if no code is selected. The code style for reformatting can be
configured in the Java editor settings by supplying an Eclipse formatting profile. Eclipse
XML profile files are supported by Eclipse, IntelliJ IDEA and the RedHat Java plugin of VS
Code. To export them from your favorite IDE, perform the steps below:

 Eclipse
In the Eclipse IDE, under Preferences->Java Code Style Formatter, edit the profile and
click on "Export” next to the profile name.

« IntelliJ IDEA
In the IntelliJ IDEA settings, under Editor->Code Style, open the action menu next to
the scheme and choose Export->Export Eclipse XML File.

+ VS Code

In VS Code, if you use the RedHat Java plugin, the Eclipse XML file is the way formatting
settings are configured, and you can use the same one as specified in the plugin
settings.

If the file contains multiple profiles, the first one will be used. The tab size setting from
the code formatting will be ignored because it is a separate option in the Java editor
settings. In the install4j code editor, tabs are always converted to spaces.

When you are typing a closing brace, the corresponding block will be reformatted. You
can disable this behavior with the "Format block when entering a closing brace” option
in the Java editor settings.

Import organization

With Code->Organize Imports or the corresponding keyboard shortcut you can clean
up the imports at the top of the script.

Refactorings

The context-dependent set of available refactorings is invoked with Code->Refactor or
the corresponding keyboard shortcut.

37

1String greeting — ((String)context.jetVariable ("personName")).trim():

2 Extract to local variable (replace all occurrences)

3if (context.getVariable ("greetingOpB pyfract to local variable
4 greeting = "world";
5} else if (greeting.trim().length() == 0) {
6 formEnvironment.getFormComponentById("77") .requestFocus () ;
7 Util.showMessage ("Please enter a name.");
8 return false;
9}

10

11 context.setVariable ("greeting", greeting) ;

12 return true;

A wide range of local refactorings is available including

« Extracting and inlining variables

« Converting between lambdas and anonymous classes

« Converting between var and explicit types

« Adding static imports

« Converting to enhanced for loops

+ Surrounding with try-catch

« Adding explicit lambda parameters

+ Changing between lambda expression and lambda block
« Converting lambdas to method references

- Converting string concatenations to MessageFormat, StringBuilder or String.format()
constructs or to text blocks

« Converting switch statements to switch expressions
+ Joining and splitting variable declarations with variable definitions
« Inverting calls to Object.equals()

The rename refactoring has its own action Code->Rename with a separate keyboard
shortcut. It is active whenever the element at the caret can be renamed.

Key bindings

All key bindings in the Java code editor are configurable. The keymap editor is displayed
by choosing Settings->Keymap from the menu in the Java code editor dialog. On macOs,
that menu is shown as a "hamburger” menu on the right side of the toolbar.

38

Edit Keymap X

Available shortcut schema:

IntelliJ IDEA (active)

Eclipse
Visual Studio Code Copy

Based on schema:
Show commands containing:

Overridden commands onl

Backspace

Comments with Block Comment
Comments with Line Comment
Complete Code

Copy

Create 118N Key

Cut

Delete

Delete Current Line

Delete to Word End

Delete to Word Start

Duplicate Selection

Escape

Extend Selection

Find

Find Next Occurrence

Find Previous Occurrence

Shortcuts for selected command:

Press new shortcut:

Assign

The active keymap controls all key bindings in the editor. When you use the code editor
for the first time, you can select which general purpose IDE you are most familiar with and
the default keymap will be selected accordingly. The default keymaps cannot be edited
directly. To customize key bindings, you first have to copy them. Except for the default
keymaps, the name of a keymap can be edited by double-clicking on it.

When assigning new keystrokes or removing existing keystrokes from a copied map, the
changes to the base keymap will be shown as "overridden” in the list of bindings. The
keymap editor also features search functionality for locating bindings as well a conflict
resolution mechanism.

Key bindings are saved in the file $CONFI G DI R/i nstal | 4j/v11/ keymap. xm where
$CONFI G_DI R is YJSERPROFI LE% AppDat a\ Local on Windows, $HOVE/ . confi g on Linux
and $HOVE/ Li brary/ Appl i cati on Support on macOS. This file only exists if a keymap

has been selected. When migrating an install4j installation to a different computer, you
can copy this file to keep your keymaps.

Code gallery

The Java code editor offers a code gallery containing useful snippets that show you how
to get started with using the install4j APl. The code gallery is displayed with the "Code
gallery” toolbar button in the script editor.

39

Select a Code Snippet X

Available code snippets: Preview:

Condition expression // Thi
2, Check if admin user

E Check installer mode // £ e curre = will be sk

Z Check operating system lcontext.isUnattended () && !context.isConsole ()

General
Windows
Installer actions
Startup actions
Form components
Description

Shows how to check if the installer is running in GUI mode and not in
console and unattended mode

Filter:

You can either copy a portion of the script with CTRL- Cor click OK to insert the entire script
at the current cursor position.

Not all code snippets are directly usable in the script that you are editing. Also, some script
properties have special code snippets that are only shown for this property. If such code
shippets exist, they are displayed in bold in a separate category with the name of the
script property.

Installer variables and scripts

Screens, actions and form components are wired together with installer variables that
can be set and retrieved with little code snippets that make use of the cont ext parameter
that is available for most scripts. Any object can be used as the value for a variable, for a
condition you can use boolean values. In a "Run script” action, you could set a boolean
variable like this:

bool ean nyCondition = ...
context . set Vari abl e("nmyCondi tion", myCondition);

Instead of calling set Var i abl e in a "Run script” action, you can also use a "Set a variable”
action where the return value of the script is saved to an installer variable.

Getting installer variables is done with the cont ext . get Vari abl e(Stri ng vari abl eNare)
method. The convenience method cont ext . get Bool eanVari abl e(Stri ng vari abl eNane)
makes it easier to check conditions and write them as expressions without a return value:

cont ext . get Bool eanVari abl e(" myCondi ti on")

To use installer variables with a string value in text properties of actions, screens and form
components, write them as ${i nst al | er: nyVari abl eNane} or use the variable selector
button that inserts them with the correct syntax.

40

A.7 Generated Launchers

Launchers are responsible for starting your application. There are two types of launchers:

Create Launcher X

1. Select type Select launcher type

You can either let install4j generate launchers for you or provide your own launchers for your
application. Please choose the type of launcher:
© Generated launcher

install4j generates launchers that start up your Java application in a secure, professional and
attractive way. Launchers are configured in a platform independent way and are re-generated
for each of your configured media file.

External launcher

Your own platform-dependent launcher is treated and installed by install4j just like the
generated launchers.

© Help Next » Cancel

Generated launchers

install4j can generate native launchers that start your application. For example, on
Windows, an . exe file will be created that among other things takes care of finding a
suitable JRE, displaying appropriate error messages if required and then starts your
application. Using launchers generated by install4j has numerous advantages as
compared to using home-grown batch files and shell scripts.

Each launcher definition is compiled separately for each defined media file [p. 137]. This
means that for the majority of all cases, a single launcher definition will be sufficient to
start your application. If, for example, your distribution contains two GUI applications
and a command line application, you have to define three launchers, regardless of how
many media files you define.

When your application is started with a launcher generated by install4j, you can query
the system property install 4j.appDir to get the installation directory and and
instal | 4j. exeDi r to get the directory where the launcher resides. Use calls like

System get Property("install 4j.appDir")

to access these values.

External launchers

If you already have an external launcher for your application, you can let install4j use
that launcher instead of generating one. Because external launchers are most likely
platform-dependent, you will have to add external launchers for each platform that is
targeted by your media files. Make sure to exclude the irrelevant launchers in your media
file definitions in this case.

If the launcher is a binary file rather than a shell script, make sure to set its Unix mode
in the distribution tree to a value that makes it executable for the owner, such as 755
or 700. This also affects the generated .desktop file whose Exec attribute will start with
a shell executable unless the launcher file is executable itself.

41

Types of generated launchers

Executables created by install4j can be either GUI applications, console applications or
service applications.

Modify Launcher X
1. Select type Configure executable
2. Executable info
Executable type: @) GUI application 7]
+ Redirection [Allow -console parameter 2]
« Single instance mode s ST e
+ Windows version info ses oQ 9
+ Windows manifest options Console application 7
« Unix options Service 2]
« macOS options -
. Menu integration Executable name: = hello_gui | 7]
+ Auto-update integration File set: @ Default file set v 0
3.Icon
4. Java invocation Directory: bin > - @
5. VM options file 2 Fail if i in thread is th
6. Splash screen ail if an exception in the main thread is thrown &)
7. Finished [Change working directory to: . ' @
w Advanced Options
& Help 4 Back Next » Finish Cancel

There is no terminal window associated with a GUI application. If stdout and stderr are
not redirected on the "Executable info->Redirection” step of the launcher wizard, both
streams are inaccessible for the user. This corresponds to the behavior of j avaw . exe).

On Windows, if you launch the executable from a console window, a GUI application can
neither write to nor read from that console window. Sometimes it might be useful to use
the console, for example, for seeing debug output or for simulating a console mode with
the same executable. In that case you can select the Al | ow - consol e par anet er check
box. If the user supplies the - consol e parameter when starting the launcher from a console
window, the launcher will try to acquire the console and redirect stdout and stderr to it. If
you redirect stderr and stdout in the "Executable->Redirection” step, that output will not
be written to the console.

A console application has an associated terminal window. If a console application is
opened from the Windows explorer, a new terminal window is opened. If stdout and stderr
are not redirected on the "Executable info->Redirection” step of the launcher wizard, both
streams are printed on the terminal window. This corresponds to the behavior of j ava(.
exe).

Finally, a service runs independently of logged-on users and can be run even if no user
is logged on at all. A service cannot rely on the presence of a console, nor can it open
windows. On Microsoft Windows, a service executable will be compiled by install4, on
macOS a launch daemon will be created, and on Unix-like platforms a start/stop script
will be generated.

When a service is started, the mai n method of the configured main class will be called. To
handle the shutdown of your service, you can use the Runti nme. addShut downHook()
method to register a thread that will be executed before the JVM is terminated.

For information on how services are installed or uninstalled, see the help topic on
services [p.102].

42

Java invocation

The most important configuration of a launcher is done on the "Java invocation” step of
the launcher wizard and revolves around replicating the arguments you would pass to
the Java launcher in a batch file:

Modify Launcher X
1. Select type Configure Java invocation

2. Executable info

3.Icon VM Parameters: = -Dapple.laf.useScreenMenuBar=true > - @

4. Java invocation
2 Allow VM passthrough parameters (e.g. -)-Xmx256m) €

« Native libraries Configure Version-Specific VM Parameters [no entries]
« Preferred VM a th gl th
« Override Java version ass path @ © Module path @
5. VM options file ° Directory classes r
6. Splash screen
7. Finished
Main class from Module path ¥ hello/gui.Hello > - @
Arguments for main class: [N 7)

w Advanced Options

© Help 4 Back Next » Finish Cancel

* VM parameters

You can provide a fixed list of VM parameters to your launcher and also add
version-specific VM parameters. Fixed VM parameters can contain compiler, launcher
and installer variables [p. 68].

Modify Launcher X
1. Select type Configure Java invocation

2. Executable info

3.Icon VM Parameters: = -Dapple.laf.useScreenMenuBar=true 2 I ?]

4. Java invocation N N
[7 Allow VM passthrough| > Insert Installer Runtime Variable

. Native libraries Configure Version-Spe(. Insert Launcher Runtime Variable
« Preferred VM 4 Insert Compiler Variable
d) Class path @ @ Module path €@ :‘} P
+ Override Java version @ Insert Runtime Environment Variable
5. VM options file ° Directory classes r
6. Splash screen
7. Finished

Compiler variables are replaced at build time, launcher variables are replaced by the
launcher so that the VM sees the replaced value from the very beginning, and installer
variables are replaced in the main method. This means that using installer variables is
not suitable for setting certain kinds of VM parameters like - Xk, but can be useful for
replacing system properties that are only used by your code or by libraries.

See the separate help topic on VM parameters [p. 91| for more information on the
various ways to set VM parameters for launchers.

* Module or class path

Onthe "Javainvocation” step of the launcher wizard you can configure both the module
path and the class path. These settings correspond to the - - nodul e- pat h and the - cp
parameters of the standard Java launcher. The module path is only applicable for Java
9 and higher. Like for the standard Java launcher, you can add directories, single archives

43

or directories with archives. In addition, you can add archives from environment variables
and from compiler variables.

The compiler variable entry is useful if the set of JAR files that should be added to the
module path or class path is calculated in your build system and these JAR files are
not staged to a fixed set of directories that you could reference in install4j. In that case,
the the command line compiler [p. 234] as well as the plugins for Gradle [p. 239],
Maven [p. 246] and Ant [p. 255] can set a compiler variable externally where the single
JAR files are separated by a configurable separator.

Define Class Path Entry X
Entry Type
Scan directory Directory Archive Environment variable &3 Compiler variable
Error Handling
Fail if an error occurs with this class path entry &)
Detail
Compiler variable: N 7]
Path list separator: ${compiler:sys.pathlistSeparator} (AN ?]
Relative path prefix:
Reads a compiler variable that contains a list of relative JAR files paths, separated with the

specified separator. The files are resolved in the distribution tree, absolute file names will not
work.

+ Mainclass

For Java 9 and higher, you can choose a main class from either the module or the class
path. If you choose the module path option, the syntax for the main class is <nodul e
name>/ <cl ass nanme> and corresponds to the - - nodul e parameter of the standard
Java launcher. The chooser dialog shows all the available main classes and inserts the
correct value automatically.

+ Arguments

Like VM parameters, the list of fixed arguments supports compiler, launcher and installer
variables. Arguments on the command line are appended to the fixed list of arguments.

Cross-platform launcher features

Generated launchers optionally support a single instance mode on all supported platforms.
You can use the launcher API [p. 230]to register a startup handler that receives the
command line parameters if the launcher is started more than once. In this way, you can
handle file associations with a single application instance. GUI launchers on macOS are
always in single instance mode because that is a fundamental property of application
bundles.

Icons for launchers can be generated from a set of PNG files. On Windows, an . i co file
and on macOS an . i con file is compiled, on Linux the generated . deskt op file references
the PNG images. You can also provide pre-built ICO and ICNS files.

44

Modify Launcher X

1. Select type Define launcher icon

2. Executable info

3. Icon [Add icon to launcher @

4. Java invocation

5. VM options file Cross-Platform Image File Size r

6. Splash screen Aresources\hello16x16.png 16x16

7. Finished Aresources\hello32x32.png 32x32
Aresources\hello48x48.png 48x48

Windows
© Generate from cross-platform image files

Use ICO file:

macOS
© Generate from cross-platform image files

Use ICNS file:

© Help 4 Back Next » Finish Cancel

A splash screen image can be configured on the "Splash screen’ step of the launcher
wizard. The - spl ash command line parameter does not work for the generated executables,
because it is part of the standard Java launchers and not of the Java runtime itself. An
exception is the argument - J- spl ash: none which is emulated by install4j Windows
launchers to disable the splash screen from the command. The splash screen supports
additional high DPI images with a @x suffix in the file name.

In addition to the standard splash screen image, install4j allows you to position two lines
of text on top of the splash screen image, a version line and a status line. The status line
can be updated from your launcher with the launcher API [p. 230].

Modify Launcher X
1. Select type Text lines on splash screen

2. Executable info

3. lcon [show lines with text on the splash screen

4. Java invocation
5. VM options file

Status Line

6. Splash screen Initial: Loading application ... 2N ?]
o X = a - a
. Textlines Position: X = 9 5 Y= 210 |3 @
7. Finished Font: 8 & pt Bold Color: .
Version Line

Text: version ${compiler:sys.version} »
Position: X = 279§ Y= 169 5 @
Font: 8 & pt Bold Color: .

Position Text Lines Visually

© Help 4 Back Next » Finish Cancel

If your code loads native libraries via System | oad(...) or if a native library loads
dependent libraries, the native library path has to be modified to include the directories
where these native libraries are located. In batch or shell scripts you would do this in a
platform-specific way, modifying PATH on Windows, DYLD LI BRARY_PATH on macOSs,

LD_LI BRARY_PATHonN Linux and a variety of other variable names on different Unix variants.

45

In install4j, you can use the "Java invocation->Native libraries” step of the launcher wizard
to specify such directories, and the launcher will take care that the appropriate environment
variable is modified. These directories end up inthej ava. | i br ary. pat h system property
in your launcher. If you need different directories for different media files, use a compiler
variable for the directory name and override it for each media file.

JRE search sequence

By default, launchers use the bundled JRE [p. 96]. In case you do not bundle a JRE, the JRE
search sequence determines how install4j searches for a JRE on the target system. New
configurations get a pre-defined default search sequence.

Search Sequence Without Bundled JRE L G 4
For media files without a bundled JRE, you can define version requirements and a search sequence for the JRE that will be used
to run the installers and the generated launchers.
Java Version 7
Minimum version: = 11 > @
Maximum version: > @

Allow JREs with a beta version number @)

JRE Search Sequence ?)

Previous installations r
¥ Search Windows registry and standard locations
£ Environment variable JAVA_HOME
“ﬂ Environment variable JDK_HOME

Apart from searching for previous installations with the same application id, the Windows
registry, well-known standard installation locations and paths in environment variables,
you can also configure a relative directory in your distribution tree. This is useful if you
distribute your own JRE for a launcher that is not provided through a JRE bundle managed
by install4j.

install4j has a special mechanism which allows you to bundle JREs with your media files.
If you choose a particular JRE for bundling [p. 96] in one of the media file wizards [p. 137],
this JRE will always be used first, and you do not need to adjust the search sequence
yourself.

If you do not bundle a JRE and a launcher has special Java version requirements that
differ from those of the other launchers, you can override them on the "Java
invocation->Override Java version” step of the launcher wizard.

If you have problems with JRE detection at runtime, see the help topic on error
handling [p. 224] for a description on how to get diagnostic information.

Windows-specific features

A version info resource will enable the Windows operating system to determine
meta-information about your executable. This information is displayed in various locations.
For example, when opening the property dialog for the executable in the Windows explorer,

46

a "Version” tab will be present in the property dialog if you have chosen to generate the
version info resource.

The version info resource consists of several pieces of information. If you check Gener at e
version info resour ce onthe "Executable->Windows version info" step of the launcher
wizard, there are several fields whose values must be entered. The “original file name”, the
‘company name’, the "product name” and the "product version” fields in the version info
resource are filled in automatically by install4j and cannot be configured.

Modify Launcher X

1. Select type Configure Windows version info resource
2. Executable info
install4j can generate a version info resource for Windows executables. This information is

. Redirection displayed, for example, as a tab in the Windows explorer property dialog.

« Single instance mode Lo
.9 L [7 Generate version info resource
+ Windows version info

+ Windows manifest options Product name: > @
« Unix options § X
. macOs options File version: | 7]
+ Menu integration Internal name: helloGUI »
« Auto-update integration
3.Icon File description: = Hello World Suite GUI Launcher »

4. Java invocation

5. VM options file Legal copyright: = Copyright ej-technologies GmbH, 2002-2003 »
6. Splash screen
7. Finished

@ Help 4 Back Next p Finish Cancel

On the "Executable->Windows manifest options” step you can adjust the contents of the
executable manifest, a static resource in the executable that controls some Windows
features.

Modify Launcher X

1. Select type Configure options for the executable manifest

2. Executable info

The manifest of a Windows executable is a static resource entry that can enable or disable certain
features provided by the operating system.

« Redirection
« Single instance mode .
.g o Execution Level 2]
+ Windows version info
+ Windows manifest options © As invoker 7
+ Unix options Highest available 7

+ macOS options
+ Menu integration
« Auto-update integration

Require administrator &)

3.Icon DPI Awareness 2]
4. Java invocation O Aways @
5. VM options file Never @
6. Splash screen
7. Finished Java 9+ @
@ Help 4 Back Next p Finish Cancel

With an execution level other than "As invoker’, you can ask Windows to show a UAC
prompt and run the launcher with elevated privileges.

47

The DPI awareness controls whether Windows will scale up pixels in a GUI if high DPI is
used. By default, DPI awareness is enabled if the minimum Java version of your project is
at least Java 9.

On Windows, executables can be 64-bit or 32-bit. A 64-bit executable can only run with
a 64-bit JVM, and a 32-bit executable can only run with a 32-bit JVM. By default, 64-bit
executables are generated, but you can switch to 32-bit executables in the “Installer
options” step of the Windows media wizard.

macOS-specific features

By default, the generated application bundle for a GUI application uses the "Executable
name” property from the "Executable info" step of the launcher wizard. If you choose
compact names as appropriate for Windows and Unix, you may not be happy with the
appearance in the Finder on macOS.

On the "Executable info->macOS options” step, you can specify a localizable application
bundle name. If you specify an i18n variable as the application bundle name, such as
${i 18n: nyLauncher Nane}, install4j will name the application bundle directory with the
resolved value for the principal language [p. 86] of your project. In addition, it will take the
values for all additional configured languages and set up the appropriate localization in
the application bundle.

Modify Launcher X

1. Select type Options for macOS launchers
2. Executable info
Application Bundle Overrides
« Redirection
« Single instance mode
+ Windows version info Custom bundle identifier:

Custom executable name: &)
; . : 4
+ Windows manifest options
O
O

« Unix options Entitlements file:
+ macOS options
« Menu integration
« Auto-update integration
3.Icon
4. Java invocation
5. VM options file
6. Splash screen
7. Finished

Application category:

Customize Plist File 7]

Custom fragment for Info.plist file:

Compile-Time File Associations and URL handlers 7]

& Help 4 Back Next » Finish Cancel

On macOs, file associations and URL handlers are not registered with calls to an API that
is provided by the operating system, but by adding special entries to the | nf o. pl i st file
of the application bundle. This is why macOS single bundle archives can handle "Create
a file association” and "Register a URL handler’ actions at compile-time. By default,
associations for all such actions that are contained in the installer configuration on the
“Installer->Screens & Actions” step are added to the | nf 0. pl i st file. Optionally, you can
choose that only selected actions should be included.

Many advanced behavioral modifications of an application bundle can be done by adding
entries to the I nf 0. pl i st file. On the macOS Options step you can specify a fragment
that is added to the default | nf o. pl i st file. For services, this fragment is written to the
launcher plist file.

48

Modifying launcher shell scripts and secondary start files

Launchers on Unix as well as command line and service launchers on macOS are shell
scripts that invoke the standard Java launcher. To include your own modifications, you
can specify a fragment that is inserted just before the j ava invocation.

Modify Launcher X

1. Select type Options for Unix launchers
2. Executable info
Executable Options
« Redirection
. . Executable mode: 755 Reset To Default 2
« Single instance mode
+ Windows version info Custom script fragment: - @
+ Windows manifest options
« Unix options
+ macOS options
« Menu integration
« Auto-update integration
3.lcon
4. Java invocation
5. VM options file
6. Splash screen Additional content for .desktop file: - @
7. Finished

Options For Service Launchers 7

Options For GUI Launchers 7

& Help 4 Back Next » Finish Cancel

On Linux, two conditions require the generation of additional start files for a launcher and
in both cases you can add additional content to them:

+ The integration of a GUI launcher into a desktop environment requires the generation
of a. deskt op file. You may want to add additional content to that file to customize the
interaction with the desktop environment.

« In the case of a service launcher, a . servi ce file is generated if systemd is detected.

To configure advanced aspects of systemd execution, you can add additional content
to that file.

Auto-update integration

In the Installer->Screens & Actions [p. 160] step, you can add a "Background update
downloader” installer application that runs in the background and automatically downloads
an updater installer. Such a background update downloader will not execute the
downloaded update installer because that would disrupt the work of the user. Instead, it
executes a "Schedule update installation” action to register the downloaded updated
installer for later execution.

For GUI launchers, you can select the Execut e downl oaded updater installers at
st art up check box in the "Executable info->Auto update integration” step of the launcher
wizard. When this GUI launcher is started and a downloaded update installer has been
scheduled for installation, the update installer will be executed. By default, the execution
mode of the update installer is set to "Unattended mode with progress dialog” with a
configurable message.

49

Modify Launcher X

1. Select type Auto-update integration
2. Executable info
A background update downloader application can be configured on the Installer->Screens &

. Redirection Actions step.

+ Single instance mode When an update installer was downloaded, it can be executed programatically through the

+ Windows version info install4j API by calling UpdateChecker.executeScheduledUpdate.

+ Windows manifest options

« Unix options GUI launchers can process such pending updates automatically at startup.
« macOS options
+ Menu integration Execute downloaded update installers at startup (GUI launchers only)
+ Auto-update integration Unattended mode with progress dialog
3.Icon
4. Java invocation ${i18n:updater.Windov ompiler:sys.fullName || k

5. VM options file
6. Splash screen
7. Finished

© Help 4 Back Next » Finish Cancel

For more on auto-update functionality, see the corresponding help topic [p. 119].

50

A.8 Form Screens

Most screens in install4j contain a configurable form. In these screens, you can configure
a list of form components [p. 198] along the vertical axis of the form. install4j provides you
with properties to control the initialization of form components and the way the user
selection is bound to installer variables [p. 68]. With this facility you can easily generate
good-looking installer screens that display arbitrary data to the user and request arbitrary
information to be entered.

Most standard screens are built with form components and form templates are starting
points for your own customizations. Also, you can add empty form screens and add form
components to them. For screens that have a configurable form, a header is shown above
the screen configuration [p. 176] that shows the number of contained form components
as well as buttons for editing them and showing a preview of the form.

} o
Installr (4 sereens) 10 insta.| Contains 6 form components 3 Configure ® Preview
4+
=\ Startup X
.;rA Welcome [ID 1512] 0 Form
Fill horizontal 4
? JDK [Screen group] (2 scr... F:’H v;]rrt‘\'zcoar\]sap:czace
3 Search for JDKs [For... 7 Scrollable
E JDK Selection [Form] [I... Messages
" Finish (1D 1946 Screen title JDK Selection
#| Finish [ID 1546) Screen subtitle Which JDK do you want to use?

Control Flow
Condition expression

\lalidatinn avnraccinn immnart iaua in ® 11

o

The actual configuration of the form components is performed in a separate dialog:

40 Single radio button [ID 3898] + Configurat.ion .
2 Allow configuration on screen
| [Vertical group (2 form components) [ID 3900] x Help
{4 Multi-line HTML label [ID 3807] Help text
o7 ListD 3740) Initialization P
Initialization script if (configurationObject.getModel().
{4 single radio button [ID 3897) 4 Reset initialization on previous
{4 Directory chooser [ID 3743] Visibility script
Label
Text
3 Font Default
Font color =
" Icon
g Icon-text gap 4

Derrers
List

A list with an optional leading label. The user selection (the selected
indices) is saved to a variable.

Screens can lay out the contained form in different ways, but for plain form screens, you
can configure this with properties of the containing screen. By default, a form is top-aligned
and fills the entire available horizontal space. For example, for a set of radio buttons that
should be centered horizontally and vertically, the “Fill horizontal space” and "Fill vertical
space” properties of the screen must be set to "false” and the horizontal and vertical anchor
properties must be set to "Center".

51

Form
Fill horizontal space

Horizontal anchor | =| Center
Fill vertical space

Vertical anchor | Center
Scrollable
Messages
Screen title JDK Selection
Screen subtitle Which JDK do you want to use?

Control Flow

Form components

install4j offers a large number of form components that represent most common

components available in Java and some other special components that are useful in the
context of an installer.

Select a Form Component X

Available form components:

Action components
Labels and spacers
Option selectors
Sliders and spinners
Special selectors and displays
Text fields
% Console handler

Filter:

Description

Insert after selection

oK Cancel

All components that expect user input have an optional leading label. The components
themselves are left-aligned on the entire form. If you leave the label text empty, the form
component will occupy the entire horizontal space of the form.

Configuration

Allow configuration on screen
Help

Help text

Initialization

Initialization script if (configurationObject.getModel().g
Reset initialization on previous

Visibility script

Label

Text

Font Default
Font color =
Icon

Icon-text gap 4

Every form component has configurable insets. For vertical gaps that are meant to separate
groups of form components, consider using a "Vertical spacer” form component since it
makes the grouping clearer and allows to reorder form components more easily.

You can preview your form at any time with the Preview Form button. The preview dialog
performs all variable replacements of compiler variables and custom localization keys,
but not of installer variables. Also, no initialization scripts or screen activation scripts are

52

run. The preview is intended to give you quick feedback about visual aspects of your form.
At runtime, the look and feel may be different.

Preview X

JDK Selection
Which JDK do you want to use?

© Use detected JDK
Found ${installer:jymCount} JDKs:

${installer;jvmLocations}

Specify alternative JDK base directory

< Back Close Cancel

Every form component always has its preferred vertical height. For some form components
such as the "List" form component, this preferred vertical size is configurable. If the vertical
extent of the form exceeds the available vertical space, a scroll bar is shown. If you want
such a form component to fill the entire available vertical space, you can select the “Fill
vertical space” property for the form component and deselect the "Scrollable” property of
the form screen. In that case, there will be no scroll bar for the form.

User input

If a form component can accept user input, you need some way to access the user
selection afterward. install4j saves user input for such form components to the installer
variable [p. 68] whose name is specified in the "Variable name" property. That variable
can then be used later on, for example, in condition expressions for screens and actions.

ront color
Icon

Icon-text gap 4
Insets 3, 0; 3; 0 [Default]

List entries ${installer;jvmLocations}

Initially selected index 0
Fill horizontal space V]

Visible rows 5
Fill extra vertical space V]

Scrollable (v}

Multi-selection

|+ Variable name jvmindex |

If you have a checkbox that saves its user input to a variable called "userSelection’, the
condition expression

cont ext . get Bool eanVari abl e("user Sel ecti on")

will skip the screen or action for which that condition expression is used. The user selection
in form components is written to the variables before the validation expression for the
screen is called. If you have a text field that saves its input to the variable "fileName®, the
validation expression

53

Util.showOptionDial og("Do you really want to del ete " + context.getVariable("fileNanme"),

new String[] {"Yes", "No"}, JOptionPane. QUESTI ON_ MESSAGE) == 0

used on the same screen will block the advance to the next screen if the user answers
with "No".

The values of installer variables accommodate the general typej ava. | ang. Obj ect .Every
form component saves its user input in its naturally corresponding data type, for example:

« For check boxes, the type j ava. | ang. Bool ean is used. For this special case the context
offers the convenience method get Bool eanVari abl e.

« For text fields, the type j ava. | ang. Stri ng is used.
« For drop down lists the type j ava. | ang. | nt eger is used to save the selected index.
« For date spinners, the type j ava. | ang. Dat e is used.

The description of the value type for each form component that accepts user input is
shown in the registry dialog when you select the form component.

Initialization

For each form component, install4j offers several properties that allow you to customize
its initial state. However, you may want to access the properties of the underlying Ul
component or use a more complex logic for modifying the form component.

For this purpose, the ‘Initialization script” property is provided. Form components can
expose a well-known component in the initialization script that allows you to perform
these modifications. This so-called "configuration object” is usually contained in the form
component itself. For example, a 'Check box" form component exposes a
confi gurati onQoj ect parameter of typej avax. swi ng. JCheckBox and a "Text field" form
component exposes aj avax. sw ng. JText Fi el d.

Allow configuration on screen

Help text

Initialization script if (configurationObject.getModel().
Reset initialization on previous
Visibility script

Text
Font Default

Font color 3
Icon
Icon-text gap 4

As with actions and screens [p. 25] in general, the possibility that the user moves back
and forth in the screen sequence presents a dilemma to install4j. Any form component
that accepts user input has a configurable initial value, and any form component can
have an initialization script. This initialization is performed when the user enters the screen
for the first time. Should this initialization be performed again when the user moves back
and then enters the screen once again? Since install4j does not know, it initializes every
form component only once by default. This policy can be changed with the "Reset
initialization on previous" property for each form component.

Depending on factors such as the correct platform, user input in the previous screen or
whether the installer runs in console mode, some form components may not be applicable

54

and should be hidden. In the "Visibility script’, you can detect such conditions and return
f al se to hide the form components.

55

A.9 Layout Groups

A layout group is an element in a form screen [p. 51]. It contains a number of form
components and other layout groups. With layout groups you can achieve virtually any
kind of visual layout.

There are two different kinds of layout groups: vertical and horizontal groups. A horizontal
group puts the contained elements side by side, while a vertical group organizes them
from top to bottom. Essentially, the top-level of a form screen is a vertical layout group
itself.

Use case: Side by side

Putting two form components side by side is done with a single horizontal group:

Configuration

40 Horizontal separator [ID 46] ™ .
— Image File
v . Horizontal group (2 form components) [ID 47] x Background color =
[§ Textfield [ID 50] ¢ Foreground color =3
. N Border sides
40 Password field [ID 51] 5 .
€ Allow configuration on screen
‘40 Horizontal separator [ID 48] vy Initialization
{4 File chooser [ID 52] Visibility script
Layout
Insets 0;0;0;0
g Anchor k| West
Cell spacing 5
/ Align first label

Make children same height

Horizontal group

A horizontal form component group contains one or more form
components that are distributed along the horizontal axis.

Preview

X
Admin account
Please configure the credentials for the admin account
—

Admin account
User: Bob Password: | seeeee
License

Key file: Browse ...

< Back Close Cancel

The leading labels of the first form component in the horizontal layout group (“User:") and
those of the form components on the same level as the horizontal group ('Key file:") are
aligned. There is a property on the horizontal layout group to switch off this alignment.

Use case: Two columns

Two columns of form components are realized with two vertical layout groups inside a
horizontal layout group:

56

J Horizontal group (7 form components) [ID 54] + Configuration

- Image File
| | [Vertical group (2 form components) [ID 55] x Background color 2]
;40 Drop-down list [ID 57] Jo) Foreground color =
. Border sides
o 40 List [ID 58] . .
X Allow configuration on screen
v . Buttons [Vertical group] (5 form component.. |l R
Af Button [ID 59] Visibility script
d . Layout
{4 Button [ID 60] Insets 0;50,0
of§e Spring [ID 61] 3 Anchor [| North-West
* Button [ID 62] Cell spacing 0
y v Make children same width
A‘o Button [ID 63] db
Vertical group
A vertical form component group contains one or more form
components that are distributed along the vertical axis.
Preview X
Drop down and list selectors
With a button bar at the right side
—
Option 1 v Add
One Remove
Two
Three

Up

Down

< Back Close Cancel

In this case the second column with the buttons takes up a fixed amount of horizontal
space, because buttons do not automatically grow beyond their preferred size. To make
all buttons of equal size, the "Make children same width" property has been selected. Two
buttons are aligned at the top of the column, two buttons at the bottom. This is achieved
with a "Spring” form component after the second button that has its axis set to "Vertical”.
It pushes all further components to the bottom.

Use case: Breaking label alignment

Alignment of leading labels can be broken by introducing vertical layout groups:

57

* Drop-down list [ID 65] + Configuration
Image File
v " Vertical group (2 form components) [ID 66] x Background color 2]
0*0 Text field [ID 67]) Foreground color 4
. Border sides
* Text field [ID 68] N .
Allow configuration on screen
Initialization
Visibility script
Layout
Insets 0;0;,0;0
3 Anchor [| North-West
Cell spacing 0
% Make children same width
Vertical group
A vertical form component group contains one or more form
Gl components that are distributed along the vertical axis.

Preview X
Label alignment ZI
—

Each vertical group has its own alignment

Select one of the following options: | One v
VM parameters:
Arguments:
< Back Close Cancel

Here, the long leading label of the first form component does not enlarge the leading
labels of the two text field formm components. The latter are aligned only among themselves.

Use case: Center and right alignment

Single form components can be centered or right-aligned if you enclose them in a
horizontal layout group and set the "Anchor” property on the layout group accordingly.

Configuration
Image File
Background color
fe) Foreground color

v : Horizontal group (1 form component) [ID 70] +

* Radio button group [ID 73] x

offe Text field (1D 71]

E Horizontal group (1 form component) [ID 72]

o Button 1D 74)

=
=
Border sides

Allow configuration on screen
Initialization

Visibility script

Layout
Insets

Anchor

0;0,0;0
;[Center
Cell spacing 5

¥ Align first label
Make children same height

Horizontal group

A horizontal form component group contains one or more form
Gl components that are distributed along the horizontal axis.

58

Preview X
Alignment of form components
Use the anchor property of form components
—
Client Server

Not centered:

Right-aligned

< Back Close Cancel

For the layout group with the radio button group, the anchor has been set to "Center’, for
that with the button the anchor has been set to "East’. This only works with formm components
that do not grow horizontally. Some form components that do grow horizontally can be
restricted to a fixed horizontal size, such as the text field by specifying a non-zero column
count.

59

A.10 Styles

Install4j has a flexible model for styling the Ul of installer applications that allows you to
arrange content and styling elements in arbitrary ways. While there is an API to do this
programatically, you can configure form styles in the install4j IDE without any custom
code. Form styles use the same foundation as form components [p. 198] for screens. All
default styles are created with form styles, so the details of the default styles can we
tweaked very easily and new styles can be developed by starting with the default styles.

Configuring styles

Styles are configured on a per-project basis. On the "Installer->Screens & Actions->Styles’
step of the install4j IDE, all available styles are listed. When you add a style, it can either
be a configurable form style, or a style implementation from your custom code. Styles are
either standalone or not. A non-standalone style cannot be used directly, but is only
available for nesting into other styles.

One single style is marked as the default style and is shown with a bold font. With the "Set
As Default” action you can change the default style. Styles can be grouped into folders
for organizing them according to your individual preferences. For example, in the default
styles, the nested styles are grouped into a separate folder whereas the standalone styles
are located at the top level.

Standard [F le] [ID 1 " .
” AT I Sa) r Contains 5 form components 5 Configure ® Preview
l; Banner [Form style] [ID 7] x
Style components (2 styles) 0 Configuration
l; Standard header [Form style] [ID 14] S.tanda.\one style /]
~ Fill horizontal space [v]
lz Standard footer [Form style] [ID 18] L Fill vertical space (V]
=

Form style

A freely configurable style that uses form components to set up a
layout around the screen content

On the "Installer->Screens & Actions” step of the install4j IDE, you can apply styles. Installer
applications, screen groups and screens all have a "Style” property. For installer applications,
this property is set to "Default”. You can change it to any standalone style. For screen
groups and screens, the "Style” property is set to “Inherit from parent”. The property also
indicates which style is actually inherited. Alternatively, you can choose to explicitly set a
style for the selected element. Any screen groups and screens below it will now inherit this
style.

60

Installer (5 screens) [ID installer]

N Contains 4 form components 5 Configure ® Preview
=\ Startup (1 action) x
> Welcome (1 action) [ID 2] Update Alert
] . . . Alert for update installation v
“k Installation location (1 action) [ID 8] P g
. Control Flow
%% |Installation components [ID 12] ' Condition expression
Installation (3 actions) [ID 15] Validation expression
b Finish - Rollback barrier
Finish [ID 20] Quit after screen
r Uninstaller (4 screens) [ID uninstaller] 3 Back button
GUI Options
s | |+ Style Banner |
‘ Customize banner image
Privileges
Action elevation type Inherit from parent [Do not elevate]

Screen Activation

Pre-activation script

Post-activation script
Welcome

A screen that welcomes the user to the installation of your application.
This screen should be placed at the beginning of the installation

Some screens have a preference for a particular style. For example, the "Welcome”" and
‘Finish” screens want their style set to "Banner”. When adding such a screen, the IDE matches
the style by name. In this example, if no style named "Banner” is available, the default style
is used. Otherwise, install4j keeps track of style associations by ID and you can rename
styles without breaking any associations.

If you delete a style, all its style associations are broken. Compiling the installer will now
fail, and you will have to visit all installer applications, screen groups and screens where
this style was explicitly selected and choose a new style.

Should you want to return to the default styles, there is a "Reset Styles To Default” action
for that purpose. Existing style associations are matched by name in that case, so style
associations with the "Banner” style survive this reset, for example.

Form styles

A restricted set of the form components that are available for building form screens [p. 198]
can be used to build form styles. Form components that take user input are not suitable
for styles because styles have a different life-cycle than screens.

In addition, form styles can use a set of special form components. The "Screen content”
form component contains the Ul component of the screen and is changed each time
when a screen is activated. When you preview the style, this content area is shown with
a placeholder. The "Screen Title" form component shows the title or the subtitle of the
screen, depending onits "Title type" property. The "Control button” form component is used
for realizing the "Next’, "Previous” and "Cancel” buttons.

61

J Horizontal group (4 form components) [ID 19] | ¢ Button)
* Control button type Previous button
Spring (1D 20] X Button text < ${i18n:ButtonBack}

; Back button [Control button] [ID 21] o) Button icon

m Next button [Control button] [ID 22] EEHEOARA L
Allow external overriding

m Cancel button [Control button] [ID 23] vy Initialization
Initialization script
Reset initialization on previous

Control button
o A control button that handles the user actions with respect to the

screen flow. This includes activating the next screen, activating the
é{y previous screen and cancelling the wizard.

The keyboard shortcuts for control buttons are

+ Previous:Alt + Left Arrow/”~« onmacOS
« Next:Alt + Right Arrow/”~\- on macOS

« Cancel: Escape

Finally, the "Nested style” form component allows you to embed another style. In this way,
you can build a set of styles that share common parts. For example, in the default styles,
the navigation buttons at the bottom are the same. With the "Standard Footer” style used
by both the "Standard” and the "Banner” standalone styles, you have a single place to
change its settings.

L. Header [Nested style] [ID 2] + Configuration
- |+ Style Standard footer |
! | [Main [Vertical group] (3 form components) [ID. x Allow external overriding

@ Screen content [ID 4] 0 Initialization

. Initialization script
* Watermark [Horizontal separator] [ID 5] o .
Reset initialization on previous

Footer [Nested style] [ID 6] 7 Visibility script

Layout
Insets 0;0,0;0
o
)4
Jo
Nested style

Insert another style that is defined in this project. Both top-level styles
as well as non-top-level styles can be nested.

Graphical styling elements

A key concern of styling is the placement of images, either in the foreground or in the
background. Both kinds of placements are handled by layout groups in form styles. For
both vertical and horizontal form groups, setting their image file" property shows additional
properties that allow you to place the image in the layout group. If you place the image
in the foreground, it cuts off an entire edge of the rectangle that can get its own background
and border. In that way, the image can blend seamlessly into its surroundings.

62

v . Vertical group (3 form components) [ID 8] o Configu.ration - - -
Image File ${compiler:sys.install4jHome}res...

9
Screen Title [ID 9] X Image anchor | North-West
{4 Horizontal separator [ID 10] (Image edge I vertical
Screen content [ID 11] Image .edge background c... - 2.5, 143,220/ 0, 74, 151
Image insets 0,0;0; 0
ﬂ Nested style [ID 12] - Overlap with contained co...
Image edge border V]
Image edge border color []
Image edge border width 1
3 Background color [l 255, 255, 255/ 49, 52, 53
Foreground color =
/ Border sides bottom
g Border color =4

Rarder width 1

Vertical group

A vertical form component group contains one or more form
components that are distributed along the vertical axis.

To place an image into the flow of form components, you can use the Image insets”
property and set its “lcon” property.

Other important styling elements are borders and separators. Again, this is handled by
layout groups. With their "Border sides” property, you can define which sides of the border
should be drawn. Color and thickness of borders are also configurable.

By default, layout groups and form components are transparent, so that the default
background color of the window shines through. By setting the "‘Background color” property
of a layout group, you can make it opaque and give it a specific color. The "Foreground
color” property sets the font color for contained form components that do not have their
color set explicitly.

Overriding properties

Some styles can have elements that are specific to particular screens or particular installer
applications. For example, the header image in the "Standard” style or the banner image
of the "Banner” style could be required to change for each screen. Instead of duplicating
styles in this scenario, install4j allows you to designate certain properties of selected form
components and layout groups that should be overridable when the style is applied.

When editing the form components of a form style, each form component has an "Allow
external overriding” property. If you select that property, a named overriding entry will be
offered when you explicitly apply the style on the "Installer->Screens & Actions” step. With
the "Override title" property, you specify the displayed name for the override entry and
that name is used for saving the overridden properties. This means that the name must
be unique for a single style and that overrides are lost if you change the name. The "Property
selection mode" property then lets you select which properties should be overridable,
either all properties are overridable, or a list of properties is included or excluded.

63

v . Vertical group (2 form components) [ID 15] +

Image ancnor

| NOrtn-£ast

Image edge J Vertical
7 Title [Screen Title] [ID 16] p'e Image edge background c... [7]
$. . Image insets 0;51;1
Subtitle [Screen Title] [ID 17] 3 .
Overlap with contained co...
Image edge border
Background color [l 255, 255, 255 / 49, 52, 53
Foreground color =3
Border sides bottom
Border color E3
Border width
o Allow external overriding

Override title
Property selection mode
Selected properties

Customize title bar
Include selected properties
5 properties

Vertical group

A vertical form component group contains one or more form
components that are distributed along the vertical axis.

When you select a style on the “Installer->Screens & Actions” step, install4j scans the style
and all its nested styles for form components and layout groups with defined overrides.
Each named override is presented as a checkbox property. If you select the checkbox, the
overridable properties of the form component or layout group are copied and displayed
as child properties. You can now change the properties to different values. Note that the
overridable properties lose their connection to the default values in the original form
component or layout group. If you change a default property value, you have to manually
change it in all overrides, if necessary.

4 Installer (5 screens) [ID installer] + j‘ Properties
t \ Startup (1 action)
.;,; Welcome (1 action) [ID 2] ° - Installer Variables
j, Installation location (1 action) [ID 8] Log file for stderr ${compiler:sys.mediaFileName}_err...
,;‘rA Installation components [ID 12] AcOS
1 macOS entitlements file
Installation (3 actions) [ID 15] Custom fragment for Info.plist
2 Finish (1D 20] Unix
> . Custom script fragment
Uninstaller (4 screens) [ID uninstaller]
GUI Options
Style Standard
Customize title bar
Image File icon:${installer:sys.installerApplica...

Image anchor
Overlap with contain...

| 7 North-East

Background color
Foreground color

[l 255,255,255 /49,52, 53
=

Custom watermark

Customize title bar

A form component in the selected style is configured to allow
customization of selected properties.

For more complex overriding cases, consider adding a "“Nested style" form component
and making its "Style” property overridable. When applying such a style, you can substitute
a different nested style as appropriate.

API

Under some circumstances, styles are more easily implemented with the API. For example,
if you want to have configurable properties that determine the construction of the style
or if the styling cannot be realized with the facilities of the form style.

The sample project "customCode” includes a style class Sunny SkyBackgr oundSt yl e and
its associated BeanInfo Sunny SkyBackgr oundSt yl eBeanl nf o that show such an example
style. It paints a background image that depends on the window dimensions and continues

64

up to the window border. In the "customCode" project, look for the "Configurable form"
screen in the installer and preview the form to see what it looks like.

That example also shows how to implement a style that wraps a user-selectable style.
The main style is still the standard style, and the "Sunny sky background® style takes the
function of a decorator. To make development of such wrappers easier, the APl includes
a convenience class com i nstal | 4j . api . styl es. W apper Styl e.

Merging styles from other projects

Instead of duplicating styles across projects, you can develop them in one project and
merge them into other projects. The merge projects functionality [p. 113] in install4j includes
an option to merge styles.

If styles are merged, the "Style” property of installer applications, screen groups and screens
shows the merged styles as well, with their names prefixed with the project name that
was assigned in the merge settings.

If you link to screens or screen groups of merged projects, they will use their configured
styles from the merged project only if style merging is enabled. Otherwise, install4j tries
to match a style by name in the main project.

Overriding standard icons

If you would like to change the standard icons in the installer, have a look at the JAR file
resource/i4jruntine.jar in the install4j installation directory. The package com
install4j.runtine.installer.frontend.iconscontainsalliconsthatare used by the
installer. To replace some or all of these icons with your own version, create a JAR file that
contains just the new icon files in the same directory and add it on the “Installer->Screens
& Actions->Custom Code" step. The installer will first try to load an icon from the custom
code. Failing that, it will fall back to the built-in version.

65

A.11 Look & Feel

The GUI of the installer, uninstaller and other installer applications is implemented with
Java Swing. Swing is themeable and so install4j can offer you choices for the look and
feel of the applications that are provided by the runtime. The generated launchers are
not affected by these settings.

Configuring the look & feel

The options for the look & feel can be adjusted on the “Installer->Screens & Actions->Look
& Feel” step.

© FlatLaf cross platform Look and Feel @

Dark or light mode: Auto-detect if light or dark mode should be used +
Light theme: Flat IntelliJ v
Dark theme: Flat Darcula v

Java native Look and Feel @)

Look and feel from custom code

The default setting is to use the FlatLaf W cross platform Look and Feel which is a flat Look
and Feel that works well on all supported platforms and includes a dark mode. Please

consider starring it on GitHub @) as a token of appreciation for the author.

FlatLaf includes four built-in themes, two for light mode and two for dark mode. By default,
the themes that look like the IntelliJ IDEA light and dark themes are selected. In addition,
FlatLaf supports custom Intellid themes. These are based on JSON files and can override
Ul colors. You can download an IntelliJ theme) from the JetBrains plugin repository and
add its JAR files on the “Installer->Screens & Actions->Custom Code” step. If the themes
plugin is packaged in a ZIP file, you have to extract the ZIP file and add the contained JAR
files instead. The contained themes will then show up in the chooser dialog.

© FlatLaf cross platform Look and Feel @

Dark or light mode: Auto-detect if light or dark mode should be used
Light theme: Intelli) theme from custom code ¥ Cyan.theme json | R ?]
Dark theme: Intelli) theme from custom code Gradianto_midnight_blue.theme json > - @

Java native Look and Feel

Look and feel from custom code

V) https://www.formdev.com/flatlaf/
(2) https://github.com/JFormDesigner/FlatLaf
%) https://plugins.jetbrains.com/search?tags=Theme

66

https://www.formdev.com/flatlaf/
https://github.com/JFormDesigner/FlatLaf
https://plugins.jetbrains.com/search?tags=Theme

On Windows 10+ and macos 10.14+, the runtime detects whether dark mode is being used
and activates it automatically. If the user switches between light and dark mode, the
runtime adjusts to it on the fly. The look and feel configuration offers options to prevent
this auto-detection and use either light or dark mode.

For backwards compatibility, you can also select the "Java native look and feel”. This is a
look and feel that is included the JRE and tries to mimic the native widgets of the operating
system with varying success. In some instances, this look and feel may seem out of place
as it shows the Ul from an older version of the operating system. Also, HiDPI resolutions
may not be well-supported by this look and feel. For these reasons, using the native look
and feel is discouraged and the FlatLaf cross-platform look and feel is recommended
instead.

Using a custom look and feel

You can apply your own look and feel by extending the cominstall4j.api.laf.
LookAndFeel Handl er class in the install4j API. After adding the compiled class and its
dependencies on the “Installer->Screens & Actions->Custom Code" step, you can select
the class in the chooser dialog.

The cominstall4j.api.|af.LookAndFeel Handl er implements the cominstall4j.
api . | af . LookAndFeel Enhancer interface that contains methods that help with certain
aspects of creating the Ul. You can override these methods to change their default behavior.

For example, a tri-state check box is required by the Ul of installer applications. Java Swing
does not include such a component, but some look and feels add this feature. To avoid
using a generic simulation of a tri-state checkbox, the cr eat eTr i St at eCheckbox method
can be overridden in your implementation of the cominstall4j.api.laf.
LookAndFeel Handl er.

67

A.12 Variables

With variables you can customize many aspects of install4j. They can be used in all text
fields and text properties in the install4j IDE as well as from the install4j API [p. 226]. The
general variable syntax is

${ prefix:vari abl eNane}

where prefix denotes the variable type and is one of

« compiler
Compiler variables are replaced by the install4j compiler when the project is built.

+ installer
Installer variables are evaluated when the installer or uninstaller is running.

* launcher
Launcher variables are evaluated when a generated application launcher is started.

+ iI8n

Custom localization keys are evaluated at runtime and depend on the chosen installer
language.

+ (no prefix)

Variables with no prefix resolve to runtime environment variables when used in the
launcher configuration.

Text fields in the install4j IDE where you can use variables have a ? variable selector next
to them. In the popup menu, you first choose a variable system from the available variable
types. In text properties of an installer element [p. 160] or a form component [p. 198], you
can use compiler variables, installer variables and custom localization keys, but not
launcher variables.

} actions) |

Allow unattended mode

on) [ID 20] Progress interface creation script
ller variables ... Allow console installations
Fall back to console mode on Unix

reens) [ID un . .
) [Disable console mode on Windows

Console screen change handler
Default execution mode GUI mode
Windows console executable
Execution Options
>
Arguments
Rollback on failure

P Insert Installer Runtime Variable
) Insert 18N Message

VM parameters 1 Insert Compiler Variable

If you need to pass special VM parameters to the ITStaner appicaton, you Carm eier GrenT
here. A common case would be to raise the maximum heap size with a different -Xmx
parameter if your installers require a lot of memory.

The variable selection dialog then shows all known variables of the selected variable type.

68

Select Installer Runtime Variable X
Installer runtime variables for: Edit
» Installer v

Predefined Variables Bound Variables

System variables
Source and Target

P sys.installationDir

P sys.installerDir

P> sys.installerFile

P sys.mediaDir

P sys.mediaFile
Installer application state

Filter:

Initial Value

java.lang.String: undefined

Description

The directory that holds the installed files. On Windows, Linux and Unix, this is the
same as the installation directory. For single bundle archives on macOS, this is
[Bundle name].app/Contents/Resources/app/. To reference an installed
file in a cross-platform way, use this variable and not sys.installationDir.

@ Help “ Cancel

For both compiler and installer variables install4j offers a fixed set of "system variables”
that are prefixed with "sys.". These variables are not writable, and it is discouraged to use
this prefix for your own variables.

Compiler variables

Compiler variables are written as

${ conpi | er: vari abl eNane}

The value of a compiler variable is a string that is known and replaced at compile time.
The installer runtime or the generated launchers do not see this variable, but just the value
that was substituted at runtime. Compiler variables are defined on the "General
Settings->Compiler Variables” step.

Compiler Variables) G 4

install4j provides a number of predefined compiler variables. In this step, you can define your own compiler variables. Compiler
variables can be used in many places in the install4j GUI to customize your build process.

5‘3} myVariable r Value Description Media Overrides
Variable value: | my default value 4
Separators: Leave as is vy 0
Platform-Specific Values (2]

You can use compiler variables for various purposes. The most common usage of a
compiler variable is the possibility to define a string in one place and use it in many other
places. You can then change the string in one place instead of having to look up all of its
usages.

An example of this use case is the pre-defined sys. ver si on variable that contains the
value of the text field where you enter the application version. Another usage for compiler
variables is to override certain project settings on a per-media file basis. There are two

69

ways to do that: Either, you specify a platform-specific value right below the compiler
variable value, or you override the compiler variable value for specific media files.

For example, if you want to include one directory in the distribution tree for Windows but
another one for macOS, you use a compiler variable for that directory and set the
platform-specific value for macOS.

Compiler Variables L G 4

install4j provides a number of predefined compiler variables. In this step, you can define your own compiler variables. Compiler
variables can be used in many places in the install4j GUI to customize your build process.

“2F myVariable 'l Value Description Media Overrides
Variable value: | my default value »
Separators: Leave as is v 9
X ,
Platform-Specific Values ?)
Windows
Y4 e
d 2 macos platform-specific value for macOS 4
Linux/Unix
Security
Sensitive information, do not write to the runtime config file
Quick Help
Compiler variables are replaced at build-time and cannot be changed at run-time. They
can be used

. in all text fields in install4j by surrounding the variable name with ${compiler:..}, like
${compiler:myVariable}.
« in scripts with the syntax context.getCompilerVariable(*myVariable")

Use the variable selector buttons () where available to select available compiler
variables. You can override variable values for each media set and override variable values
from the install4j ant task.

The common base value can be referenced with the syntax ${ conpi | er: vari abl eNane}
and does not lead to a recursive replacement error when used in a compiler variable
value override. This is useful if you want to augment the base value in a platform-specific
way, for example in a compiler variable for VM parameters where additional VM parameters
are required depending on the platform.

Alternatively, you can override values for single media files. Media file-specific overrides
have a higher precedence than platform-specific overrides. The common base value can
be referenced in the same way as for platform-specific overrides.

70

Compiler Variables L G 4
install4j provides a number of predefined compiler variables. In this step, you can define your own compiler variables. Compiler
variables can be used in many places in the install4j GUI to customize your build process.

8} myVariable & Value Description Media Overrides

Compiler variables can be overridden for each media file, either on this tab or on the
"Customize project defaults->Compiler variables" step of the media wizard.

X Click on cells in the "Variable value" column to override variables.

0 Media file Variable value
Windows Reset | my value for Windows

d’ macOS Folder platform-specific value for macOS

To quickly override multiple variables for a single media file, you can configure overridden
values on the "Customize project defaults->Compiler variables” step of the media wizard.

Media Wizard - Windows X
1. Media file type Override compiler variables

2. Installer options

3. Data files Compiler variables that have been defined on the "General settings->Compiler variables"

4. Executable processing step can be overridden for this media file.

5. Bundled JRE
6. Customize project defaults

Click on cells in the "Variable value" column to override variables.

Variable name Variable value
i '
myVariable NG5 my value for Windows
+ Media file name Y - Y

« Principal language
+ Exclude components
« Downloadable components
« Exclude files
« Exclude launchers
« Exclude installer elements
« Look & Feel
« Auto-update options
7. Finished

© Help 4 Back Next » Finish Cancel

Finally, compiler variables can be overridden from the command line compiler [p. 234] as
well as from the Gradle [p. 239], Maven [p. 246] and Ant [p. 255] plugins.

Compiler variables often refer to paths either on the build machine or on the target
machine. install4j has no way of knowing whether the value is actually a path and where
itis needed, so it does not replace file or path separators by default. With the "Separators”
drop-down right below the variable value, you can choose to replace file separators and
path separators: You can either replace them for the build platform where the install4j
compiler is running, or for the target platform associated with the currently compiled
media file. This can be much more readable that using the explicit compiler variables:

71

${conpi |l er: sys. fil eSeparat or} for the file separator on the build platform

${ conpi | er: sys. pat hSepar at or} for the path separator on the build platform

${ conpi | er: sys. medi aFi | eSepar at or} for the file separator on the target platform
${ conpi | er: sys. nedi aFi | eSepar at or } for the path separator on the build platform

With the automatic separator conversion, you can use either Unix-style (/' and %) or
Windows-style ('\ \'and ;) file and path separators in the value. Both styles are converted
in the same way. If you replace for the target platform and the variable is not used in a
media file-specific context, no conversion will be performed.

When you use a compiler variable in your project that is not a system variable, it must be
defined in on the "General Settings->Compiler Variables” step. If an unknown variable is
encountered, the build will fail. You can use other variables in the value of a variable.
Recursive definitions are detected and lead to a failure of the build. It is not possible to
define compiler variables with the name of a system variable.

install4j provides a number of system compiler variables:

sys.date [Machine-specific variables]

The current date in the format YYYYMVDD (e.g. "20250210"). The value is set at the start
of a build and will not change during a single build.

sys.year [Machine-specific variables]

The current year in format YYYYThe value is set at the start of a build and will not change
during a single build.

sys.time [Machine-specific variables]

The current time in the format HHWSS (e.g. "153012") where HH is the hour in 24-hour
format, MM is the minute, and SS is the second. The value is set at the start of a build
and will not change during a single build.

sys.timestamp [Machine-specific variables]

The current time as the Unix epoch. This is a long value with the milliseconds since
January 1st, 1970 (UTC). The value is set at the start of a build and will not change during
a single build.

sys.install4jHome [Machine-specific variables]

The installation directory of install4j that is used for compiling the media files.

sys.install4jVersion [Machine-specific variables]
The version of install4j that is used for compiling the media files.

sys.fileSeparator [Machine-specific variables]

The platform-dependent separator for directories in a file path. On Windows, this is a
backslash ("\"), on Unix a forward slash ("/"). The value of this variable is intended to
refer to files on the build machine. For a value that is valid at runtime, use sys.
nedi aFi | eSepar at or instead.

sys.newline
A Unix newline character (\ n).

72

(

sys.pathlistSeparator [Machine-specific variables]
The platform-dependent separator for lists of directories. On Windows, this is a semicolon

("), on Unix a colon (*"). The value of this variable is intended to refer to files on the
build machine. For a value that is valid at runtime, use sys. nedi aPat hl i st Separ at or
instead.

sys.version [Project-specific variables]
The version of your application as configured under General Settings->Application Info.

sys.shortName [Project-specific variables]

The short name of your application as configured under General Settings->Application
Info.

sys.fullName [Project-specific variables]

The full name of your application as configured under General Settings->Application
Info.

sys.publisher [Project-specific variables]

The publisher of your application as configured under General Settings->Application
Info.

sys.publisherUrl [Project-specific variables]

The publisher URL of your application as configured under General Settings->Application
Info.

sys.languageld [Project-specific variables]

The 2-letter IS O 639 code (see
https:/ /www.loc.gov/standards/iso639-2/php/code_listphp ") for the principal
language of the installer. This variable can be overridden on the command line or the
ant task which is useful if you build different installers for different languages.
sys.javaMinVersion [Project-specific variables]

The minimum Java version as configured under General Settings->Java Version

sys.javaMaxVersion [Project-specific variables]
The maximum Java version as configured under General Settings->Java Version

sys.applicationid [Project-specific variables]
The application ID as configured under Installer->Update Options

sys.updatesUrl [Project-specific variables]

The URL where auto updaters can download the update descriptor file updat es. xm as
configured under Installer->Auto-Update Options. This variable is usually used in the
"Update descriptor URL" property of a "Check for update” action.

sys.mediaFileName [Media-specific variables]

The file name of the currently compiled media file as configured in the Media section
and possibly overridden in "Customize project defaults->Media file name" step of the
media wizard.

N https://www.loc.gov/standards/is0639-2/php/code _list.php

73

https://www.loc.gov/standards/iso639-2/php/code_list.php

sys.mediaName [Media-specific variables]

The display name in the install4j IDE of the currently compiled media file as configured
in the Media section. If the default name of the media file is not suitable, you can rename
the media file.

sys.mediald [Media-specific variables]

The ID of the currently compiled media file as configured in the Media section. This
corresponds to the return value of cont ext . get Medi aFi | el d().

sys.platform [Media-specific variables]

The platform descriptor of the currently compiled media file. One of wi ndows- x64,
wi ndows- x32,wi ndows- ar m64, | i nux, uni x or macos. The value of this variable depends
on your choice in the platform step of the media file wizard.

sys.withJre [Media-specific variables]

A variable that contains “_with_jre" if a JRE is statically bundled with a media file and
the empty string if not. This is useful if media files with and without JRE are built.
sys.jreBundleVersion [Media-specific variables]

The Java version of the JRE bundle if a JRE bundle is configured for a media file and the
empty string if not.

sys.jreBundleArch [Media-specific variables]

The architecture of the JRE bundle if a JRE bundle is configured for a media file and the
empty string if not.

sys.mediaFileSeparator [Media-specific variables]

The platform-dependent separator for directories in a file path based on the current
media set. For Windows media sets, this is a backslash ("\"), for all others a forward
slash (/).

sys.mediaPathlistSeparator [Media-specific variables]

The platform-dependent separator for lists of directories based on the current media
set. For Windows media sets, this is a semicolon (*;"), for all others a colon (™).
sys.msiProductld [Media-specific variables]

The product GUID if a Windows installer is wrapped in an MSI package, otherwise an

empty string.

You can access environment variables on the build machine with the syntax

${ conpi | er: env. envi r onnent Var i abl eNane}

where "environmentVariableName" is the name of an environment variable. This is resolved
at build time and only works if no compiler variable with the same name is defined on the
"General Settings->Compiler Variables” step.

Compiler variable values in the IDE cannot be multi-line strings. If you need to insert a
variable with a multi-line string, you can use the text file reference syntax

${compiler:file("path/to/file")}

74

where pat h/ t o/ fi | e is either an absolute file path or a path relative to the config file. All
text areas that have an adjacent variable selector button offer the “Insert contents of text
file" action in its popup menu. The file chooser has an option whether to use a relative or
an absolute path in the variable expression.

In order to debug problems with compiler variables, you can switchontheextra ver bose
out put flag in the Build step [p. 11]. All variable replacements will then be printed to the
build console.

The file path can be a variable expression itself, like in
${comiler:file(${conpiler:nyFile})}

so you can override it for each media file or pass it as a parameter to a command line
build.

Installer variables

Installer variables are written as

${installer:variabl eNanme}

The value of an installer variable is an arbitrary object that is not known at compile time.
Installer variables are replaced at runtime in the installer, the uninstaller and in custom
installer applications. They can optionally be predefined in the install4j IDE like compiler
variables, but this is not required.

Undefined installer variables come into existence the first time they are defined at runtime.
However, it is an error to use an undefined variable. For example, if you use an installer
variable in an action, you have to make sure that the installer variable is defined before
the action is executed.

Installer variables are used to wire together actions, screens and form components at
runtime. The user input in screens is saved to variables that can be used in the properties
of actions. Furthermore, installer variables can be used in condition and validation
expressions. Some examples are given in the help topic on form screens [p. 51]. In script
properties, you retrieve variables by invoking

cont ext . get Vari abl e("vari abl eNane")
Variable values can be set with the installer API by invoking

cont ext. set Vari abl e("vari abl eName", vari abl eVal ue)

You can analyze the bindings of an installer variable on the “Installer Variables” tab of an
installer application configuration. That tab will show you a list of bound variables together
with all bindings.

75

4 Installer (8 screens) [ID instal... + v Properties
v

r Uninstaller (5 screens) [ID un

14‘ Standalone update downloa... o) - Installer Variables

g Background update downloa... o . . .
You can pre-define installer variables in order to document and categorize them or to

1’\'} Configure greeting [Custom a.. assign initial values.

. Configure Predefined Installer Variables

The following bound installer variables have been detected:
executeLauncherAction [type java.lang.Boolean]
P> greetingOption [type javalang.String]
P> groupCreated [type java.lang.Boolean]

P> installService [type java.lang.Boolean]

Bindings for selection:

/' Property Variable name [variable of type java.lang.Boolean]
-ﬂ- Execute launcher [Check box] [ID 72]
& Finish [ID 60]
b Installer [ID installer]

Go To Selection

In order to document and categorize bound installer variables, you can pre-define them
and set descriptions that will be displayed in the installer variable selector in the install4j
IDE.

Edit Installer Runtime Variables For "Installer" X
[myVariable + Value Description Response File
Value type: String v
Variable value: | my value »
x Separators: Leave as is v 0

Sensitive information, do not write to the log file

Quick Help
Installer variables are replaced at run-time. They can be used

. inall text fields in install4j by surrounding the variable name with
${installer:...}, like ${installermyVariable}.

- in scripts with the syntax context.getVariable("myVariable")

Use the variable selector buttons (») where available to select available
installer runtime variables. Installer variables do not have to be pre-defined,
but come into existence whenever an installer variable is assigned at runtime.

@ Help “ Cancel

For pre-defined installer variables that take string values, the same file and path separator
replacements as for compiler variables are available.

A common scenario is the need to calculate a variable value at runtime with some custom
code and use the result as the initial value of a form component. To achieve this, you can
add a "Set a variable” action to the startup screen and set its "Variable name" property to
some variable name. In this context, install4j expects a variable name, and you must not
use the ${i nstal | er: vari abl eNane} syntax but specify the plain vari abl eName only.
The return value of the "Script” property is written to the variable.

76

Screens & Actions L G 4

In this step, you configure the screens and actions that are displayed in the installer and uninstaller, updater and in custom
applications. Install4j offers a rich set of screens and actions to choose from.

General
Script "Some value"

Installer (5 screens) [ID instal... "=

4+ .
1:0:} Request privileges [ID 0 Only if undefined

{ . Fail if value is null
é} Set a variable [ID 24] : .
Register for response file

4% Welcome (1 action) [ID 2] ' Error Handling

Eailiira ctratam: Cantinia an failire

For example, if this variable represents the initial directory that is displayed for a "Directory
chooser” form component, you set the “Initial Directory” property of that form component
to ${i nstal |l er: vari abl eNane}. In this way you have wired the results of an action with
a behavior of a screen.

Another important use of installer variables is in the names of custom installation
roots [p. 14]. In most cases, the name of a custom installation root contains an installer
variable that is resolved at runtime. Often, one of the system installer variables that
represent a ‘magic” folder can be used, such as ${i nst al | er: sys. syst enB2Di r} for the
Windows syst enB2 directory.

When you use installer variables in properties that display text, such as the screen title or
the label properties of form components, a live binding will be created and the displayed
text is updated automatically when the variable values change.

Installer variables can be passed to the installer, uninstaller or custom installer applications
from the command line prefixed with - V:

-VnyVar =t est "-VmyVar Wt hSpaces=this is a test"

Alternatively, you can specify a property file containing installer variables with - varfil e
ny. properties, where the file ny. properti es contains one variable definition per line.
The variables that are created will be instances of j ava. | ang. Stri ng.

install4j provides a number of system installer variables:

- sys.installationDir [Source and Target]

The installation directory for the current installation. The value of this variable can
change in the installer as the user selects an installation directory in the “Installation
directory” screen or the installation directory is set via context.
setinstallationDirectory(File installationDirectory).

Note that for single bundle archives on macOS, the installation directory usually is just
/ Appl i cati ons, not a separate subdirectory.

« sys.contentDir [Source and Target]
The directory that holds the installed files. On Windows, Linux and Unix, this is the same
as the installation directory. For single bundle archives on macOS, thisis [Bundl e nane] .
app/ Cont ent s/ Resour ces/ app/ . To reference an installed file in a cross-platform way,
use this variable and not sys.installationDir.

« sys.mediaFile [Source and Target]
The path of your media file. Not available for uninstallers.

77

On Unix and for non-MSI Windows installers this is the same as sys.installerFile. For MSI
installers, this is the MSI file. On MacOs§, this is the path to the DMG file. If you want to
reference the installer file, use sys.installerFile instead.

sys.mediaDir [Source and Target]
The path of the directory where your installer file is located. Not available for uninstallers.

On Unix and for non-MSI Windows installers this is the same as sys.installerDir. For MSI
installers, this is the directory where the MSl file is located. On macOS, this is the directory
where the DMG file is located. If you want to reference files inside the DMG file, use
sys.installerDir instead.

sys.installerFile [Source and Target]

The path of your installer file. Not available for uninstallers.
On Unix and for non-MSI Windows installers this is the same as sys.mediaFile. For MSI
installers, this is the extracted installer executable. On macOs, this is the path to the

installer inside the mounted DMG. If you want to reference the DMG file, use sys.mediaFile
instead.

sys.installerDir [Source and Target]
The path of the directory where your installer file is located. Not available for uninstallers.

On Unix and for non-MSI Windows installers this is the same as sys.mediaDir. For MSI
installers, this is the directory the installer was extracted to. On macOSs, this is the path
into the mounted DMG. If you want to reference files in the same directory as the DMG
file, use sys.mediaDir instead.

sys.resourceDir [Installer application state]
The directory where the resource files are present that have been configured on the
Installer->Custom Code & Resources tab.

sys.installationTypeld [Installer application state]

The ID of the selected installation type. This is only relevant if the "Installation Type"
screen has been added to the installer. The value is nul | as long as no installation type
has been selected.

sys.version [Installer application state]

For installers, the version of your application as configured under General
Settings->Application Info. In that case, the variable yields the same value as the
compiler variable of the same name. For custom installer applications, the installed
version, which might not be the same as the version for which the custom installer
application was originally compiled.

sys.logFile [Installer application state]

The full path to the currently used log file. This is a path in the TEMP directory. For installers,
this changes after the "Install Files" action, when the log file is moved to a path in the
installation directory.

sys.responseFile [Installer application state]

If a response file is supplied with a - var fi | e command line argument, the full path to
the response file. If no response file is used, the variable value is nul | .

78

sys.preferredJre [Installer application state]

The home directory of the JRE that will be used by the installed launchers. This variable
will only be set after the "Install files” action has run. It will be the same as Syst em

get Property("java. hone") or the sys. j avaHone installer variable unless a bundled
JRE has been installed. This variable is not available in the uninstaller or custom installer
applications, use the sys. j avaHone directory there.

sys.languageld [Installer application state]

The 2-letter 1 S O 6 39 code (see
https:/ /www.loc.gov/standards/iso639-2/php/code_listphp ") for the actual language

of the installer. For fixed-language installers, this is the same as the compiler variable
of the same name. For multi-language installers, the value is determined at runtime.
sys.installerApplicationMode [Installer application state]

A string that reports the type of the installer application: “installer” for the installer,
"uninstaller” for the uninstaller and "custom” for custom installer applications.
sys.programGroupDisabled [Installer application state/Program group]

If the user has disabled program group creation on the "Standard program group’
screen. This applies to both the Windows program group and the Linux/Unix launcher
link directory selection. If no "Standard program group” screen is present, the variable
value will be nul I .

sys.programGroupName [Installer application state/Program group]

The name of the program group that user has selected on the "Standard program
group” screen. If no program group has been selected, the variable value will be nul | .
Only set in Windows installers.

sys.programGroupDir [Installer application stateIProgram group]

The directory that has been selected as the program group. This is the full path to the
actual location of the program group, not just the name of the program group. If no
program group has been selected, the variable value will be nul | . Only set in Windows
installers.

sys.programGroupAllUsers [Installer application state/Program group]

If the user has selected to create menu entries for all users on the "Standard program
group” screen. If no "Standard program group” screen is present, the variable value will
be nul I . Only set in Windows installers.

sys.symlinkDir [Installer application state/Program group]

The name of the directory for launcher links that user has selected on the "Standard
program group” screen. If no program group has been selected, the variable value will
be nul | . Only set in Linux/Unix installers.

sys.fileSeparator [Cross-platform variables]

The platform-dependent separator for directories in a file path. On Windows, this is a
backslash ("\"), on Unix a forward slash (*/").

sys.pathlistSeparator [Cross-platform variables]

The platform-dependent separator for lists of directories. On Windows, this is a semicolon
(";"), on Unix a colon (™).

M https://www.loc.gov/standards/is0639-2/php/code _list.php

79

https://www.loc.gov/standards/iso639-2/php/code_list.php

sys.userHome [Cross-platform variables]

The user home directory, typically something like C: \ User s\ $USERon Windows or/ hone/
$USER on Unix platforms.

sys.userName [Cross-platform variables]
The user account name.

sys.workingDir [Cross-platform variables]

The working directory. For the installer, this is the temporary directory that the installer
was extracted to.

sys.tempDir [Cross-platform variables]

The temporary directory of the operating system. On all supported platforms, this is the
value of the TEMP environment variable.

sys.javaHome [Cross-platform variables]
The Java home directory of the currently used JRE.

sys.javaVersion [Cross-platform variables]
The Java version of the currently used JRE.

sys.confirmedUpdatelnstallation [Cross-platform variables]

If the user has confirmed an update installation on top of a previous installation. If a
previous installation is detected, the "Welcome" screen asks the user whether to perform
an update installation or choose another installation directory. The result of that question
is saved to this variable. If the "Welcome screen is not shown, this variable is not set and
Cont ext #get Bool eanVari abl e(. . .) returns false for this variable.

sys.desktopDir [Cross-platform variables]

The directory used to physically store file objects on the desktop. On Windows, a typical
path is C:\ User s\ [user nane]\ Deskt op. On macOSs, this is the ~/ Deskt op directory
and on Unix the freedesktop.org setting for the XDG_DESKTCOP_DI Rdirectory is returned.

sys.docsDir [Cross-platform variables]

The directory used to physically store a user's common repository of documents. On
Windows, a typical path is C: \ User s\ [user nane] \ Docunment s. On macOSs, this is the
~/ Docurents directory and on Unix the freedesktop.org setting for the
XDG_DOCUMENTS_DI Rdirectory is returned.

sys.downloadsDir [Cross-platform variables]

The directory used to physically store a user's downloads. On Windows, a typical path
is C:\ User s\ [user nane]\ Downl oads. On macOS§, this is the ~/ Downl oads directory
and on Unix the freedesktop.org setting for the XDG_DOMLOAD_DI Rdirectory is returned.

sys.appdataDir [Platform-specific variables]

The directory that serves as a common repository for application-specific data. On
Windows, a typical path is C: \ User s\ [user nane] \ AppDat a\ Roani ng. On macQOS, this
is the ~/Library/Application Support directory. On Unix, the value of the
XDG_DATA HOVE environment variable or if not defined ~/ . | ocal / shar e is returned.

80

sys.localAppdataDir [Platform-specific variables]

The user-specific directory that serves local applications to store computed data. On
Windows, a typical path is C: \ User s\ [user nane] \ AppDat a\ Local . On macQOSs, this is
the ~/ Li br ar y/ Caches directory. On Unix, the value of the XDG_CACHE_HOME environment
variable or if not defined ~/ . cache is returned.

sys.windowsDir [Platform-specific variables]
The Windows installation directory, typically C: \ W ndows.

sys.system32Dir [Platform-specific variables]
The system32 directory of your Windows installation, typically C: \ W ndows\ syst enB2.

sys.commonDir [Platform-specific variables]

The common files directory of your Windows installation, typically C: \ Progr am Fi | es\
Conmon Fil es.

sys.programDataDir [Platform-specific variables]

The directory where applications can save data that is not specific to particular users.
A typical path is C: \ Pr ogr anDat a.

sys.startMenuDir [Platform-specific variables]

The directory containing Start menu items. A typical path is C. \ User s\ [user nane]\
AppDat a\ Roam ng\ M cr osof t\ W ndows\ Start Menu.

sys.programsDir [Platform-specific variables]

The directory that contains the user's program groups. The groups are themselves file
system directories. A typical path is C: \ Users\[user nane]\AppData\ Roam ng\
M crosof t \ Wndows\ Start Menu\ Progr ans.

sys.startupDir [Platform-specific variables]

The directory that corresponds to the user's Startup program group. The system starts
these programs whenever any user logs onto Windows. A typical path is C: \ User s\
[user nane]\ AppDat a\ Roam ng\ M cr osof t \ Wndows\ St art Menu\ Prograns\ St art up.

sys.sendToDir [Platform-specific variables]

The directory that contains Send To menu items. A typical path is C:\ User s\ [user
nane] \ AppDat a\ Roam ng\ M cr osof t \ W ndows\ SendTo.

sys.templatesDir [Platform-specific variables]

The directory that serves as a common repository for document templates. A typical
pathis C:\ User s\ [user nare]\ AppDat a\ Roami ng\ M cr osof t \ W ndows\ Tenpl at es.

sys.favoritesDir [Platform-specific variables]

The directory that serves as a common repository for the user's favorite items. A typical
pathis C:\ User s\ [user nane]\ Favorites.

sys.programGroupDir [Platform-specific variables]

The directory of the program group that will be or was created by the "Create standard
program group” action. If this action is not present, the value will be nul | . The value of
this variable can change in the installer as the user selects a program group on the
"Create program group” screen.

8l

- sys.fontsDir [Platform-specific variables]

The folder that contains fonts. A typical path is C: \ W ndows\ Font s. On macOS, the value
is/ Li brary/ Fonts.

- sys.programFilesDir [Platform-specific variables]

The directory where programs are installed, typically something like C: \ Program Fi | es.
On macOs, the value is / Appl i cati ons.

- sys.date [Cross-platform variables]

The current date in the format YYYYMVDD (e.g. "20250210"). The value is set when the
installer is started and will not change for the current process.

« sys.year [Cross-platform variables]

The current year in format YYYYThe value is set when the installer is started and will not
change for the current process.

« sys.time [Cross-platform variables]
The current time in the format HHWSS (e.g. "153012") where HH is the hour in 24-hour
format, MM is the minute, and SS is the second. The value is set when the installer is
started and will not change for the current process.

+ sys.timestamp [Cross-platform variables]

The current time as the Unix epoch. This is a long value with the milliseconds since
January 1st, 1970 (UTC). The value is set when the installer is started and will not change
for the current process.

Launcher variables

Launcher variables are written as

${1 auncher: vari abl eNare}

The value of a launcher variable is a string that is not known at compile time. In contrast
to installer variables, they are replaced by the launcher and not by Java code, so the
replaced value is seen by the JVM at startup. Launcher variables can only be used in the
"VM parameters” and "Arguments’” text fields on the "Java invocation” step of the launcher
wizard [p. 41].

No user-defined launcher variables exist, the available system launcher variables are:

+ sys.launcherDirectory
The directory in which your launcher has been installed at runtime.

+ sys.jvmHome

The home directory of the JVM that your launcher is running with. This is useful to put
JAR files from the JRE into your boot classpath. The "home directory” is the directory that
contains the "bin" directory of the JRE.

+ sys.tempDir
The temporary directory for the current user.

82

118N messages

[18N messages are written as
${i 18n: keyNane}

The value of an [18N message depends on the language that is selected for the installer.
You can use this facility to localize messages in your installers if they support multiple
languages [p. 86]. To do that, you supply key-value pairs in the custom localization file.
The variable selection dialog for 18N messages shows all system messages as well as all
messages in the custom localization file for the principal language of your project.

Select 118N Message X

Available 118N messages: Edit

System messages

J AboutSetupMenultem
J AboutSetupMessage
D AboutSetupTitle

J AddToDock

J AdminGroupRequired

' AdminPrivilegesRequired

J AdminPrivilegesRequiredExecute
D AlertDontShowAgainLabel

J AppRunningError

J AppRunningErrorAddOn
J AppleJavaMinVersionError
J AskContinue

D AskRetryinstallFile

J BadDirName32

Filter:

Message in Principal Language

You must have administrator privileges to install this program.

@ Help “ Cancel

All standard messages displayed by install4j can be referenced with this syntax as well.
You can locate the key name in one of the message_*. ut f 8 files in the $| NSTALL4J_HOVE/
r esour ce/ nessages directory and use it anywhere in your project. The standard messages
can be overwritten by your custom localization files.

Default values for missing variables

For the text field syntax of installer and compiler variables there is a mechanism to supply
a default value in case the variable is not defined: After the variable name you add the
delimiter ?: and insert the default value before the closing curly bracket.

For example:

${installer:nyVariabl e?: def aul t Val ue}

will resolve to def aul t Val ue if the installer variable "myVariable” is not defined. The default
value can be another variable, also of a different type. For example:

${installer:updatesUrl ?: ${conpil er:sys. updatesUrl}}

83

If the installer variable "updatesUrl” is not defined, the compiler variable "sys.updatesUrl”
is inserted. This is the default value for the "Update descriptor URL" property of the "Check
for update” action.

The chain of default values can be arbitrarily long:

${installer:one?: ${installer:two?: ${installer:three?: ${installer:four?:sone plain

text}}}}

This will resolve to the first defined installer variable out of "one”, "two", "three”, "four” or to
sone pl ain text if none of them are defined.

Binding variables to non-text properties

Many bean properties do not take text input, for example, boolean, integer or enum
properties, so that the variable syntax ${i nstal | er: myVari abl e} for text fields is not
applicable. For these properties, you can select "Switch to text mode” in the context menu
and enter a variable expression that resolves to the required type. Conversions from string
values are important because compiler variables can only hold string values, unlike installer
variables that can hold arbitrary types.

Service [Select a launcher]
Auto start "’
Description Switch To Text Mode

‘Windows arguments
‘Windows dependencies

Windows custom display name [Use service name]
‘Windows priority Normal
Account Local System

Vaan riurrant arcannt

The help icon in the property editor tells you what the property type is and also informs
about the supported conversions from other primitive types or strings. For example, "true”
or "false” string values are supported for boolean properties as well, which is what you
would use with a compiler variable. For enum properties, the name of the enum or the
ordinal as a number or as a string will be resolved to the actual enum value. Also, numeric
values will be parsed from strings.

Service [Select a launcher]
Auto start ${installermyAutoStart} 3K ?)
Des| 2

In text mode, you can use variables to set the value of boolean properties.
Win' - The value of the expression at runtime must be of type
Win java.lang.Boolean or the strings “true” or “false”. Any string whose
Win lower-case representation is not equal to "true” is converted to "false".

Win
To leave text mode, click on the property name and choose "Switch To

Acc "
K | Direct Mode” from the context menu.
ee|

Restart on failure
Interactive
Delayed auto start

macOS identifier

Additional systemd entries

toen et Fanbina A failien

If you develop a custom bean and want to support that functionality as well, you have to
enable it in the property descriptor and insert a call into the property getter as explained
in the Javadoc for AbstractBean.

84

Using variables in your own applications

Frequently there is a need in the installed applications to access user input that was made
in the installer. The launcher API [p. 230] provides the helper class com i nstal | 4j . api .
I auncher. Vari abl es to access the values of installer variables.

There are two ways that installer variables can be persisted in the installer: First, installer
variables are saved to the default response file [p. 217] . i nstal | 4j / response. varfile
that is created when the installer exits, or if a "Create response file" action is executed.
Only response file variables are saved to that file. Secondly, selected installer variables
can be saved to the Java preference store. com i nstal | 4j . api . | auncher. Vari abl es
offers methods to load variables from both sources.

Saving to the Java preference store is interesting if you want to modify those variable
values in your applications and save back the modified values. The Java preference store
is available on a per-user basis so that it is possible to modify settings even if the user
does not have write permissions for the installation directory. cominstall 4j . api .
I auncher . Vari abl es has methods for loading and saving the entire map of installer
variables that was saved in the installer. Also, it is possible to specify an arbitrary package
to which the installer variables are saved, so that settings can be shared between different
installers.

Screens & Actions A Y 4
In this step, you configure the screens and actions that are displayed in the installer and uninstaller, updater and in custom

applications. Install4j offers a rich set of screens and actions to choose from.

Installer (5 sereens) [ID instal | = Configuration

N Package name ${compiler:sys.applicationid}
T\ Startup (2 actions) X Preference root User specific
2 Welcome (1 action) [ID 2] Installer variable names
.':J Installation location (1 ac... Err.or Edandling . .
N Failure strategy Continue on failure
7t Installation components [' Error message
Installation (3 actions) | Control Flow
" Condition expression
4 ni: i 20
#& Finish (1 action) [ID 20] Rollback barrier
O Save installer variables ... 3 Can be executed multiple times
3 Uninstaller (4 screens) [ID un Privileges
/ Action elevation type

Save installer variables to the Java preference store

Save installer variables to the Java preference store. This can be used to communicate
installer variables to the uninstaller or to installers with different application IDs.

Finally, it is useful to access compiler variables in your own applications. For example, the
version number configured in the install4j IDE can be accessed in your own application
through cominstal | 4j . api . | auncher . Vari abl es.

85

A.13 Localization

On the "General Settings->Languages’ step, you configure the languages that are supported
by your project. The following languages are available:

« Arabic [ar]

« Chinese (Simplified) [zh _CN]
« Chinese (Traditional) [zh_TW]
« Croatian [hr]

« Czech [cs]

+ Danish [da]

« Dutch [nl]

« English [en]

« Finnish [fi]

« French [fr]

« German [de]

- Greek [el]

« Hebrew [he]

+ Hungarian [hu]

« ltalian [it]

- Japanese [ja]

« Korean [ko]

« Norwegian [no]

« Polish [pl]

- Portuguese [pt]

- Portuguese (Brazilian) [pt_BR]
« Romanian [ro]

« Russian [ru]

+ Spanish [es]

« Swedish [sv]

« Turkish [tr]

« Ukrainian [uk]

By default, only one language is shipped with the installer. This is called the principal
language. By adding additional languages, you can build multi-language installers. If
none of the configured languages match the locale at runtime, the principal language is
used.

86

Languages N 7
In this step, you can specify the languages that the generated installers should support. Your installers can have a fixed language
or they can be multi-language installers.
Principal language: English [en] AN ?]
Custom localization file: | \my_en.utf8 | I Edit 7]
Choose additional languages for the installer:

Language Custom localization file @) -
Danish [da] Amy_da.utf8
French [fr] Amy_fr.utf8

For multi-language installers, a language selection dialog is shown when the installer is
started. By selecting the Ski p | anguage sel ecti on di al og check box you can choose
to show the language selection only if the installer cannot find a match between a
supported language and the auto-detected locale.

The principal language setting can be overridden for each media file on the "Customize
project defaults->Principal language” step of the media wizard. In this way, you can build
multiple fixed-language installers, each with a different principal language.

Media Wizard - Windows

1. Media file type

2. Installer options

3. Data files

4. Executable processing

5. Bundled JRE

6. Customize project defaults

« Compiler variables
+ Media file name
« Principal language
« Exclude components
« Downloadable components
« Exclude files
« Exclude launchers
« Exclude installer elements
« Look & Feel
« Auto-update options
7. Finished

Localization mechanism

X
Override principal language for installer messages
In this step you can override the default principal language settings for the project.

Use project default
Override principal language settings
Principal language: Spanish [es] v

Custom localization file: | IS New

To override the language externally, you can define the variable sys.languageId
with the desired two-letter ISO code.

@ Help 4 Back Next p Finish Cancel

In projects, localized messages are obtained in one of two ways;

+ with i18n messages

The i18n variable system [p. 68] gives access to all messages with the syntax

${i 18n: nessageKey}

To select a message, use the » variable selector button next to text fields and properties.
For messages with one or more parameters of the form { 0} to{ n}, the variable selector
will insert placeholder values like in

87

${i 18n: Di skSpaceWarni ng("arg 0", "arg 1")}

+ with the API

In scripts and in your custom code you can call

cont ext . get Message(" messageKey")

For messages with arguments, you pass the arguments with the vararg syntax:

cont ext . get Message(" Di skSpaceWar ni ng", 10000, 100)

The “Insert variable” toolbar button in script editors allows you to insert these calls with
the correct syntax for selected message keys.

Settings Edit Search Code Help Edit X
Y P 3 O 3 ¥ O
d a= - S m =
Insert Insert Code . Test
Redo Copy Ccut Paste e D Gallery Find Replace Compile Help
=—_ Please enter an expression (no tre P> Insert Installer Runtime Variable Ctrl+Shift+1) that consists of
im regular Java code. The following f %3 Insert Compiler Variable Ctrl+Shift+2
J
- com.install4j.api.context.Install = Insert Contents Of Text File Ctrl+Shift+F
- com.\'nsta\\4'.ag\'.screens.lnsta\u Insert 118N Message Ctrl+Shift+3
The expected return type is boolean
Condition expression:
L -

Custom localization

In addition to the standard messages that are displayed in the generated installer and
uninstaller, you will have your own messages that need to be localized in the same way.
To configure these messages, create a custom localization file for the principal language.
A custom localization file is a text file with key-message pairs in the format of

+ aJava properties file

A Java properties file has a . properti es file extension and must use ISO 8859-1

encoding. All other characters must be represented as Unicode escape sequences, like
\ u0823.

 a properties file with UTF-8 encoding

A properties file with UTF-8 encoding has an . ut f 8 file extension and has the advantage

that you do not have to use escape sequences. However, it might not be supported by
some localization tools.

88

You can create and edit custom localization files externally or directly in the install4j IDE
with the built-in editor:

Settings Edit Search Edit X
-
o c - O R
(;{: a= o
Undo Redo Copy Cut Paste lesit @ERER | pees

Variable Message
118n key-message pairs (key=message, one pair per line):

1jessageone=The first message

2messageTwo=The second message with parameter {0}

For each additional language, add a corresponding custom localization file that contains
the same keys. If a message is missing for an additional language, the message for the
principal language is used. The variable selection dialog for i18n messages will show all
keys in the custom localization file for the principal language.

Select 118N Message X

Available 118N messages: Edit

Custom messages

J messageTwo
System messages

Filter: | Q-

Message in Principal Language

The first message

@ Help “ Cancel

If any standard message in the installer is not appropriate for your purpose, you can

override it by looking up the corresponding keys in the appropriate message file with the
path

<install4j installation directory>/resource/ messages/ messages_*.utf8

and defining the same key in your custom localization file. The built-in editor has an
"Override message" toolbar button that helps you find the message of interest and inserts
the key-value pair in the editor.

89

Settings Edit Search

/P 0 @

= > @)
d = - o
insert | Override

C Cut Past Find Repl;
oY Y @€ Variable| Message " eplace

118n key-message pairs (key=message, one pair per line):

1 messageOne=The first message

2messageTwo=The second message with parameter {0}

&l Select System Message To Override X

System messages:

SetupAppTitle=Setup
SetupWindowTitle=Setup - {0}
UninstallAppTitle=Uninstall
UninstallAppFullTitle={0} Uninstall
InformationTitle=Information
ConfirmTitle=Confirm

EevasTitln_Covnr

Filter:

Cancel

Parameters in i18n messages

If required, you can use parameters for your messages by using the usual { n} syntaxin
the value and listing the parameters with a function-like syntax after the key name. For
example, if your key name is nyKey and your message value is

Create {0} entries of type {1}
you can use a variable
${i 18n: nyKey("5", "foo")}
in order to fill the parameters, so that the actual message becomes

Create 5 entries of type foo

However, in the context of localizing an installer this is rarely necessary. Should you need
toinclude a literal variable expression { n} in the message, you have to quoteitlike' {"' n' }'.

Another way of adding parameters to i1l8n messages is to use compiler or installer variables.
Compiler variables are replaced at build time, and installer variables are replaced at
runtime. For example:

nessageW t hConpi | er Vari abl e=Titl e for ${conpiler:sys.full Nane}
nessageW thlnstallerVariable=Installing to ${installer:sys.installationDir}

90

A.14 VM Parameters

VM parameters can be passed to generated launchers [p. 41] in a variety of ways: You
can specify fixed VM parameters, pass them on the command line or add them to a text
file where the user or your application can edit them.

Fixed VM parameters

Fixed VM parameters can be configured in the launcher wizard [p. 41] where you can use
compiler variables [p. 68] to handle platform-specific changes or launcher variables [p. 68]
to use runtime-dependent paths.

Modify Launcher X

1. Select type

2. Executable info

Configure Java invocation

3. Icon VM Parameters: = -Dapple.laf.useScreenMenuBar=true » N ?]
4. Java invocation
[Allow VM passthrough parameters (e.g. -J-Xmx256m) &
« Native libraries Configure Version-Specific VM Parameters [no entries]
« Preferred VM
« Override Java version Gt (2) (o) MedtippEd (2
5. VM options file L] Directory classes r
6. Splash screen
7. Finished
Main class from = Module path v hello/gui.Hello [RN ?]
Arguments for main class: > @
w Advanced Options
@ Help 4 Back Next P Finish Cancel

install4j can add specific VM parameters depending on the Java version. To set this up,
click on the Configure version specific VM parameters button. In the dialog, add rows for
each range of Java versions that should receive specific VM parameters. If the Java version
of the JVM that is used at runtime matches a configured version expression, the associated
VM parameters will be appended to the common VM parameters. The search is stopped
at the first matching entry. The syntax for the Java version expressions is explained by the
help icon on the table header.

91

Configure Version-Specific VM Parameters X

If the Java version of the JVM that is used at runtime matches a configured version expression, the associated VM parameters
will be appended to the common VM parameters. The search is stopped at the first matching entry.

Java Version Expression & VM Parameters r
17 -XX:MaxPermSize=256m
1.8 | -XX:MaxMetaspaceSize=256m

@) Help “ Cancel

Passing VM parameters on the command line

When executing a generated launcher, arguments are passed to the main class, so you
cannot pass an argument like - Xmx800mand expect it to be interpreted as a VM parameter.
To tell the launcher that you want to use a specific command line argument as a VM
parameter, you have to prefix it with - J, asin

-J- Xnx800m

If this behavior is not desirable, you can deactivate it on the "Java invocation” step of the
launcher wizard.

*.vmoptions files

A common requirement is the capability to adjust the VM parameters of launchers after
the installation has been completed or to determine the VM parameters at installation
time depending on the environment like the target platform or some user selection in the
installer.

For this purpose, a parameter file in the same directory as the executable is read and its
contents are added to the list of fixed VM parameters. The name of this parameter file is
the same as the executable file with the extension . vnopt i ons.

For example, if your executable is named hel | 0. exe, the name of the VM parameter file
is hel | 0. vnopt i ons. For GUI launchers on macOS, an additional . vinopt i ons file inside
the application bundle with the relative path Cont ent s/ vnopti ons. t xt is read.

In the . vnopt i ons file, each line is interpreted as a single VM parameter and the last line
must be followed by a line feed. install4j adapts your . vnoptions files during the
compilation phase so that the line endings are suitable for all platforms. For example, the
contents of the VM parameter file could be:

- Xmx256m
- Xns32m

The. vnopt i ons files allow the installer as well as expert users to modify the VM parameters

for your generated launchers.

It is possible to include other . vnopt i ons files from a . vnopt i ons file with the syntax

92

-include-options [path to other .vnoptions file]

Recursive includes are supported. You can also add this option to the fixed VM parameters
of alauncher. In that way, you do not have to create . vinopt i ons files for all your launchers,
but you can have a single . vropt i ons file for all of them.

This allows you to centralize the user-editable VM options for multiple launchers and to
have. viopt i ons files in alocation that can be edited by the user if the installation directory
is not writable. You can use environment variables to find a suitable directory, for example

-include-options ${APPDATA}\ My Appli cation\ny.vnoptions
on Windows and
-incl ude-options ${HOVE}/. nyApp/ ny. viopt i ons

on Unix. If you have to decide at runtime where the included . viopt i ons file is located,
use an installer variable:

-include-options ${installer:vnOptionsTargetDirectory}/ny.vnoptions

and add a "Replace installer variables in a text file" action to replace it after you have set
thevnOpt i onsTar get Di r ect or y installer variable to a suitable path with a "Set a variable”
action.

In addition to the VM parameters you can also modify the classpath in the . viopt i ons
files with the following options:

. -classpath [classpath]
Replace the classpath of the generated launcher.

- -classpath/a [classpath]
Append to the classpath of the generated launcher.

. -classpath/p [classpath]
Prepend to the classpath of the generated launcher.

Instead of adding your own . vimopt i ons to the distribution tree, you can set up an initial
. vropt i ons file on the "VM options file" step of the launcher wizard, either with a template
or with your own pre-defined content. Overwrite mode and file rights can also be configured
in this step.

93

Modify Launcher X

1. Select type Generate file for user-editable VM parameters
2. Executable info
3. lcon A VM options file is placed next to the launcher with the same file name and a . vmoptions extension. It

contains one VM parameter per line for the launcher. If a VM options file is found in the distribution tree,
it takes precedence over the generated file.

4. Java invocation
5. VM options file
6. Splash screen

See the help topic on VM parameters for more information.
7. Finished

Do not generate a vmoptions file
Copy template file with explanations for user
© Generate with the following contents:

Include the common .vmoptions file that is located in a user-writable location
-include-options ${installervmoptionsTargetDirectory}/hello.vmoptions

» Insert Variable

Overwrite mode: = Never vy @
Unix file mode: 644 Reset To Default 7
© Help 4 Back Next » Finish Cancel

Environment variables

You can use environment variables in the fixed VM parameters and in the . viopt i ons file
with the syntax ${vari abl eNane} replacing vari abl eName with the name of the
environment variable.

This environment variable syntax also works in the arguments text field and the classpath
configuration.

"Add VM options” action

With the "Add VM options” action [p. 182], you can handle VM parameter additions to the
. vopt i ons file in the installer. The action creates a . vnopt i ons file if necessary or adds
your options if it already exists.

A number of VM parameters can only occur once, so the action replaces the following
parameters if they already exist:

« -Xmx

« -Xms

. -Xss

+ -Xloggc

+ -Xbootclasspath

+ -verbose

- -ea [-enableassertions
« -da [-disableassertions
+ -splash

as well as the install4j-specific classpath modification options that can be used in
. vnopt i ons files.

94

Screens & Actions

In this step, you configure the screens and actions that are displayed in the installer and uninstaller, updater and in custom
applications. Install4j offers a rich set of screens and actions to choose from.

¥ Installer (5 screens) [ID instal.. +
f- Startup (1 action) x

.;rA Welcome (1 action) [ID 2] 0
?J Installation location (2 ac...

@ Load a response file [

© Add VM options [ID 24]

.;,rA Installation components |

Configuration
Launcher [Select a launcher]
VM options

Error Handling
Failure strategy

Error message

Continue on failure

Control Flow

Condition expression

Rollback barrier

Can be executed multiple times

Installation (3 actions) [3 Privileges
‘;A_‘ Finish (1D 20] Action elevation type
P Uni i
Uninstaller (4 screens) [ID un d

Add VM options

A Adds VM options for a launcher by modifying or creating a . vmoptions file or by
changing the Info.plist file. This action will be automatically reverted by the 'Uninstall files'
action.

To set an - Xnx value to a fraction the total memory of the target system, you can use a
"Set a variable action” that calculates the numeric part of the - Xnx value using the utility
method Syst eml nf 0. get Physi cal Menory() . In the second step, you use that variable in
the "VM options” property of the "Add VM options” action. For example, if you want to set

the maximum heap size to 50% of the total memory, you do the following after the “Install
files” action:

1. Add a "Set a variable” action with variable name "xmx" and a script of

"-Xnmx" + Mat h. round(Syst em nfo. get Physi cal Menory() * 0.5 / 1024 / 1024) + "ni

2. Add an "Add VM options” action with VM options

${installer:xnx}

95

A.15 JRE Bundies

When deploying a Java application, you should always bundle a JRE. While a JRE with the
required version may be available in a controlled environment, it is generally far less
error-prone to ship a JRE with each media file. Any JRE bundle that is installed by install4j
is private to your application and will not interfere with other applications.

install4j offers two ways to create JRE bundles. You can either let install4j download JDK
archives from well-known OpenJDK providers and create JRE bundles from them on the
fly, or you can create JRE bundles yourself from installed JREs.

How JRE bundles work at runtime

install4j automatically adjusts the JRE search sequence [p. 41] of all generated launchers
and includes the bundled JRE as the first choice. A bundled JRE is used automatically by
the installer, the uninstaller, custom installer applications and the generated launchers.

A bundled JRE will always be distributed inside the installation root directory [p. 14], on
Windows and Linux/Unix in the directory

<installation directory>/jre

and on macOS in

<content directory>/.install4j/jre.bundle

The content directory is available from the installer runtime variable sys. cont ent Di r and
resolves to the installation directory for folder media file types and Cont ent s/ Resour ces/
app for archive media file types. The actual location of the JRE installation directory is
available from the installer runtime variable sys. pref erredJre after the “Install files"
action has run.

When you update your application and include a new JRE bundle, the old JRE bundle will
be deleted prior to the installation, so that any files left over from the old JRE cannot
interfere with the new JRE.

Generated JRE bundles

On the "General Settings->JRE Bundles” step, you can use the release chooser dialog to
select a release from which you would like to create the JRE bundles. The available
platforms are listed next to each release. The standard platform IDs are

« Wi ndows- antd64 for 64-bit Windows

+ Wi ndows- x86 for 32-bit Windows

« Wi ndows- aar ch64 for 64-bit Windows on ARM
« macos- and64 for macOS on x64

« macos- aar ch64 for macOS on ARM

e |i nux- and64 for 64-bit Linux

« |i nux-x86 for 32-bit Linux

e |i nux-aar ch64 for 64-bit Linux on ARM

96

Other platforms may be provided by the JDK providers and are usable in the Linux/Unix
media files.

By default, Adoptium Vs set as the JDK provider and is recommended for general purpose

usage. For JavaFX applications, the Liberica @) and the zulu © providers are convenient,
because JavaFX is already included, and you don't have to work with separately
downloaded JMOD files. Liberica also offers an especially wide range of Linux architectures.
For Swing desktop applications, the JetBrains Runtime “)is the best choice because it
contains a lot of fixes that are not included in the upstream OpenJDK. Finally, Amazon

corretto ® is an OpendDK distribution that focuses on including additional fixes and
patches from the main branch and other sources into older releases.

or m 0 g —
M 0 D 5 W » 2
v
New Open Save Project Undo fedo Build Dry Test Stop Show Help
Project Project Project Report Project Run Installer Build IDs
General Settings JRE Bundles \N 7
In this step, you configure the JDK that will be used for generating JRE bundles that can be
Application Info distributed with your media files.

4 JRE Bundles

JDK release: = AdoptOpenJDK v 22/jdk-22.0.2+9 » || @ Show Al Modules
Search Sequence

Included Modules

Languages
Which modules are included in a JRE bundle is determined from 3
- . e Show Included Modules
Media File Options sources, separately for each media file.
Code Signing

@ The minimum module requirements of the install4j runtime @)

Compiler Variables
@ The Select Release X
Merged Projects

Project Options @ Sele 2 > . — " :
. jdk-22.0.2+9 [aix-ppc64, alpine-linux-aarch64, alpine-linux-amd64, linux-aarg
= " jdk-22.0.1.1+1 [linux-s390x]
" jdk-22.0.1+8 [alpine-linux-aarché4, alpine-linux-amdsé4, linux-aarch64, linux-
" jdk-22+36 [alpine-linux-aarch64, alpine-linux-amdé4, linux-aarché4, linux-ar
21
20
19

Files
9 Launchers

—
Installer

Selecting a release folder node in the chooser dialog rather than a node for a specific
release willinsert akey endingin/ | at est . At compile time, the latest release that includes
the required platform will be taken.

To add new JDK providers, an SPI is provided in resource/j dk-provider.jar. The
associated Javadoc in the archive resource/j dk-provi der-javadoc. jar has more
information.

Downloaded JDK bundles contain all kinds of modules that you do not need in your
distribution. On the other hand, you may have a set of JMODs that have to be linked into
the JRE bundle, such as JavaFX ©) with your configuration in the module selector, you can
include a base set of modules, single named modules and additional JMODs. By default,
a "JRE" with commonly used modules is linked, but the module sets "Minimum" and "All"
are also available.

0 https://adoptium.net
(2) https://bell-sw.com/

(3) https://www.azul.com/downloads/zulu-community/?package=jdk
4 https://confluence.jetbrains.com/display/JBR/JetBrains+Runtime
(5) https://aws.amazon.com/de/corretto/

(8) https://openijfx.io/

97

https://adoptium.net
https://bell-sw.com/
https://www.azul.com/downloads/zulu-community/?package=jdk
https://confluence.jetbrains.com/display/JBR/JetBrains+Runtime
https://aws.amazon.com/de/corretto/
https://aws.amazon.com/de/corretto/
https://openjfx.io/

install4j always adds modules that are required by the install4j runtime. This includes the
j ava. deskt op module which is required even if you only want to create console installers
or archives. In addition, install4j scans the module requirements of your generated
launchers [p. 41] and adds them automatically. With the Show included modules button,
you can show the actual list of modules that will be added to the JRE bundle. In Java 8
there is no module system, so the entire JRE is bundled for those versions.

JRE Bundles L G 4

In this step, you configure the JDK that will be used for generating JRE bundles that can be distributed with your media files.

JDK release: = AdoptOpenJDK v | 22/jdk-22.0.2+9 > @ Show All Modules
Included Modules Define Module Entry X
Which modules are included in a JRE bi les
Entry Type
- i Selected JDK Modules Default JDK modules JMOD JMOD directory
The minimum module requirem(
Detail
The module graph of all include

Module names: »
@ Selected additional modules @ Exclude modules @

= Module set Common JRE| Add or exclude one or more module names from the selected JDK separated by E
commas. Use the chooser button to select modules.

In the "Bundled JRE" step of the media wizard, the "Generate a JRE bundle” option is selected
by default. You can set it to "Do not bundle a JRE" in order to create media files without
JRE bundles. Furthermore, you can customize the common JRE bundle configuration.

In addition to overriding the JDK provider and the release, you can specify additional
modules and JMOD files that should be included for the current media file. The Show
included modules button on this step uses the JDK bundle for the target platform unlike
the corresponding button on the "General Settings->JRE Bundles” step which uses the JDK
bundle for the current platform. This can lead to slight differences because JDKs contain
platform-specific modules.

98

Media Wizard - Windows X

1. Media file type Bundle a JRE with your application
2. Installer options
3. Data files You can bundle a JRE with your application. The extracted JRE will be placed in the jre folder below your

4. Executable processing installation root directory. All launchers in this media file will use this JRE as their first choice.

5. Bundled JRE
6. Customize project defaults
7. Finished Override JDK release

© Generate a JRE bundle @

Additional modules:

-ﬁ Module jdk.compiler r
JMOD directory javafx\windows

N
D Use Pack200 (Java 8 and lower) &) Show Included Modules
Use a pre-created JRE bundle @)
Choose one
Do not bundle a JRE
© Help 4 Back Next » Finish Cancel

For Unix/Linux media files, the actual platform must be defined on the "Bundled JRE" step
of the media wizard. By default, it is set to | i nux- and64 which stands for 64-bit Linux. The
chooser button displays a dialog with all platforms that are available for the selected
release.

Media Wizard - Unix/Linux GUI installer X
1. Media file type Bundle a JRE with your application

2. Installer options

3. Data files You can bundle a JRE with your application. JRE bundles may not work on specialized Linux distributions
4. Bundled JRE where common libraries for the selected bitness are not installed.

The extracted JRE will be placed in the jre folder below your installation root directory. All launchers in

+ JRE Search Options this media file will use this JRE as their first choice.

5. Customize project defaults
6. Finished © Generate a JRE bundle @

Override JDK release

I’\atform: linux-amd64 » I‘,

Additional modules:

If Java 8 is bundled, you can optionally deactivate the Pack200 compression for JAR files
in the JRE. In archives, for example, these JAR files are decompressed the first time when
a generated launcher is executed, adding a possibly undesired lag. That is why Pack200
compression is not selected by default for archive media files. Pack200 compression is
unavailable for macOS single bundle archives where the signature requirements forbid
the modification of any included files.

install4j will cache both downloaded JDK bundles and generated JRE bundles in the JRE
cache directory

% OCALAPPDATA% i nst al | 4j \ v<ver si on>\ cached_j res

99

on Windows.

~/ Li brary/ Caches/i nstal | 4j / v<ver si on>/ cached_j res

on macOsS, and

.cachel/install4j/v<version>/cached_jres

on Linux and Unix where the root directory can be modified with the environment variable
XDG_CACHE_HOME.

You can move the contents of this directory including the subdirectories “original” and
"generated” to another machine to avoid downloads and speed up compilation. You can
also delete this directory to force install4j to re-download all JDK bundles and generate
new JRE bundles.

Pre-created JRE bundles

You can create a JRE bundle from any installed JRE on your file system. install4j offers the
"Create a JRE bundle” wizard in the "Project” menu to make this task as simple as possible.

Create JRE Bundle For install4j X
1. Welcome Select the JRE

2. Select JRE

3. Bundle options Please choose the Java home directory of the JDK for which a JRE bundle should be

4. Modules created.

5. Create bundle

. The JDK configured on the "General Settings->JRE Bundles" step must have the same
6. Finished

major version number, otherwise the downloaded JDK tools that are required to produce
the JRE bundle will not work.

C:\Users\ingo\jdks\jbrsdk-21.0.2-b375.1

& Help 4 Back Next » Cancel

If you wish to automate the process, a command line tool [p. 238] for building JRE bundles
is available with corresponding tasks in the Gradle, Maven or ant integrations.

Packaging your own JRE can be useful if you want to use JDK providers not supported by
install4j (such as the official Oracle JDKs), or if you want to use runtime images that were

created by jlink 7). The JRE bundle wizard only works for the platform you are running on.
That means, to create a JRE bundle for Windows, you have to run install4j on Windows, to
create a bundle for Linux, you have to run install4j on Linux.

All JREs are saved with a t ar. gz extension to the root of the pre-created JRE directory
which is

%4 OCALAPPDATA% i nst al | 4j \ v<versi on>\jres
(

7) https://docs.oracle.com/en/java/javase/11/tools/jlink.html

100

https://docs.oracle.com/en/java/javase/11/tools/jlink.html

on Windows.
~/ Li brary/ Application Support/install4j/v<version>/jres

on macOsS, and

.local/sharel/install4j/v<version>/jres

on Linux and Unix where the root directory can be modified with the environment variable
XDG_DATA_HOVE.

Pre-created JRE bundles can be selected in the "Bundled JRE" step of the media wizards

Media Wizard - Windows X
1. Media file type Bundle a JRE with your application

2. Installer options

3. Data files You can bundle a JRE with your application. The extracted JRE will be placed in the jre folder below your

4. Executable processing installation root directory. All launchers in this media file will use this JRE as their first choice.

5. Bundled JRE
6. Customize project defaults
7. Finished

Generate a JRE bundle @)

If you would like to put your JRE bundles into a different directory, such as a directory in a
version-controlled location, you can copy the . t ar . gz file to that directory with the Copy
Bundle File button and choose "Manual entry” in the JRE bundle drop-down to enter the
path to the bundle file.

JRE bundle format

In special cases you might want to create or modify a JRE bundle programmatically,
without using the install4j IDE or the command line tools. This can be done with the standard
GNU tools t ar and gzi p. A JRE bundle for install4j is simply a file with the naming scheme:

[operating systen]-[architecture]-[JRE version].tar.gz

For windows bundles, the operating system name must be "windows", for macOS "macos’,
and for Linux and Unix any name can be used. The . t ar . gz file contains the JRE bi n and
| i b folders as top-level entries. The steps to create a bundle are outlined below:

cd jre

tar cvf mnix-x86-11.tar *

gzi p m ni x-x86-11.tar

cp mnix-x86-11.tar.gz $HOVE/ .l ocal /share/.install4j/v<version>/jres

First you change into the top-level directory of the JRE, then you tar all files and directories
and gzip the tar archive.

101

A.16 Services

Many applications have a component that has to run in the background without user
interaction. On Windows, this is called a "service’, on Unix a "daemon’, in install4j the term
"service’ is used exclusively. install4j can generate service launchers for your application
on all supported platforms. On Windows, managing services is a particularly demanding
area and so other service executables that have not been generated by install4j are
supported as well.

Generated service launchers

A service launcher will be generated if the selected executable type in the "Executable”
step of the launcher wizard is set to "Service”.

Modify Launcher X
1. Select type Configure executable
2. Executable info
Executable type: GUI application 2

« Redirection 2]

« Single instance mode

« Windows version info 9

+ Windows manifest options Console application 7]

« Unix options IO S I 7}

+ macOS options

- Menu integration Executable name: | hello_service > @

+ Auto-update integration File set: @ Default file set v @
3. lcon
4. Java invocation Directory: bin » - @

5. VM options file
6. Splash screen
7. Finished [Change working directory to: . > @

Fail if an exception in the main thread is thrown &)

w Advanced Options

& Help 4 Back Next » Finish Cancel

There are no special requirements and interfaces that have to be used by your code.
When the service is started, the mai n method of the configured main class will be called
just like for GUI or console launchers. Also, there is no special "shutdown” interface that is
notified when the service is stopped. To perform cleanup, use the Runtine.
addShut downHook () method to register a thread that will be executed just before the JVM
is terminated.

If you define a service launcher, it will not run automatically after the installation. A
generated service launcher has to be installed and started explicitly. To do that, you have
to add the following actions to the installer:

+ Install a service

This action registers a service with the system, so that it can be executed automatically
when the computer is started. By default, the name of the installed service is the launcher
name that is configured in the launcher section of the install4j IDE. To change the service
name, you have to rename the launcher.

102

General

Service Hello World Service

Auto start C]

Description A service that says hello every 2 seconds
Windows

Windows arguments
‘Windows dependencies

‘Windows custom display name [Use service name]
‘Windows priority Normal
Account Local System

Keep current account

Restart on failure

Interactive

Delayed auto start
Install a service
Installs a service. On Windows, this is done by executing the service launcher with the
appropriate arguments. On Unix, if systemd is detected, a config file will be created in
/etc/systemd/system, otherwise a link will be placed in /etc/init.d. On macOS, a

LaunchDaemon will be created. This action will be automatically reverted by the ‘Uninstall
files' action.

If a helper process with elevated privileges has been created by the "Request privileges"
action, this action is pushed to the helper process. Please see the help topic on "Elevation
Of Privileges” for more information.

On Windows, if you require a user-configurable service name or if you wish to install
the service multiple times, use the method for external service launchers as described

Start a service

Installing a service does not start it immediately, and you have to add this separate
action to actually run the service.

General

Service Hello World Service
For "Auto start installations” only

Error Handling

Failure strategy Continue on failure
Error message

Control Flow

Condition expression context.getBooleanVariable("installService")
Rollback barrier

Can be executed multiple times

Privileges

Action elevation type

Start a service
Starts a service by executing the service launcher with the appropriate arguments.
If a helper process with elevated privileges has been created by the "Request privileges"

action, this action is pushed to the helper process. Please see the help topic on "Elevation
Of Privileges” for more information.

When the “Install Files" action runs and a previous installation is being updated, any running
services that are associated with the same executables are stopped.

Windows user accounts

On Windows, you can configure the user account that is used for running the service. There
are a few well-known user accounts, like "Local System” (the default) or "Local Service"
that you can choose directly in the configuration of this action.

In some cases, you might want to create a separate user to run a service. install4j offers
APl support for creating new user accounts with thecom i nst al | 4j . api . wi ndows. W nUser

103

class. If you would like to query the user for details on the user account, it is possible to do
that without using the API. On a configurable form, add a "Windows user selector”
component and select the "Show ‘Create User’ button” property.

o Multi-line HTML label [ID 1568] ofs [|Ja&Configuration
* Show users
e Checkbox 1 1561 I e User bton
Vertical group (3 form components) | o) Variable for user creation flag userCreated
N Variable for local group localGroupForCreatedUser
40 Check box [ID 1572] R R
L Variable for group creation fl... groupCreated
Vertical group (2 form component... g Password form component Password field [ID 1570]
{4 Windows user selector [ID 1569] Show groups
. - Show well-known principals
‘40 Password field [ID 1570] Multiple selection
3 Only local objects
Allow configuration on screen
Hel
X P
Help text
Initialization

Initialization script
Reset initialization on previous

Visibility script Util.isWindows()
Label
Text Account name:

Show “Create User" button

If selected, a button to create a new user will be displayed next to the "Browse"
button. On clicking that button, a separate dialog will be shown where the new
/ user can be configured.

The SID of the created or selected user is saved to the configured variable, say "serviceUser".

You also have to query the user for the password of the account. For that purpose, add a
"Password field" form component, set its variable to “servicePassword" and choose that
form component in the "Password form component” property of the user selector form
component.

In the "Install a service" action, you can then choose O her in the "Account” property and
enter ${i nstal | er: servi ceUser} in the nested "Account name or SID" property as well
as ${i nstal | er: servi cePasswor d} in the nested "Password” property.

General

Service Hello World Service

Auto start

Description A service that says hello every 2 seconds
Windows

‘Windows arguments
‘Windows dependencies

‘Windows custom display name [Use service name]
‘Windows priority Normal
Account Other
Account name or SID ${installer:serviceAccount}
Password ${installer:servicePassword}

Keep current account
Restart on failure
Install a service

Installs a service. On Windows, this is done by executing the service launcher with the
appropriate arguments. On Unix, if systemd is detected, a config file will be created in
/etc/systemd/system, otherwise a link will be placed in /etc/init.d. On macOS, a
LaunchDaemon will be created. This action will be automatically reverted by the 'Uninstall
files' action.

If a helper process with elevated privileges has been created by the "Request privileges”
action, this action is pushed to the helper process. Please see the help topic on "Elevation
Of Privileges” for more information.

Command-line options of generated service launchers

Under some circumstances, services must be able to be installed and started manually
from the command line. While this is required functionality on Unix, service executables

104

on Windows usually offer no command line functionality. Instead, it is expected that there
is a special program that installs and uninstalls the service.

This task is handled by the “Install a service” and "Uninstall a service" actions in install4;j.
In addition, you can start and stop services in the Windows service manager. install4j
includes the "Start a service” and "Stop a service" actions to do this programatically in the
installer.

To improve usability, install4j adds Unix-like arguments to the generated service launchers
on Windows as well. For Unix and Windows service executables, the usual

my_service start
my_service stop
ny_service status
my_service restart

my_service. exe /start
my_service. exe /stop
my_service. exe /status
my_service.exe /restart

options for daemon start scripts are supported. The stop command waits for the service
to shut down. The exit code of the status command is 0 when the service was running, 3
when it was not running and 1 when the state cannot be determined, for example, when
it is not installed on Windows.

For debugging purposes, you may want to run the executable on the command line without
starting it as a background service. This can be done with the r un parameter.

nmy_service run | ny_service.exe /run

In that case, all output will be printed on the terminal. If you want to keep the redirection
settings, use the run-r edi r ect parameter instead.

To install or uninstall a service on Windows from the command line, call

nmy_service. exe /instal
nmy_service. exe /uninstal

In this way, your service is always started when Windows is booted. To prevent the
automatic startup of your service, call

my_service. exe /install-demand

instead. As a second parameter after the /i nst al | parameter, you can optionally pass
a service name. In that way you can

« install a service with a different service name than the default name.

« Use the same service executable to start multiple services with different names. To
distinguish several running service instances at runtime, you can query the system
property exe4j . | aunchNane for the service name. Note that you also have to pass the
same service name as the second parameterif youusethe/start,/restart,/ status
[stop and/ uni nst al | parameters.

On Windows, all command line switches also work with a prefixed dash instead of a slash,
like - uni nst al | or with two prefixed dashes, like - - uni nstal | .

105

External service launchers on Windows

When deploying third-party software, you may want to install and start services that were
not generated by install4j. Both the "Install a service” action and the "Start a service" action
provide a way to select other service executables. If you choose [Gt her service
execut abl e] in the drop-down list of the "Service" property, two new nested properties
are shown: In the "Executable” property you set the path of the external service executable
and the "Name" property allows you to specify the name of the installed service.

General

Service [Other service executable]
Executable bin\tomcat.exe
Name Tomcat web server

Auto start (v}

Description

Windows

‘Windows arguments
Windows dependencies

‘Windows custom display name [Use service name]
‘Windows priority Normal
Account Local System

Keep current account
Restart on failure

Install a service

Installs a service. On Windows, this is done by executing the service launcher with the
appropriate arguments. On Unix, if systemd is detected, a config file will be created in
/etc/systemd/systen, otherwise a link will be placed in /etc/init.d. On macOS, a
LaunchDaemon will be created. This action will be automatically reverted by the 'Uninstall
files' action.

If a helper process with elevated privileges has been created by the "Request privileges"

action, this action is pushed to the helper process. Please see the help topic on "Elevation
Of Privileges” for more information.

Note that this action does not provide "service wrapper" functionality for regular
executables. The selected executable has to be a service executable, otherwise the action
will not work.

106

A.17 Elevation Of Privileges

Most operating systems have the concept of normal users and administrators. While
regular applications can run with limited privileges, installers often need full administrator
privileges because they make modifications to the system that are not granted to limited
users.

The required privileges depend on two factors: The operating system and the type of
operations that are performed by the installer. The "Request privileges” action that is
present in the "Startup” sequence of the default template for installers takes care of
elevating the privileges to the required level and optionally terminating the installer with
an error message if the required privileges cannot be obtained.

Due to the differences of the different operating systems, this configuration is made
separately for Windows, macOS and Unix.

Screens & Actions L G 4

In this step, you configure the screens and actions that are displayed in the installer and uninstaller, updater and in custom
applications. Install4j offers a rich set of screens and actions to choose from.

Installer (5 screens) [ID instal..| = Mindows X - R R
Try to obtain full privileges if admin user 2
L Startup (1 action) . - .
artup (1 action, b 4 Try to obtain full privileges if normal user
o Request privileges [ID ... [l Show failure if requested privileges cann... [
._:‘ Welcome (1 action) [ID 2] macos . - . .
N Try to obtain root privileges if admin user
#* Installation location (1 ac... g Try to obtain root privileges if normal user
.,r‘ Installation companents | Show failure if requested privileges cann... [
Installati 3 acti Limix
nstallation (3 actions) | Linux privilege requirement None
% Finish [ID 20]] Unix
r Uninstaller (4 screens) [ID un Show failure if current user is not root
/ Error Handling
d

Failure strategy Continue on failure
Error message
Fall back to user specific installation dire... 4

Request privileges

Requests configurable administrator privileges. On Windows Vista and higher and on
macQOS, the installer will be restarted with the requested privileges or a helper process will
be created that can perform certain actions in a privileged context. When you restart the
installer, you should not install files before this action.

Please see the help topic on "Elevation Of Privileges" for a detailed discussion of this
action.

If the action fails, you can choose to not display an error message and switch to an
installation directory in the user home directory with the "Fall back to user-specific
installation directory” property.Use Ut i | . hasFul | Adni nRi ght s() in condition expressions
of actions that only work with elevated privileged in this case.

For the installer and the uninstaller, the privileges should be the same. This is why the
default template for the uninstaller has a "Request installer privileges” action that will
request the same privileges that were obtained in the installer.

107

Screens & Actions

In this step, you configure the screens and actions that are displayed in the installer and uninstaller, updater and in custom
applications. Install4j offers a rich set of screens and actions to choose from.

Installer (5 screens) [ID instal.. i'

r Uninstaller (4 screens) [ID un x

t Startup (2 actions) 0
@ Load a response file [

o Require installer privile...

,;:J Uninstall Welcome [ID 24]

* Uninstallation (1 action) [
,;:J Uninstallation failure [ID 32] 3
.;,rA Uninstallation success [ID
v/
d
\

If you have more complex requirements, you can have multiple "Request privileges” actions
with appropriate condition expressions, each with a link in the uninstaller.

Windows privileges

On Windows, "User Account Control" (UAC) D limits privileges for all users by default. An
application can request full privileges, with different effects for normal users and admin

users:

« A normaluser cannot be elevated to full privileges, so the user has to enter credentials
for a different administrator account. A normal user is not likely to have these credentials,
so by default the "Request privileges” action does not try to obtain full privileges for

normal users.

Under some circumstances, for example, if you want to manage services in your installer,
you absolutely require full privileges. In this case, you can select the "Try to obtain full

General

Show failure if required privileges cannot ...
Error Handling
Failure strategy Continue on failure
Error message

Control Flow

Condition expression

Rollback barrier

Can be executed multiple times

Privileges

Action elevation type

Require installer privileges

Require the same privileges as the ones that were obtained during the installation. On
Windows Vista and higher and on macQS, the uninstaller or custom installer application
will be restarted with the requested privileges if necessary. This action only has an effect if

a "Load response file" action is executed previously.

Please see the help topic on "Elevation Of Privileges" for a detailed discussion of this

action.

privileges if normal user” property in the Windows category.

« An admin user can be elevated. A UAC prompt will be shown in this case, and the user
simply has to agree to elevate privileges for the installer. Given that it is not possible to
write to the program files directory without elevated privileges, this elevation is performed
by default. With the "Try to obtain full privileges if admin user” property you can configure

this behavior according to your own needs.

M http://en.wikipedia.org/wiki/User_Account_Control

108

http://en.wikipedia.org/wiki/User_Account_Control

Try to obtain full privileges if admin user [
Try to obtain full privileges if normal user

Show failure if requested privileges cann... 2

Try to obtain root privileges if admin user
Try to obtain root privileges if normal user
Show failure if requested privileges cann... 2

Linux privilege requirement None
Show failure if current user is not root

Failure strategy Continue on failure
Error message
Fall back to user specific installation dire... 4

By default, the installer will fail if the requested privileges cannot be obtained. You can
deselect the "Show failure if requested privileges cannot be obtained” property in the
Windows category to continue and let the user install into the user home directory or
another writable directory.

When you insert a service action and the elevation properties are not selected, you will
be asked whether the necessary changes should be made automatically.

macOS privileges

Similar to Windows, macOS limits privileges for all users by default and normal users and
admin users behave differently with respect to privilege elevation:

« A normal user cannot be elevated to full privileges, so the user has to enter the root
password. A normal user is not likely to have the root password, so the "Request privileges”
action does not try to obtain full privileges for normal users by default.

« To elevate an admin user, an authentication dialog will be shown, and users have to
enter their own password. Contrary to Windows, admin users can always write to the
/ Appl i cations directory, even without full privileges. That is why on macOS no elevation
of privileges is requested by default.

Try to obtain full privileges if admin user [
Try to obtain full privileges if normal user
Show failure if requested privileges cann... 2

Try to obtain root privileges if admin user
Try to obtain root privileges if normal user

Show failure if requested privileges cann... 2

Linux privilege requirement None
Show failure if current user is not root

Failure strategy Continue on failure
Error message
Fall back to user specific installation dire... 4

Like on Windows, the installer will fail by default if the requested privileges cannot be
obtained. In the default setting this has no effect, because privileges are never requested.

Service installations require full privileges, so the "Try to obtain full privileges if admin user”
and the "Try to obtain full privileges if normal user” properties in the macOS category
should be selected in that case. Again, the necessary changes will be suggested when
service actions are inserted into the project.

109

Linux privileges

install4j supports elevation of privileges with pkexec for GUI installation if available. For
console installations, sudo or su will be called. install4j does not elevate privileges for

unattended installations. In this case, the installer has to be started by the root user if
required.

Windows

Try to obtain full privileges if admin user
Try to obtain full privileges if normal user

Show failure if requested privileges cann...
macOS

Try to obtain root privileges if admin user

Try to obtain root privileges if normal user

Show failure if requested privileges cann...
Linux

Linux privilege requirement None

Unix
Show failure if current user is not root

Error Handling

Failure strategy Continue on failure
Error message

Fall back to user specific installation dire...

Elevation mechanism

install4j does not elevate the entire process, but it starts an elevated helper process with
full privileges.

Elevated
helper Elevated Elevated
process action code
A
A
pushes pushes
launches i down elevates up
Original
unelevated Unelevated Unelevated
process code action

displays

All actions have an "Action elevation type” property that can be set to “Inherit from parent”,
‘Do not elevate” or "Elevate to maximum available privileges”. The root element in the

110

hierarchy or beans is always an installer application whose "Action elevation type” property
is set to "Do not elevate” by default.

General

Script

Optional Rollback Script

Error Handling

Failure strategy Continue on failure
Error message

Control Flow

Condition expression

Rollback barrier

Can be executed multiple times

Privileges

Action elevation type Inherit from parent [Do not elevate]

Inherit from parent [Do not elevate]

Do not elevate
Elevate to maximum available privileges

An action whose "Action elevation type” property results as "Elevate to maximum available
privileges” will run in the elevated helper process. Such an action has full access to all
installer variables as long as the contents of the variables are serializable.

Actions can have a preferred elevation type that is set automatically when you add the
action. Actions that need to be elevated include

« the "Install files” and "Uninstall files" actions
- service actions

+ actions that add rights on Windows

- actions that write files

+ the "Run executable or batch file" action

Actions that are explicitly not elevated by default include

+ the "Show URL" action

+ the "Show file" action

« the "Execute launcher” action

+ actions that should run as the original user, such as registry actions
+ actions that interact with the GUI of the installer application

Elevated code can only interact with the GUI in a limited way. All methods in the com
install4j.api.Wil classfordisplaying message dialogs or option dialogs are supported.
You cannot call cont ext . get W zar dCont ext () or directly display a GUI using the Java
Swing API. Also, calling methodsinthe com api . i nst al | 4j . cont ext . Cont ext thatchange
screens is not supported. Most importantly, because an elevated action runs in a different
process, you cannot access any static state in custom code. The only means to modify
state from elevated actions are installer variables.

For your own scripts or your custom code, the API offers a way to push a piece of code to
the elevated helper process or to the original process if they exist. This is done by wrapping
the code in a cominstall4j.api.context.RenpteCallable and calling context.
runkl evat ed(...) for the elevated helper process and cont ext . runUnel evated(. . .)
for the original process with the Renot eCal | abl e:

m

cont ext. runEl evat ed(new Renot eCal | abl e() {
public Serializable execute() {
/1l do sonething in the el evated hel per process
return null;

}
}, true);

cont ext . runUnel evat ed(new Renot eCal | abl e() {
public Serializable execute() {
/! do something in the original process
return null;

}
1),

The Renot eCal | abl e must be serializable, so its fields can be transferred to the other
process. Its execut e() method that contains the code returns a Seri al i zabl e so you
can return a result to the calling process.

12

A.18 Merged Projects

There are two basic motivations for merged projects: First, there are large projects where
a monolithic project file is inconvenient because multiple developers work on the same
installer. Secondly, if you have multiple products that share certain components, it is
undesirable to duplicate configuration for their installers.

The "merged projects” feature is a solution for both of these problems. You can create
project files that are separate installers by themselves, such as a "database installer’ and
reuse them in multiple projects by adding them on the "General Settings->Merged Projects”
step. On the other hand, you can also create project files that do not install anything by
themselves, but just contain a collection of "Run script” actions that are useful in several
of your installers.

Merged Projects L G 4

In this step, you can select other projects that should be merged into the current project. Some settings are merged
automatically, screens and actions are merged manually on the Screens & Actions tab.

Database [\components\database.install4]] ™
Merge files, launchers, custom installer applications

Utility actions [\components\util.install4j]
Merge styles

Merged projects in install4j are not subprojects that will retain their structure at runtime.
Merging inserts selected elements into the main project before the main project is
compiled.

Merge options

By default, files, launchers and custom installer applications are inserted. The corresponding
merged elements are only added at compile-time and will not be visible in the main
project. You can change merge options for each merged project individually.

Edit Merged Project X

Merged Project

File: \components\database.install4j

Name: Database 2]

Merge Settings

2 Files ?)
[Launchers 2]
[Installer applications €

Styles 2]

Screens and actions are not merged automatically. On the Screens &
Actions step you can merge single elements from merged projects such
as screen groups or action groups at any point.

) Help “ Cancel

13

Merging works across an arbitrary number of levels and is performed in a bottom-to-top
fashion: If the main project A includes a merged project B which in turn includes a merged
project C, then C is first merged into B and the result is merged into A.

All selections are transitive for nested merged projects. For example, if the merged project
contains another merged project for which merging of files is enabled, those files are only
merged if file merging is enabled in the main project.

Merging of files

If you have enabled file merging for a merged project, files are merged automatically
according to the following rules:

« All files from the default file set of the merged project are merged into the default file
set of the main project.

« Roots are merged if the main project has roots with the same name, otherwise they are
discarded.

 Files in each file set of the merged project are only merged if the main project has a
file set with the same name.

The contained files in the merged project are not displayed in the main project. When
defining installation components in the main project, you will only be able to select the
entire file set. This means that the file sets in the merged project have to be as granular
as required for your main project.

If there are files with the same relative paths, the main project has the highest precedence
and the most deeply nested merged project has the lowest precedence. For merged
projects on the same level, a project with a lower position in the list has a higher precedence
than a project with a higher position.

There is no merging of installation components. Installation components can only be
defined in the main project. However, with the appropriate definition of file sets in merged
projects, you can easily contribute files to installation components in the main project.
For example, if your merged project installs your database, and you want to ask the user
whether to install the database, define a file set named "Database files” in the merged
project and add all files to that file set. In your main project, you also add a file set named
‘Database files".

Define Distribution Tree A Y 4
In this step, you collect all files and directories that you would like to distribute with your media files. Use drag and drop to move

entries in the definition tree.

@ Default file set r
Installation directory

When adding the merged project, you will be asked whether to add that file set
automatically to the main project. If file sets change later on, there is an action to repeat
this synchronization. After invoking the action, the new file sets are displayed in the definition
of the distribution tree [p. 14].

na

Merged Projects L G 4

In this step, you can select other projects that should be merged into the current project. Some settings are merged
automatically, screens and actions are merged manually on the Screens & Actions tab.

Database [.\components\database.install4j] ™

Merge files, launchers, custom installer applications

Utility actions [\components\util.install4j]
Merge styles

In your installation component for the database, choose the file set "Database files”. It will
not contain any files in the IDE, but during compilation, the files from the merged project
will be added to it.

Installation Components L G 4
In this step, you can optionally define installation components that the user can choose for installation. If you don't define any

components, all files in the distribution tree will be installed. The component tree is drag-and-drop enabled.

4 Core files [ID 81] 'l Files Options Description — Dependencies
4% Database [ID 82]

All files in the distribution tree
© selected files:

Merging of launchers and custom installer applications

All launchers and custom installer applications are merged if you have enabled the
corresponding option for a merged project. It is not an error if there are collisions of
launchers or custom installer applications with the same relative paths, and the rules of
precedence are the same as for the merging of files. However, it is recommended not to
hide launchers in this way because this can lead to unexpected problems at runtime.

Both launchers and custom installer applications can be attributed to a particular file set.
In that case, they are only merged if the file set also exists in the main project. The
attribution to a particular installation component in the main project is done in the same
way as for files.

Merging of screens and actions

Screens and actions are not merged automatically, but through a selective placement
of links on the "Installer->Screens & Actions” step [p. 160]. If merged projects are configured,
the "Add link into” menu contains an entry for each merged project.

115

Screens & Actions

In this step, you configure the screens and actions that are displayed in the installer and uninstaller, updater and in custom
applications. Install4j offers a rich set of screens and actions to choose from.

4 Installer (6 screens) [ID instal.. +

& Startup (1 action) Add Action

_.gr‘ Welcome (1 action) [ID 2] Add Screen

.31‘ Installation location (1 ac... Add Application

_.gX‘ Installation components [| Custom Code >

_.31-. Create program group [ID... Groups »

g Installation (3 actions) || This project e startup sequence

? Finish [ID 12] Project "Database” irst screen is displayed.

T Uninstaller (4 screens) [ID un Project "Utility actions”

You can add multiple links to single screens and actions, but for more complex tasks it is
advisable to create groups for related beans and add a link to a single group.

Select a Screen or Action X

Project: Utility actions

¥ Installer [ID installer]
A Startup

-':é} Set a variable [ID 94]

2F Run script [1D 91]

-':é} Set a variable [ID 93]

::,5} Run executable or batch file [ID 95]
-':é} Run executable or batch file [ID 96]
2 Run script [ID 92]

% Authenticate user [Action group] [ID 100]
T Uninstaller [ID uninstaller]

Filter: Q-

o o JREE

When adding links, the install4j IDE, shows special nodes that do not show any structure
but just a button that opens the target of the link in a different window. At compile-time,
the target elements are inlined. This means that at runtime, it appears as if all merged
elements were defined directly in the main project.

116

Screens & Actions L G 4

In this step, you configure the screens and actions that are displayed in the installer and uninstaller, updater and in custom
applications. Install4j offers a rich set of screens and actions to choose from.

¥ Installer (6 screens) [ID instal.. +
f- Startup (1 action) x
@ Request privileges [ID 0

00 Link to Initialize databa...

it Welcome (1 action) [ID 2]

~4& Installation location (1 ac... This element links to a an action group defined in the merged project Utility actions
.;,rA Installation components [
4& Create program group [ID... 3 Go To Definition
|4

Installation (3 actions) |
— v/
4k Finish[ID 12] d

5 Uninstaller (4 screens) [ID un

Merging of styles

If style merging is enabled, all styles from the main project are made available for installer
applications, screen groups and screens. This allows you to centrally manage a set of
styles and re-use it in multiple projects.

Contains no form components 3 Configure ® Preview

Control Flow
Condition expression
Validation expression

Rollback barrier
Quit after screen

Back button
GUI Options
Inherit from parent [Default style]
Action elevation type Standard
Screen Activation Banner
Utility actions: Company style
Style Utility actions: Company Banner

The default screen style for this installer application. Screens and screen groups can
override this style.

See the help topic on styles [p. 60] for more information on how merged styles can be
used in the project.

Flat merging considerations

As a result of flat merging, there are no intermediary artifacts for merged projects and
the result of the compilation is a single monolithic installer. This has the advantage of
being straightforward and flexible, but collisions can occur unless concerns are properly
separated between the main project and its merged projects.

In particular, all elements in the final result share the same namespace for compiler and
installer variables. All custom localization files are merged, so that localization in merged
projects is not impacted unless there is a collision in the message keys. Such problems
can be avoided if unique prefixes are used for compiler variables and installer variables
as well as custom localization keys. For example, in project A, all variables could be prefixed
with "a.” and in project B with "b.".

17

One area where such collisions are not possible is for IDs of any entity in a project, such
as launchers, file sets, actions, screens or form components. When a project is merged,
install4j prefixes all IDs with the application ID of that project.

For example, if the application ID of a merged project is "1406-2150-6354-3051" and a
launcher has the ID "2265", the ID is changed to "1406-2150-6354-3051:2265" after merging.
This ensures that all IDs remain unique no matter how many projects are merged. Beans
(screens, actions and form components) in the merged project are passed a special
context that automatically prefixes all unqualified IDs with this application ID. For example,
if you have a script in your merged project that calls

cont ext . get Launcher Byl d("2265")

this will succeed, even though the ID is now actually "1406-2150-6354-3051:2265". If you
want to access that same launcher configuration from a script in the main project, you
would have to call

cont ext . get Launcher Byl d(" 1406- 2150- 6354- 3051: 2265")

Generally, it is recommended to organize merged projects so that they are relatively
self-contained and only interact with their main project through common installer variables.
In that way, the main project can continue to work if the merged project is removed and
the merged project can work as a standalone installer.

118

A.19 Auto-Update Functionality

install4j can help you to include auto-update functionality to your application.
Auto-updating includes two tasks: First, there must be a way to check if there is a newer
version available for download. This check can be initiated by the user in various ways, or
the check can be triggered automatically by your application. Secondly, there must be a
way to download and execute an appropriate installer for the new version.

install4j creates a special file named updat es. xm in the media output directory when
you build the project. This file describes the media files of the current version. If you want
to use install4j's auto-update functionality, you have to upload this file to a web server.
The file is then downloaded by deployed installations and delivers information about the
current version. The contents of updates.xm are explained in detail in the next
chapter [p. 124].

Downloading and installing the new version is done with a custom installer
application [p. 167]. install4j offers several templates for update downloaders that
correspond to the different update strategies. These strategies are explained below and
in the chapter on background auto-updates [p. 130].

Select an Application Template X

Available application templates:

Updater

7 Standalone update downloader

% Blocking update downloader

& Background update downloader
£ Empty custom application

Description

@ Help Cancel

Getting started

To get basic auto-update functionality for a GUI application, you should start with a
standalone update downloader that will help you validate the associated concepts. To
add a standalone update downloader to your project, you can follow these instructions:

1. Upload the file updat es. xm together with your media files to a directory on your web
server.

2. Go to the "Installer->Auto-Update Options” step and enter the download URL for the
updat es. xnl file. This must be the full URL for the file, like ht t ps:// www. ser ver. com
downl oad/ updat es. xnl and not just for the containing directory.

3. Go to the “Installer->Screens & Actions” step, click on the "Add" button, choose Add
application from the popup menu and select the "Standalone update downloader”
template.

4. For the added update downloader application, enter the "Executable name” property,
for example checkFor Updat e.

Users can now execute the checkFor Updat e executable to check whether a new update
is available. Optionally, the update can also be downloaded and installed.

19

For testing, you can set the "URL for updates.xml” value to afile URLlikefil e: /// c: / Users/
bob/ myPr oj ect / medi a/ updat es. xni . Note the triple slashes after the colon that arise
from the initial slash for the required root directory of the file path in addition to the two
slashes that separate the protocol from the path. With a file URL, you do not need a web
server and the updates.xml file does not have to be uploaded anywhere.

Installers versus archives

Generally, auto-update functionality is available for installers only. This is because the
update downloader downloads the current installer and executes it to perform the actual
update.

One exception is the single bundle archive for macOS where auto-updating is fully
supported by the update downloader templates. On macOS, the single bundle archive is
the preferred way to distribute software unlike on other platforms that prefer installers or
packages that are handled by a package manager. In the update downloader template
you will notice screen and action groups that deal with the macOS single bundle archives
separately.

Automatic invocation of update downloaders

Typically update checks are integrated into the application. An easy way to do so for
desktop applications is to start the update downloader when a particular launcher is
started. Activate the "Launcher integration” tab for the update downloader application
and select the "Start automatically when launcher is executed” check box.

To control how often this update check is performed, you can adjust the "Launch schedule”.
By default, it uses the frequency that is set it in the "Update schedule registry”. To initialize
the update schedule registry, you can add a "Configurable form" to your installer and add
an "Update schedule selector” form component to it. In the installer, the user will then get
the possibility to choose the frequency of the update checks.

Installer (6 scree... ™ ¥ Properties

5 Uninstaller (4 scree... x
Installer Variables

'.JP Background update... = -
QB} SEREEEE (R - 9 Launcher Integration
=\ Startup
j Welcome [For... Programmatic Integration
5 Check for updat... To call this custom installer application from your own code: Start Integration Wizard ?)

* Up to date [Scre...
* Update available... Automatic Integration

I %2 Start automatically when launcher is executed

Launch schedule: According to update schedule registry

Launch mode: Always
According to update schedule registry

First run of any launcher in archive media file by the current user

© All launchers

Selected launchers:

There are two points in the life-cycle of the launcher when the update downloader can
be started: At startup or when the first window is shown. In addition, the invocation at
startup can be blocking or non-blocking. This is set with the "Launch mode" drop-down
on the "Launcher integration” tab.

120

Installer (6 scree... ™ ¥ Properties

5 Uninstaller (4 scree... x

Installer Variables

4}3@ Background update... = -
Standalone update ..
Qb} 7 9 Launcher Integration
=\ Startup
j Welcome [For... Programmatic Integration

j Check for updat...

* Up to date [Scre...

To call this custom installer application from your own code: = Start Integration Wizard 7

= Update available... Automatic Integration
[start automatically when launcher is executed
Launch schedule: According to update schedule registry v

Launch mode: When first window is shown

Blocking at startup
© Al launchers Non-blocking at startup
When first window is shown
Selected launchers:

Of course your ideas for auto-updates might be different. Maybe you do not have a GUI
application, and you want to perform unattended updates, or you want to notify your
users about updates directly in your application. That is why the auto-update functionality
has to be extremely flexible, with the unavoidable downside that its configuration is not
trivial, and there are a couple of concepts that you have to understand in order to be
successful. The bulk of this flexibility comes from the fact that the update downloader is
not a monolithic entity, but is composed of standard form components and actions that
can be adjusted according to your particular requirements.

Blocking update downloaders

Some applications need to ensure that updates are applied as soon as possible or make
it a requirement that the current update is applied before the application can be started.
In that case, an update check has to be made at startup. If an update is found, the update
installer should be downloaded and executed. The "Standalone update downloader”
template is not directly suitable for this purpose because it informs the user if no new
version is available. This behavior is only appropriate if the user explicitly requested an
update check.

The "Blocking update downloader” application template is what is required in this case
and is intended for automatic update checks. It looks for an update in the startup sequence
and terminates the update downloader if no new version is available. This means that if
there is no new version available, your users will not see that a check has taken place.
Only if a new version is available will the update downloader display its window and inform
the user of the possibility to download the update installer.

121

¥ Installer (6 screens) [ID installer] + Gen.eral . X
f Script ((UpdateDescriptor)context.getVariabl
Uninstaller (4 screens) [ID uninstaller] x Variable name updateDescriptorEntry
{Q‘ Background update downloader [Custom applic... ||) Only if undefined
. . L |+ Fail if value is null |
Q‘ Blocking update downloader [Custom applicatio... - -
Register for response file
+ .)
=\ Startup (8 actions) Error Handling
@ Check for update [ID 470] |+ Failure strategy Quit on failure |
Update descript try [Set iable] [I...
pdate descriptor entry [Set a variable] [Control Flow
4+ Update available [Action group] (6 action... 3 Condition expression
@ New version [Set a variable] [ID 473] Rollback barrier - -
V) Can be executed multiple times
IO} Download size [Set a variable] [ID 474] db L
Privileges
@ Comment [Set a variable] [ID 475] & Action elevation type Inherit from parent [Do not elevate]

@ Download URL [Set a variable] [ID 476]

@ Archive [Set a variable] [ID 477] o
@ DMG [Set a variable] [ID 478]

Update available [Screen group] (5 screens) | Set a variable

A Sets a variable by running a custom script. The script can return any
java.lang.Object.

For such an automatic check you may want to invoke the update downloader in a blocking
fashion before the application is actually started. As explained in the chapter about update
checks [p.124], you can use the Appl i cat i onLauncher class to start update downloaders
from your own code. When calling Appl i cati onLauncher . | aunchApplication(...) with
the bl ocki ng argument set to t r ue, the method will not return until the update installer
has exited. If the user decides to run the installer on the "Finish" screen, your application
will be terminated by the "Shut down calling launcher” action.

Also, this template does not offer the user a directory selection for the downloaded installer,
but downloads to the user-specific download directory by default. You can change this
default directory by passing the argument - Vupdat er Downl oadLocat i on=[di r ect ory]
to the Appl i cati onLauncher. | aunchApplication(...) call

4 Installer (6 screens) [ID installer] + Gen_eral X
f Script context.getVariable("updaterDownloa
Uninstaller (4 screens) [ID uninstaller] x Variable name updaterDownloadFile
{Q‘ Background update downloader [Custom applic... |) Only if undefined
e . L Fail if value is null
Q‘ Blocking update downloader [Custom applicatio... N y
Register for response file
+ .)
=\ Startup (8 actions) Error Handling
@ Check for update [ID 523] Failure strategy Continue on failure
@ date d bl Error message
Updat ipt itry [Set i |
pdate descriptor entry [Set a variable] [Control Flow

@ Update available [Action group] (6 action... Condition expression
Rollback barrier

“=* Update available [Screen group] (5 screens) |
Can be executed multiple times

Y

E New version available [Form] [ID 482] db .
Privileges

g Update message [Form] [ID 491] & Action elevation type Inherit from parent [Do not elevate]

E Download new version [Form] (3 action...

o Download location [Set a variable] [ID ... o
o

10F Download file 1D 497)

@ Set the UNIX access mode of files and
Set a variable

7 Finish [Screen group] (2 screens) [ID 500] Sets a variable by running a custom script. The script can return any
java.lang.Object.

Typically you will want to restart your launcher after an update has been downloaded in
this way. This cannot be done in the update downloader because it has to terminate right
after starting the installer in order to release locks on installed files. The task to start your
launcher again falls to the installer where you can implement it with an "Execute launcher”

122

action in the "Finish screen’. If this should only happen during an update, you can set the
"Condition expression” of the action to cont ext . i sUpdat el nstal | ation().

To disable displaying information about a new version in the update downloader template,
you can set the installer variable ski pNewVer si onAvai | abl e tot r ue or delete the screen
named "New version available”. This may be necessary because you already notify users
about updates in your own application as explained in the next chapter [p. 124].

Unattended auto-updates

If a user interaction is not desired, the update downloader can work in unattended mode.
The execution mode of the update downloader is set through its "Default execution mode”
property. By default, it is set to "GUI mode". On Unix, access to the X-server is often not
available, for example, when you install in an SSH session. Also by default, the “Fall back
to console mode on Unix" property allows the installer to switch to console mode [p. 210]
in that case.

To generally disable GUI mode, the "Default execution mode” property can be set to
"Unattended mode". This would be appropriate for a service or for a desktop application
that executes the update downloader in the background. The “Unattended mode with
progress dialog”is intended for desktop applications that need to show a progress Ul while
the update is being downloaded.

Installer (6 scree... i
(T Y Properties
5 Uninstaller (4 scree... x
2 - Installer Variables
{3; Background update... 0 -

Qb Standalone update ...

2 Startup

9 Launcher Integration

CACLULADIE alie
j Welcome [For... Executable directory [Runtime directory]
j Check for updat... Single instance
File set Default file set
* Up to date [Scre... . . N
Executable icon [customized icon]
? Update available... Execution Modes
X Allow unattended mode
Progress interface creation script
Allow console installations
Fall back to console mode on Unix

Disable console mode on Windows
Console screen change handler

GUI mode
GUI mode
Console mode

[l Default execution mode

Default execution mode

N The default execution mode for the installer appli|
it is also possible to run in console mode or unatt|

Unattended mode
Unattended mode with progress dialog

For programmatic invocations, it is possible to set the execution mode on the command
line with the "-q" and "-splash” command line parameters [p. 212]. Programmatic invocations
of update downloaders should be done with the Appl i cat i onLauncher APIthatis explained
in the next chapter [p. 124].

In the default templates for the standalone and blocking update downloaders, the
execution mode is passed on to the "Run executable or batch file" action that executes
the downloaded installer. The "Set a variable” action named "Set installer arguments”
analyzes the current execution mode and prepares the command line parameters. This
is a good example for how the update downloader is actually a composition of actions,
screens and scripts.

123

A.20 Checking For Updates

This chapter explains the background behind update checking and introduces you to the
API that allows you to integrate these checks into your application.

The updates.xml file

The updat es. xm file is created in the media output directory [p. 137] each time you build

the project. For advanced use cases, you can modify this file before uploading it to the
web server. The file looks like the sample below:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<updat eDescri ptor baseUr|="">
<entry target Medi aFil el d="8" updat abl eVer si onM n="" updat abl eVer si onMax=""
fileNanme="hell o_wi ndows_4_ 0. exe"
newer si on="4. 0" newMedi aFi | el d="8" fil eSi ze="2014720" bundl edJre=""
nmyCust omAt t ri but e=" showMar ni ng" >
<comrent | anguage="en">Hel | o worl| d</ conment >
<conment | anguage="de">Hall o Welt </ coment >
<comment | anguage="it">C ao nondo</ coment >
</entry>
<entry target Medi aFil el d="9" updat abl eVer si onM n="" updat abl eVer si onMax=""
fileName="hello_linux_4_0.rpnt
newer si on="4. 0" newMedi aFil el d="9" fileSize="817758" bundl edJre="">
<comment />
</entry>
<entry target Medi aFil el d="10" updat abl eVer si onM n="" updat abl eVer si onMax=""
fileNanme="hell o_macos_4_ 0. dng"
newVer si on="4. 0" newMedi aFi | el d="10" fileSize="1359872" bundl edJre="">
<coment />
</entry>
</ updat eDescri pt or >

Its contents are derived from your input on the “Installer->Auto-Update Options” step
where you define global options and common options that are replicated on all media
file entries.

Auto-Update Options L G 4
In this step, you can customize the update descriptor file "updates.xml” which is used by auto-updaters that you can add on the
Screens & Actions step. Most settings can be overridden in the "Customize project defaults->Auto-update options" step of the
Download Locations
URL for updates.xml: https://www.server.com/download/updates.xml > ©

Base URL for installers: ?)

Auto-Update Version Requirements
2 Minimum updatable version: | 2.0 4

Maximum updatable version:

Additional Details
Files with comments: Edit &) 14 files]

Additional attributes: Edit) [2 attributes]

124

On the "Customize project defaults->Auto-update options” step of the media wizard you
can override settings with specific values for each media file.

Media Wizard - Windows X
1. Media file type Customize options for auto-updaters
2. Installer options
3. Data files Override Global Options
4. Executable processing These settings override the global configuration on the "Installer->Auto Update
5. Bundled JRE Options" step.
6. Customize project defaults
Minimum updatable version:
« Compiler variables
. Media file name Maximum updatable version:
« Principal language
« Exclude components Files with comments: Edit &) [No files]
« Downloadable components
. Exclude files Additional attributes: Edit &) [No attributes]
« Exclude launchers
« Exclude installer elements Legacy Media Files
- Look & Feel IDs of legacy media files: 7}

+ Auto-update options
7. Finished

& Help 4 Back Next » Finish Cancel

The root of the updat es. xm file is the updat eDescri pt or element. It has a baseUr|
attribute that can be used to specify an alternate download URL for the installers and
contains the value of the "Base URL for installers” setting on the "Installer->Auto-Update
Options" step. By default, it is empty which means that the installers must be located in
the same directory as the updat es. xni file.

The updat eDescri pt or element contains one or more ent ry elements that correspond
to the media files that were created by the build.

When install4j determines whether an entry in the update descriptor is a match for the
current installation, it looks at three attributes of the ent r y element: Most importantly, the
t ar get Medi aFi | el d attribute has to match the media file ID of the current installation.
You can show media file IDs by toggling the "Show IDs" toolbar button

Another criterion is the installed version of the application. Depending on that version, you
might want to offer different updates. The updatabl eVersionMn and the
updat abl eVer si onMax attributes can set lower and upper limits for the installed versions
that should download the associated entry in the update descriptor. By default, these
attributes are empty, so no version restrictions apply. On the ‘Installer->Auto-Update
Options” step, these versions can be set for all media files.

Attributes that describe the update installer include fi | eNane which is necessary to
construct the download URL, and fi | eSi ze which contains the size of the file in bytes.
newVer si on contains the available version while newiMedi aFi | el d is the media file ID of
the update installer which is usually the same as t ar get Medi aFi | el d. Lastly, bundl edJr e
contains the original file name of the JRE bundle without the . t ar. gz extension or the
empty string if no JRE is bundled in the installer.

If you discontinue a media file, you can migrate users of that media file to a different
media file with the legacy media file setting on the "Customize project
defaults->Auto-update options” step of the media wizard. For each specified legacy ID,
the entry for the current media file is duplicated, but with the t ar get Medi aFi | el d attribute
set to the legacy ID. For more complex scenarios, you can modify the updat es. xmi file
yourself and add additional entry elements as required.

125

Media Wizard - Windows X
1. Media file type Customize options for auto-updaters
2. Installer options
3. Data files Override Global Options
4. Executable processing These settings override the global configuration on the "Installer->Auto Update
5. Bundled JRE Options" step.
6. Customize project defaults
Minimum updatable version:
« Compiler variables
. Media file name Maximum updatable version:
« Principal language
« Exclude components Files with comments: Edit 0 [No files]
« Downloadable components
. Exclude files Additional attributes: Edit @ [No attributes]
« Exclude launchers
« Exclude installer elements Legacy Media Files
- Look & Feel) IDs of legacy media files: | 13,90 (2}
+ Auto-update options
7. Finished
@ Help 4 Back Next » Finish Cancel

In addition to the above attributes, the nested comment elements can contain a localized
description that should be displayed to the user. You can populate these elements for all
media files by configuring the "Files with comments” setting in the "Installer->Auto-Update
Options” step. The main use case for this feature is to display release notes in the update

downloader.

Edit X
Principal Language

English [en]: | |GIUENEEER RO R | A Edit
Additional Languages

Language Localized file

French [fr] resources\release_8_0_fr.txt

German [de] resources\release_8_0_de.txt

Italian [it] resources\release_8_0_it.txt

Additional languages are defined on the "General Settings->Languages" step

Finally, you can add any number of arbitrary attributes to the entry element. This is
configured with the "Additional attributes” setting in the "Installer->Auto-Update Options’
step. Additional attributes are useful for custom logic to select a suitable update installer

in the update downloader.

126

Edit Additional Attributes X

Additional attributes:

Key Value r
myCustomAttribute showWarning

majorVersion 8

The update descriptor APl and up-to-date checks

The install4j runtime API [p. 226] containsthecom i nst al | 4j . api . updat e. Updat eChecker
utility class that can download the updat es. xm file and translate it to an instance of com
i nstal | 4j.api.update. Updat eDescri pt or. From there, you can get a suitable com
i nstal |l 4j.api.update. Updat eDescri pt or Ent ry with a single method call:

i mport cominstall4j.api.launcher. Vari abl es;
i mport cominstall4j.api.update.*;

String updateUrl = Vari abl es. get Conpi |l erVari abl e("sys. updatesUrl");
Updat eDescri pt or updat eDescri ptor = Updat eChecker. get Updat eDescri pt or (updat eUr | ,
Appl i cati onDi spl ayMde. GUI) ;
i f (updateDescriptor.getPossibleUpdateEntry() !'= null) {
/] TODO an update is avail abl e, execute update downl oader

}

See the Javadoc for more detailed information.

In this way, you can display your own notification that announces the new version and
lets the user decide whether to download it or not. This APl is primarily intended for use in
your application. The "hello” sample project shows how to use it in a complex example,
see the sourcefile hel | o/ gui / Hel | oGui . j ava in your install4j installation and look for the
checkFor Updat eW t hApi method.

In a custom installer application, you would rather use a "Check for update” action that
performs the same actions as UpdateChecker and saves the downloaded
Updat eDescri pt or to an installer variable. All update downloader templates included
with install4j execute the "Check for update” action at some point. Its URL is set to
${installer:updatesUr | ?: ${conpil er: sys. updatesUrl}} by default. If you start the
update downloader with the argument - Vupdat esUr | =<URL>, it will define the installer
variable “updatesUrl” and that value will be used as the URL. Otherwise, it falls back to the
compiler variable "sys.updatesUrl” that contains the URL for updat es. xn that you have
entered on the "Installer->Auto-Update Options” step.

Instances of Updat eDescri pt or Ent ry expose all attributes of the corresponding entry
element in the updat es. xml file. They also provide access to any additional attributes
that were added to the entry element so you can implement custom logic to find a
suitable update. The most important method of the Updat eDescri pt or Entry class is the
get Ur| () method that constructs the full URL from which the update installer can be

127

downloaded. If no baseUr | has been specified on the updat eDescri pt or root element,
the URL starts with the parent directory from which the updates. xn file has been
downloaded.

Update schedule registry

A common requirement is to check for an update on a regular schedule. install4j comes
with a standard implementation of an update schedule registry that frees you of the task
to implement one yourself. This update schedule registry is fully integrated with the launcher
integration that starts update downloaders when launchers are executed, but it is also
available in the APL.

Thecominstal | 4j. api . updat e. Updat eSchedul eRegi st ry classisintended to be used
in your application. You configure a particular Updat eSchedul e by calling

i mport cominstall4j.api.update.*;

Updat eSchedul eRegi st ry. set Updat eSchedul e(Updat eSchedul e. DAILY) ;

and call

bool ean shoul dCheckFor Updat e = Updat eSchedul eRegi stry. checkAndReset () ;

each time your application is started. If you get a positive response, you can start a suitable
update downloader with the Appl i cati onLauncher class as explained below.

To facilitate the configuration of the update schedule in your installer, install4j offers a
special "Update schedule selector’ form component whose initial value is set to the current
setting (if any) and automatically updates the setting for the installed application when
the user clicks "Next".

o’ Update schedule selector [ID 300] ™

Initial update schedule Never

X Allow configuration on screen
Help text
Initialization script
Reset initialization on previous
Visibility script

3 Text ${i18n:CheckForUpdatesLabel}

Font Default

d Update schedule selector

op-down box that lets the user select an update schedule for your
plication. You can use the
m.install4j.api.update.UpdateScheduleRegistry classir
ur application to check if you should launch an updater. Please see the
sadoc for more information. Please note that simply adding this form
mponent does not automatically launch an updater at regular intervals.

Starting update downloaders from your own code

If you have a GUI application, you could provide integration with the update downloader
by offering a "Check for update” menu item or similar that invokes the update downloader.
One problem in this scenario is that if the updater downloads and executes the update
installer, your application will still be running and the user will receive a corresponding
warning message in the installer. The solution to this problemistousethecom i nstal | 4j .
api . I auncher. Appl i cati onLauncher class to launch the update downloader. With this

128

utility class, you can launch the update installer by passing its ID as an argument. IDs of
installer applications can be shown by toggling the "Show IDs" toolbar button.

If you launch an installer application such as an update downloader that way, the "Shut
down calling launcher” action will be able to close your application. To react to the
shutdown and perform cleanup operations, you can pass a callback to the
Appl i cationLauncher. |l aunchApplication(...) call. After you are notified via the
callback, your application will be terminated with a call to Syst em exi t (). For example,
for an update downloader with ID 123:

i mport java.io.| CException;
import cominstall4j.api.launcher. ApplicationLauncher;

try {
Appl i cati onLauncher. | aunchApplication("123", null, false, new

Appl i cati onLauncher. Cal | back() {
public void exited(int exitValue) {
/] TODO updat e check conpl ete, no update avail abl e

}

public void prepareShutdown() {

/1 TODO update installer will be executed, performcleanup before the process is
term nated

}

}

)
} catch (I CException e) {
e.printStackTrace();

/1 TODO handl e i nvocation failure

}

To easily get such a code snippet for invoking the update downloader, select the update
downloader application and click on the Start Integration Wizard button on the right.

Installer (6 scree... ™ ¥ Properties

} Uninstaller (4 scree... x
Installer Variables

.fb Background update... ¢ -

. Standalone update ...

> i 3 Launcher Integration
r
=\ Startup
j Welcome [For... Programmatic Integration

Check for updat...
3 s To call this custom installer application from your own code:| Start Integration Wizard ?)

* Up to date [Scre...
j Up to date no... Automatic Integration

) "
* Update available... & Start automatically when launcher is executed

5 New version ...
j Update mess...
j Download ne...

* Finish [Screen...

129

A.2]1 Background Auto-Updates

The introductory chapter on the auto-update functionality [p. 119] discussed update
downloaders that check for update installers, download them and execute them directly
on demand.

Another way to organize auto-updates is to download the update installer in the
background and schedule the update for execution the next time a launcher is executed.
This mode requires the least involvement of the user during the update process. Depending
on how much information you choose to provide to the user in your application, the only
thing the user may notice is an update dialog when the application is started. No download
will take place at that time, because the update installer was already downloaded during
a previous session. The update will be installed without user interaction and no further
user input is necessary.

The "Schedule update installation” action

install4j offers a custom application template that handles such background updates.
On the "Installer->Screens & Actions” step, click on the "Add” button, choose Add application
from the popup menu and select the "Background update downloader” template.

Just like the standalone and blocking update downloader templates, the background
update downloader template uses the “Check for update” action to check if an update is
available and then downloads the update installer with a "Download file" action. There are
two differences with respect to the other update downloader templates: First, a background
update downloader has no Ul and automatically downloads an update installer if available.
Second, it will not execute the downloaded update installer directly because that would
disrupt the work of the user. Instead, it executes a "Schedule update installation” action to
register the downloaded update installer for later execution.

Configuration
Installer file

Installer (6 screens) [ID installer] o . 5
${installer:.updaterDownloadFile}

3 Uninstaller (4 screens) [ID uninstaller]) 4 ${installer:updaterNewVersion}

Version

4}35 Background update downloader [Custom applic...
t Startup (15 actions)
{O‘ Check prerequsites [Run script] [ID 279]
@ Check for update [ID 280]

Check for newer installation

Installer arguments

Installation Error Handling

Maximum retries on error 3
Maximum retries on cancel 10

pa Retry inhibition in minutes 1,440
10P Update descriptor entry [Set a variable] [Error Handling
3} Update available [Action group] (12 actio...) Failure strategy Quit on failure
{O New version [Set a variable] [ID 283] Error message
:,. . . c’ Control Flow
'O'} Download URL [Set a variable] [ID 284] Condition expression
10F Download location [Set a variable] [ID Rollback barrier
@ Download file [ID 286] Can be executed multiple times
<00,
Privileges
¢ Installer [Action group] (2 actions) [ID Action elevation type
@ Set the UNIX access mode of files an.|
Schedule update installation [ID 289;
o LB UFEES lEE] EiEm] ! Schedule update installation
{F Single Bundle Archive [Action group] (... N Schedule a downloaded media file to be started upon the next start of a

launcher configured accordingly or by calling

15 Backe d update downloader [Cust lic...
)5 Background update downloader [Custom applic UpdateChecker.executeScheduledUpdate().

In addition to the "Installer file" property that tells the action where the downloaded installer
is located, the "Schedule update installation” action has a "Version” property. This is
necessary so that if multiple installers have been downloaded and not yet been executed,
only the most recent version is actually installed.

To avoid a situation where an installer that terminates with an error or is cancelled by the
user is executed again each time when the launcher is started, the "Maximum retries on
error’ and "Maximum retries on cancel” properties limit the number of times that these

130

conditions are repeated, before the installer is finally ignored and the background update
downloader waits for the next version.

To mitigate external issues, such as interrupted internet connectivity, there is a minimum
time between retries of a failed installation. By default, the "Retry inhibition in minutes”
property is set to one day. If you would like to retry more quickly, you can reduce this value.
This may be necessary during development when you want to try out the feature multiple
times in succession. With the default setting, you can only try it once per day.

Executing scheduled installers

There are two options to execute an update installer that is scheduled for execution:

+ Programmatic invocation

By calling
cominstall4j.api.update. Updat eChecker. execut eSchedul edUpdate(...);

you can execute the downloaded update installer programatically, usually after checking
the result of

cominstall4j.api.update. Updat eChecker. i sUpdat eSchedul ed()

to determine whether such a download has been completed. You can do that while the
launcher is running or at startup. Notifying the user about this event or letting the user
defer the installation is handled by your own code. For console and service launchers,
this is the only option.

The "HelloGui" class the in the "hello” sample contains a complete demonstration of how
to use the API to check for updates programatically and uses a background update
downloader to download and install updates.

« Automatic invocation

For GUI launchers, you can edit the launcher, go to the "Executable info->Auto-update
integration” step and select the Execut e downl oaded update installers at startup
check box. When the GUI installer is started and a downloaded update installer has
been scheduled for installation, the update installer will be executed. See the help topic
on launchers [p. 41] for more information.

Restarting the launcher

In the standalone and blocking update downloader templates, the installer is responsible
for starting a launcher after the installation with an "Execute launcher” action, and you
can choose whether to do that or not.

Installers that have been scheduled by the "Schedule update installation” action are always
executed from a running launcher, so install4j knows which launcher to restart and does
so automatically if you use the automatic auto-update integration for GUI launchers. For
programmatic invocations with the

cominstall4j.api.update. Updat eChecker . execut eSchedul edUpdat e(. . .)

131

APl calls, ther est ar t Launcher argument controls whether the current launcher is restarted.
If you pass f al se, you should start a launcher at the end of the update installer yourself.

Trouble-shooting background auto-updates

A complete background auto-update involves 5 processes that are created in
chronological succession. First, code in the launcher (1) or the automatic launcher
integration for an update downloader detects a new update. Then, the update downloader
(2) is started which downloads the update installer and schedules it for execution. At
later point in time, the user starts the launcher again (3) and install4j detects that a
scheduled update installer is available. It then executes that update installer (4) and
terminates itself. At the end of the update installer, the original launcher is restarted (5).

Launcher [Check for update }

executes

Y

Update

Schedule installer execution
downloader

@Q

starts launcher again

Launcher [Scheduled update found }

executes and terminates itself

A4

Update _
. Restart original launcher
installer

J

executes

N
Restarted g q
Launcher [P11e @ NS

If an error occurs at any point in this chain of processes, the auto update will fail. When
setting up your project, this may be due to a misconfiguration, like a wrong URL for the
updates.xml file or a failed download of the update installer. Because the log files of the
update downloader and the update installer are not readily available and API calls that

132

you use the in the launcher to check for updates or execute scheduled installers do not
log at all, it is difficult to find out where the problem is located.

To debug issues during background auto-updates, you can set the system property
i nstal | 4j . updat eLog=t r ue for the launcher that starts the update process. If you pass
it on the command line, remember to prefix it with- J, otherwise it is passed as an argument
to the main class:

-J-Dinstall 4j.updatelLog=true

If this system property is set, install4j will create a file named updat e. | og in the updater
cache directory. The updater cache directory can be found in the following
platform-dependent locations:

+ Windows
%4 OCALAPPDATAY% i nstal | 4j / updat e

* macOS
$HOVE/ Li brary/ Caches/ i nstal | 4) / updat e

« Linux/Unix
$XDG CACHE HOVE/ i nstal | 4j /update or $HOWE/ .cache/install4j/update if
XDG_CACHE HOME is undefined

The updater cache directory contains directories whose names are hashes of the
application ID and subsequently directories with hashes of the installation path. You can
look for the most recently modified directories to quickly find the application that you are
testing. Inside those directories is the actual content, including the file updat e. | og, that
contains logging output that will help you determine the location as well as the cause of
a failure. Other artifacts in this directory include the downloaded installers as well as lock
files for the update process.

To completely start over with an auto-update process during testing, you can delete this
directory and install4j will re-create it as necessary.

133

A.22 Version Numbers

Version humbers in install4j should be a sequence of version components separated by
dots:

A B.C ..

where A, B, C are composed of alphanumeric characters without dots, for example 1,112,
5-rc-9orrel ease.

Version comparisons in the auto-update API

The auto-update [p. 119] APlinthe com i nst al | 4j . api . updat e package has to determine
whether a new version is greater than an installed version or not. Usually, the
get Possi bl eUpdat eEntry() method of the update descriptor is called to make that
comparison:

Updat eDescri pt or updat eDescriptor = ...;

i f (updat eDescri ptor. get Possi bl eUpdateEntry() != null) {
// TODO an update is avail able

}

In its implementation, it calls

Updat eDescri pt or Entry updat eDescriptorEntry = ...;
String installedVersion = context.getVersion();
i f (updat eDescriptorEntry. checkVersi onConpati bl e(i nstal |l edVersion)) {
/] TODO This entry has a version that is newer than the installed version

}

The checkVer si onConpat i bl e method checks if the supplied version

« is greater or equal than the minimum updatable version in the update descriptor entry
(if defined)

- is less or equal than the maximum updatable version in the update descriptor entry (if
defined)

« isless than the version of the new media file
Internally, it calls

i f (Updat eChecker.isVersi onG eat er Than(newMer si on, installedVersion)) {
/] TODO newMersion is indeed greater than installedVersion

}

to compare the version strings of the installed version with the new version in the update
descriptor entry.

Comparison algorithm for versions

Let us call the two versions that should be compared A and B. Ahas N, components while
B has N, components. Components are determined by splitting the version string with a

134

java.util.StringTokeni zer and asingle dot as a delimiter. The components are denoted
asA(0) ... A(N-1) andB(0) ... B(N-1).

The following rules apply when comparing these two versions:

1.

6.

Before the comparison, the following replacements are performed for both versions in
this order:

« When going from left to right, a boundary between digits and non-digits creates a
new component, for example 2. 3a becomes 2. 3. a. Boundaries between non-digits
and digits are left intact, for example 2. 3. a4. This means that non-numeric characters
only appear as leading characters for each component.

« After dots, any "-" and "_" characters are discarded.

« All characters are converted to lower-case, for example 1. 0- HEAD becomes 1. 0.
head.

. The version that has fewer components is filled up with components of value 0, so that

both versions have the same number of components N = max(N, N,).

. The versions are compared from left to right, component by component. The version

comparison is finished for the first K = 0 ... N-1 for which the components are not
equal:

B(K) > A(K) => B > A
B(K) < A(K) => B < A

. Components that have leading non-numeric characters are considered as less than

components with leading numeric characters. For example 2. 3-pre < 2. 3, because
2. 3-preisconvertedto 2. 3. pre and 2. 3 is converted to 2. 3. 0.

. If both components have a non-numeric part, version comparison is decided by their

lexicographic comparison, as performed by St ri ng. conpar eTo(. . .). For example, 2.
Z3 > 2. X4.If the non-numeric parts are equal, the numeric parts are compared where
missing numeric parts are set to 0.

Otherwise the components are both numeric and can be compared numerically.

Some examples from the unit test for the version comparison method are:

135

2
1.
<
1
4
<
4
a

betal < 1 0beta2
etal < 1.0. beta2
< All
0 beta 1
0 beta 1
0 beta 1
.0rcl < 1.
.0-rcl < 1.0

.0.rcl < 1.0

.0al pha < 1.0rcl

. Oal pha < 1.0al phal

. 0al pha9 < 1. 0al phal0

. 0al phal00 < 1.0.rc100

.0.alpha < 1.0-rc

<1

DEVELOP- HEAD130714193704 < DEVELOP- HEAD130714193705

2
<
<
0
<
0
0
0_.
e
.b

2.0
2.0.0
2.0 beta 2

NRPRPRPRPRPRRPRNONN E PRPRPPRPPORRRR
OANANA

136

A.23 Media Files

Media files are the final output of install4j: single artifacts that are used to distribute your
application to your users. The creation of a media file has platform-dependent options,
so for each platform, you have to define a separate media file. It also makes sense to
define several media files for one platform in case you wish to distribute different subsets
of your distribution tree, or if you distribute your application with and without a bundled
JRE.

©° = H o g &% 53 @ 52 0 B O X

New Open Save Project . e Buld Dy Test Stop | Show Edit
Project Project Project Report o Project Run Installer Build IDs P | Media
General Settings Media \N 7

In this step, you can configure media files for various platforms to distribute your

Files application. Use drag and drop to reorder your media files in the list.

9 Launchers

= Installer
F_") Media

@;" Build

%

New media file

1s

Linux RPM [ID 9]

&

macOS Folder [ID 11]

e

Unix Installer [ID 12]

=3

Windows 64-bit [ID 463]

+

Linux Deb Archive [ID 1677]

_li

macOS Single Bundle Archive [ID 20

60]

Idle

Common options for all media files, such as the destination directory, a pattern for naming
the output file and compression options are defined on the "General Settings->Media File

Options” step.

Media File Options

In this step, you can define general options that apply to all generated media files. Text field with bold labels must be filled in

Media Files
Media file output directory:

Media file name pattern:

Compression
Compression level: | 6

Use LZMA compression

Amedia

${compiler:sys.shortName}_${compiler:sys.platform}_${compiler:sys.version}

Convert dots to underscores €

Convert spaces to underscores

@
o

Use Pack200 JAR compression (2]
Exclude signed JARs or JARs creating digests

Shrink runtime library and remove all unused classes @

External Data Files (2]
Create common data files where possible (2]

Create files with SHA-256 sums for checking the integrity of data files @

137

Media files have names and IDs. The name is available elsewhere by using the sys.
medi aNane compiler variable but is otherwise not used by the compiler. IDs of media files
can be used for selecting media files when building the project from the command
line [p. 234]. You can show IDs by toggling the "Show IDs" toolbar button.

There are two fundamentally different types of media files: installers and archives. Installers
support the full functionality of install4j while archives are limited in several ways.

Create Media File X

1. Media file type Choose the media file type

This wizard leads you step by step through collecting all required information to
generate a media file for a specific platform. Some platforms offer more than one media
file type.

Please select if you want to create a full installer or an archive and choose the target
platform for the media file.

An installer is a native executable that installs your application, usually
‘ with a GUI wizard, but optionally also with a console or a silent installer.

Installer
Installer type: Choose one v

An archive (for example a ZIP file) simply expands to where the user
+ extracts it.

Archive
Archive type:

© Help Next » Cancel

Installers

Installers install your application programmatically with the configured sequence of
screens & actions [p. 25|. Optionally, an installer can be executed in unattended or in
console mode [p. 210] and it can download a JRE [p. 96] if no suitable JRE is found on the
target system.

The following installer media file types are available:

- B Windows

A media file for Windows is a native setup executable that installs your application with
an installer wizard.

Optionally, you can create an MSI wrapper instead of a regular executable. This is
configured on the "MSI wrapper” advanced options step below the “Installation options”.
It is not recommended to use the MSI wrapper without having a specific requirement
for it. The MSI wrapper adds a lot of extra process machinery and additional logic to
bridge mismatches between the concepts of install4j and MSI. This results in additional
overhead, increased temporary disk space requirements, reduced responsiveness and
extra considerations for the non-GUI installer modes.

138

Media Wizard - Windows X

1. Media file type Configure an MSI wrapper for the installer

2. Installer options

You can optionally generate an MSI wrapper instead of a regular executable. This should
only be done if the MSI is strictly required, otherwise the executable is the better option.

« MSI wrapper e N .
See the help on media files for more information.

3. Data files

4. Executable processing
5. Bundled JRE

6. Customize project defaults Installation scope: @) Per machine @

7. Finished Per user 7]

Create an MSI wrapper

MS! product ID: @) New ID for each build @
New ID for each version @)

Custom value 7]

@ Help 4 Back Next » Finish Cancel

MSI wrappers have a fixed setting for whether an installation will be performed
per-machine or per-user. In install4j, this corresponds to whether the "Request privileges”
action is performed or not. In the “per-machine” MSI installation scope it is your
responsibility to ensure that the "Request privileges” action is always executed and that
in the "per-user” MSI installation scope the "Request privileges” is never executed.

MSI will prevent that an installation is repeated if it has already been performed. The
identity of an installation is defined by the MSI product ID. If an installation with the same
product ID is found, the MSI installer will show an error message and terminate. By
default, install4j creates a unique MSI product ID for each build. You can also tell install4j
to create a new product ID for each application version as configured on the "General
Settings->Application Info" step, or to use a custom MSI product ID that you can change
as required.

To change the installation directory, the variable | NSTALLDI R can be specified on the
command line. In addition, PARAVETER can be used to pass arbitrary command line
parameters to the wrapped installer.

= macOS folder

The folder media file for macOS is started by the user from the Finder after opening the
DMG. The wizard installs your application as a folder that contains the entire distribution
tree and multiple application bundles for each included GUI launcher.

#® Unix/Linux GUI installer

A Unix/Linux GUl installer media file is an executable shell script that extracts an installer
and installs your application with an installer wizard.

Archives

Archives can be extracted by the user to arbitrary locations or are submitted to package
managers for installation. No screens are shown and no actions are executed. If you define
additional installation roots, the files in them are not installed. Also, no installation
components are downloaded.

Apart from the "macOS single bundle” archive that produces the idiomatic deployment
mode for GUI applications on macOS, archives are mainly intended as a fallback or for
additional packages such as documentation bundles.

139

When a launcher is executed for the first time after an extraction, you can call a custom
installer application to perform tasks that would otherwise have been part of the installer.
With the Appl i cati onLauncher. i sNewAr chi vel nstal | ati on() method you can find out
whether this is the case:

i mport cominstall4j.api.launcher.*;

i f (ApplicationLauncher.isNewArchivelnstallation()) {
Appl i cati onLauncher. | aunchApplication("123", null, true, null);
}

where "123" is the ID of the custom installer application that should be run.

The following archive media file types are available:

- Hi windows archive
An archive media file for Windows is a ZIP-file that contains your application.

- B macos single bundle archive

A single bundle media file for macOS is a DMG or .tgz archive that contains a single
application bundle for a selected GUI launcher. Command line launchers and service
launchers are contained in the application bundle. If you wish to support multiple GUI
launchers, choose the "macOS folder archive” media file type instead.

All files in the distribution tree are contained inside the application bundle under the
relative path Cont ent s/ Resour ces/ app.

This is the preferred way to distribute a GUI application on macOS. The corresponding
installer that installs a single application bundle is deprecated because of signature
requirements of modern macOS versions. To make it easier to use the screen and action
system in install4j for installations, the media wizard allows you to select a custom
installer application that is executed the first time the user starts the application bundle.

« ¥ macos folder archive

A folder media file for macOS is a DMG or .tgz archive that contains the distribution tree
and multiple application bundles for each included GUI launcher.

« B Unix/Linux archive

A Unix/Linux archive media file is a gzipped TAR archive that contains your application.
Users will extract them with a command like

tar xzf archive.tar.gz

« B Linux RPM

An RPM archive for Linux can be installed and uninstalled with the r pmcommand on
Linux distributions that use the Redhat package management.

A basic installation command looks like

rpm-i archive.rpm

140

You can configure custom installer applications to run in the post-installation phase
and the pre-uninstallation phase. Alternatively, default actions for installed launchers
can be performed without starting a JVM. These include the installation of services,
creating links for non-service launchersin/ usr/ | ocal / bi n and integrating GUI launchers
into the menu of the desktop environment. In addition, bash scripts for pre-install,
post-install, pre-uninstall and post-uninstall phases can be configured.

« 8 LinuxDeb

A Deb archive for Linux can be installed and uninstalled with the dpkg command on
Linux distributions that use the Debian package management.

If you deliver the .deb file as a download, the user will have to install it with

sudo dpkg -i archive. deb

If you specify dependencies for the .deb file in the media wizard, they will not be installed
automatically by the above command. If dependencies are missing, dpkg will simply

report a failure due to the missing dependencies. If you need to install dependencies
from configured repositories with an external .deb file, the installation is a 2-step process:

sudo dpkg -i your_package. deb
sudo apt-get install -f

The second line installs the missing dependencies from the repositories.

Deb media files have the same functionality for running custom installer applications
as RPM media files.

Customizing project defaults

Many project configuration settings can be overridden for each media file. Settings in text
fields can be overridden by using compiler variables [p. 68] and overriding them in the
"Customize project defaults->Compiler variables” step of the media wizard.

Itis also possible to override compiler variables for specific media files from the command
line [p. 234] by prefixing the variable name with the media file ID and a colon, as in

-D 123: key=val ue

if the media file ID is "123". As a special case, you can change the principal language on a
per-media file basis by setting the compiler variable sys. | anguagel d with the 2-letter

150 code " of the desired language, for example

-D 123: sys. | anguagel d=fr

For some features where text fields are not used, special screens are available in the
"Customize project defaults” category. They let you exclude files, launchers, installation
components and installer elements. In addition, the principal language [p. 86] and
auto-update options [p. 119] can be overridden for the media file.

Because it is often necessary to change the name of the media file from the global media
file pattern configured on the "General Settings->Media File Options” step, a separate

0 https://www.w3.org/WAI/ER/IG/ert/is0639.ntm

141

https://www.w3.org/WAI/ER/IG/ert/iso639.htm
https://www.w3.org/WAI/ER/IG/ert/iso639.htm

customization step is available in the media wizard. For example, you may want to produce
two different variants for the same platform with and without some particular files. To

avoid a name clash of the two media files, you have to adjust the name of one or both of
the media files.

Media Wizard - Windows

1. Media file type
2. Installer options
3. Data files You can override the name of the media file that was defined in the general settings
4. Executable processing step of install4j. If unsure, choose the standard name option.

5. Bundled JRE

6. Customize project defaults

Customize name for media file

Standard name

° Custom name
« Compiler variables
+ Media file name
« Principal language

custom_installer » Copy Default

« Exclude components
« Downloadable components
« Exclude files
« Exclude launchers
« Exclude installer elements
« Look & Feel
« Auto-update options
7. Finished

© Help 4 Back Next » Finish Cancel

Pack200 JAR compression

Pack200 compression @is a compression algorithm that was designed for JAR files and
achieves exceptional results, especially for large JAR files.

Media Files
Media file output directory: .\media > - @
Media file name pattern: ${compiler:sys.shortName}_${compiler:sys.platform}_${compiler:sys.version} » ©
Convert dots to underscores @
Convert spaces to underscores
Compression
Compression level: = 6 v @
Use LZMA compression (2]
Use Pack200 JAR compression (7]
Exclude signed JARs or JARs creating digests ()
Shrink runtime library and remove all unused classes @
External Data Files (7]
Create common data files where possible (7]
Create files with SHA-256 sums for checking the integrity of data files €

If you have signed JAR files or JAR files that create a digest, apply the $IDK_HOVE/ bi n/
pack200 executable in your build process with

pack200 --repack my.jar

before signing the JAR files. Pack200 rearranges JAR files, but the reordering is idempotent,
so the above pack/unpack sequence creates a stable JAR file.

(2) http://java.sun.com/j2se/1.5.0/docs/guide/deployment/deployment-guide/pack200.html

142

http://java.sun.com/j2se/1.5.0/docs/guide/deployment/deployment-guide/pack200.html

While Pack200 compression can be quite slow, Pack200 decompression is relatively fast.
Pack200 compression is only used for installers and not for archives.

To avoid problems with external JAR files, you can check the "Exclude signed JARs or JARs
creating digests” option. If you would like to exclude selected JAR files only, you can place
an empty *. nopack file next to it. For example, if the jar file is named app. j ar, then afile

app. j ar. nopack in the same directory will disable Pack200 compression for that file.

To pass options ®) to the packer, create afile *. packopt i ons next to the file and add one
option per line. Currently, only - Pand - - pass-fi | e are supported.

(3) http://docs.oracle.com/javase/8/docs/technotes/tools/windows/pack200.html|

143

http://docs.oracle.com/javase/8/docs/technotes/tools/windows/pack200.html

A.24 Data Files

Typically, installers are single files that contain all data that they can install when they are
executed. There are three common situations where this is not the case:

« DVD installers with large data files

If your application relies on large amounts of datg, it is often distributed on a DVD. In
that case, you typically ship a number of external data files that you do not wish to
package inside the installer. The installer should start up quickly, and the data files
should not be extracted from the installer to save time. The user might decide to install
only certain components, so some data files might not be needed at all. If they are
included in the installer executable, all this data would have to be read from disk.

+ Installers with large optional components

Some applications have large optional components that are not relevant for the typical
user. To reduce download size for the maijority, the optional components should be
downloadable on demand.

+ Netinstallers

Some applications are highly modular, so it is not feasible to build a set of installers for
typical use cases. A net installer lets the user select the desired components and
downloads them on demand. The download size of the net installer is small because
no parts of the actual application are contained in the installer itself.

To accommodate the above use cases, install4j offers three different ways to handle the
installer data files. The data file mode can be selected in the "Data files” step of the media
wizard. By default, the “Included in media file" option is selected where all data files are
included in the installer, so you can ship it as a single download.

Media Wizard - Windows X

1. Media file type Installer data files
2. Installer options
3. Data files The files in the distribution tree can be included into the installer, placed externally into

4. Executable processing a directory next to the installer or be downloaded during the installation.

5. Bundled JRE
6. Customize project defaults
7. Finished Files should be:

See the help topic on data files for more information.

© Included in media file
Stored in external data files &)
Downloaded 7]

@ Help 4 Back Next P Finish Cancel

External data files
This mode covers the "DVD installers with large data files” use case.

Next to your installer, a directory for the data files is created with the name of your installer
and the extension . dat . For example, if your media file name is hel | 0_4_0, resulting in a
Windows installer executable hel | 0_4_0. exe, the directory containing the external data

144

filesisnamedhel | 0_4_0. dat . You have to ship this directory in the same relative location
on your DVD.

The number of data files depends on the definition of your installation components. The
data files are generated in such a way that

- the files for an installation component are contained in one or more data files
« there are no files in those data files that do not belong to this installation component

If components do not overlap, there's a one-to-one correspondence between data files
and installation components.

Downloadable data files

This mode covers the "Installers with large optional components” and “Net installers” use
cases. It can only be used if you define installation components [p. 21].

Data files are generated just like for the "External” mode, but only for installation components
that have been marked as downloadable in the installation component definition [p. 21].

Installation Components 8 7

In this step, you can optionally define installation components that the user can choose for installation. If you don't define any
components, all files in the distribution tree will be installed. The component tree is drag-and-drop enabled.

‘* Hello World Application [ID 40] T Files Options Description Dependencies
Source Files [ID 41]

Initially selected for installation @)
User can change selection state @)
Initially hidden 2]
I Downloadable component I ?)

If no installation components are marked as "downloadable’, this mode will behave like
the "Included in media file" mode. For a "net installer’, all installation components should
be "downloadable”.

For this mode, you have to enter a HTTP download URL, so the installer knows from where
it should download the data files at runtime if the user requests downloadable components.
The URL must begin with http:// or https:// and point to a directory where you place
the data files that the compiler produces in the . dat folder next to the installer.

145

Media Wizard - Windows X

1. Media file type Installer data files
2. Installer options
3. Data files The files in the distribution tree can be included into the installer, placed externally into

4. Executable processing a directory next to the installer or be downloaded during the installation.

5. Bundled JRE
6. Customize project defaults
7. Finished Files should be:

See the help topic on data files for more information.

Included in media file

Stored in external data files @)

IO Downloaded I 2]
HTTP download URL: | https://www.test.com/components | 7]
& Help 4 Back Next » Finish Cancel

The build output will list the data files that belong to downloadable installation components
with a message like

Important: Please nmake sure that the following files can be downl oaded from

https://ww.test.conl conponents

hel | o_wi ndows- x64_8_0. 41. dat

This means that the data file must be uploaded to the web server, so that the installer can
download it from the URL

https://ww.test.conl conponent s/ hel | o_wi ndows-x64_8 0. 41. dat

Any data files that you leave in the data file directory next to the installer will not be
downloaded. This means that if you test your installer directory from the location where
it was generated, the installer finds all data files in the data file directory and does not try
to download them.

Naming and partitioning of data files

The naming of data files is stable and only depends on the name of the media file and
the downloadable installation components.

For example, say your installer includes the following 7 files:

file_1.txt
file 2. txt
file_3.txt
file_12.txt
file 13.txt
file_23.txt
file 123.txt

and there are three installation components with IDs 1, 2 and 3 that include the following
files:

146

Conponent 1:

file_1.txt
file_12.txt
file_13.txt
file_123.txt
Conponent 2:
file_2.txt
file_ 12.txt
file_23.txt
file_123.txt
Conponent 3:
file_3.txt
file 13.txt
file_23.txt
file_ 123.txt

Note that some files are in multiple components, and in the above scheme each
componentincludes all files whose number contains the ID of the installation component.

If the media file is named t est, the compiler then produces one data file per component
named test. X dat with the files that are included exclusively by the corresponding
component:

test. 1. dat
file 1.txt

test. 2. dat
file_2.txt

test. 3. dat
file_ 3.txt

Next, data files named test. X Y. dat for the files that are included in exactly two
components are generated:

test. 1. 2. dat
file_ 12.txt

test. 1. 3. dat
file_13.txt

test. 2. 3. dat
file 23.txt

Finally, a data file is generated that includes files that appear in all three components:

test. 1. 2. 3. dat
file_123.txt

When generalizing this partitioning to N installation components, a maximum number of
2" - 1 datafiles are created. In practice, it is more likely that each installation component
only has exclusive files and that there will be N data files.

For the downloadable data file mode, only the downloadable installation components
are included in this partition. Files that belong to other installation components are included
in the installer and do not play any role in the creation of data files.

147

A.25 Code Signing

Code signing ensures that the installer, uninstaller and launchers can be traced back to
a particular vendor. A third party certificate authority guarantees that the signing
organization is known to them and has been checked to some extent. The certificate
authority has the ability to revoke a certificate in case it gets compromised.

The basis for code signing is a public and private key pair W that you generate on your
computer. The private key is only known to yourself, and you never give it to anyone else.
The certificate provider takes your public key and signs it with its own private key. That
key in turn is validated by an official root certificate that is known to the operating system.
The private key, the public key and the certificate chain provided by the certificate provider
are all required for code signing.

Code signing is important for installers on Windows and macOS. For unsigned applications
that require admin privileges, a window will display special warning dialogs to alert the
user that the application is untrusted and may harm the computer. Also, the SmartScreen
@ filter will make it very difficult for the user to execute unsigned executables.

On macOs, the Gatekeeper (©) prevents non-expert users from installing an unsigned
application that was marked as downloaded from the internet, so code signing is practically
required.

Code Signing L G 4

In this step, you can configure code signing for Windows and macOS. Code signing options apply to all configured media files.

Windows

In order to sign Windows executables, you need a Microsoft Authenticode code signing certificate together with its private key.

[sign Windows media files
© -pkes12 or .pfx key store file
PKCS #12 file: signing\company_windows.pfx > - @

Windows keystore
External executable
Hardware security module with PKCS #11 library

Code signing certificate with maximum validity
Chained certificates: Y- @

macOS

In order to sign macOS application bundles, you need a "Developer ID Application" code signing certificate from Apple together with its
private key.

[Sign macOS media files
© pkes12 or .pfx key store file
PKCS #12 file: signing\company_macos.p12s |- @

Hardware security module with PKCS #11 library

(1) https://en.wikipedia.org/wiki/Public-key _cryptography
(2) https://en.wikipedia.org/wiki/Microsoft_SmartScreen
(3) https://en.wikipedia.org/wiki/Gatekeeper_(macOs)

148

https://en.wikipedia.org/wiki/Public-key_cryptography
https://en.wikipedia.org/wiki/Microsoft_SmartScreen
https://en.wikipedia.org/wiki/Microsoft_SmartScreen
https://en.wikipedia.org/wiki/Gatekeeper_(macOS)

You need different certificates for code signing on Windows and macOS. While it is
technically possibly to use the same certificate, the recognized root certificates are different
on both platforms.

Code signing for Windows

You can purchase a "Microsoft Authenticode” code signing certificate from a certificate
provider such as DigiCert .

Keys and certificates can be stored in a .p12 file and directly used by install4j. Otherwise,
they are stored on a token or HSM or in a cloud storage. When signing on Windows, the
easiest way to access these types of keys is to use the "Windows keystore” option in install4;j.
Drivers for tokens and HSMs integrate into the Windows keystore and can be used
transparently by install4;.

Another option is to use an external executable for code signing according to the
instructions of your certificate authority. In the command line you can use the $SEXECUTABLE
variable to reference the full path of the executable that is currently being signed. The
working directory of the executed process is the directory where your project file is located,
so you can use relative file names for key or certificate files. If the signing command cannot
replace the executable directly, but rather needs a separate output file, use the $OUTFI LE
variable. It will receive a temporary output file name that will be moved back to the
processed executable after the command has completed.

A third way you can use to access HSMs is using the "Hardware security module PKCS #11
library” option and configure a native library that provides access to the keystore in the
HSM through the PKCS #11 API) Libraries can access multiple HSMs that are said to be in
different "slots". By adjusting the slot index, you can switch to a different HSM. By default,
the first available HSM in slot 0 is used. After the library has been configured, a certificate
can be chosen from the keystore in the HSM. Even if you have just one code signing
certificate, over time you will likely add certificate renewals to the same HSM.

Code signing for macO$s

This chapter discusses code signing for the standalone distribution of macOS apps outside
the App Store. App Store submission is discussed in a different chapter [p. 153].

Certificates for code signing are only issued by Apple. To get started, open the Keychain
Access app and select Keychain Access->Certificate Assistant->Request a Certificate
From a Certificate Authority. The assistant will save a cert Si gni ngRequest file to your file
system.

Then, log in to the Apple Developer Network ©) and request a "Developer ID Application” @
macOS code signing certificate. Download the certificate and double-click to add it to
the Keychain.

Finally, open the Keychain Access app, select the "Keys" category and export the key that
belongs to your "Developer ID Application’ certificate by selecting both the certificate and
the private key and right-clicking on the combined selection. Choose . p12 as the file
format. The keychain tool will ask you for a new password for the exported file. This is the
password you will have to specify during the install4j build to access your key.

install4j will refuse to use certificates for code signing that have a certificate subject name
other than "Developer ID Application”. It is technically possible to sign with an arbitrary

(4) https://www.digicert.com

(5) https://en.wikipedia.org/wiki/PKCS_1I

(8) https://developer.apple.com

@) https://developer.apple.com/support/developer-id/

149

https://www.digicert.com
https://en.wikipedia.org/wiki/PKCS_11
https://developer.apple.com
https://developer.apple.com/support/developer-id/

certificate, although such a signature will not be considered as valid by Gatekeeper. To
enable signing with all kinds of certificates, set the compiler variable sys. ext.
macosAccept Al | Cert s tot r ue. Expiration times will still be checked in that case, only the
constraints on the certificate subject name will be removed.

You can find general information about code signing on macOS in the Apple code signing
4o (8
guide ",

Notarizing macOS media files

Apple offers a service that checks DMGs for security problems and adds them to their
database. This is called "notarization” and is required starting with macOS 10.15. The exact
steps for notarizing your application are described on the Apple developer web site ©),
However, Apple will only notarize applications that follow certain guidelines. The "hardened
runtime” has to be enabled, which install4j automatically does for you by adding the
appropriate entries to the entitlements file. Also, all binaries in the DMG have to be signed.
This also concerns binaries that are in a ZIP archive. Because JAR files are ZIP archives, the
notarization process can detect binaries in JAR files. Some popular frameworks and libraries
such as SWT or JNA ship native binaries in their JAR files. These contained binaries have
to be signed as well.

For this purpose, install4j lets you configure a list name patterns for binaries. All files in the
distribution tree are matched against these patterns, and if a match is found, the

corresponding file is signed if it is really a MACH-O binary 1) The reason why install4j
cannot just automatically check all files in this way is that this check is rather expensive.

In addition, you can configure a list of name patterns for JAR files that should be scanned
for binaries with the above hame patterns. This only works for unsigned JAR files because
the modification introduced by the signature would break the signature of a signed JAR
file and install4j has no way of regenerating that signature.

Additional Binaries To Be Signed X

Pattern r
* dylib
*s0

* jnilib

The actual notarization of a media file is performed by uploading it with the App Store
Connect API to Apple while identifying yourself with an API key generated for an account
matching the code signing certificate. If the app passes the inspection, install4j "staples”
the notarization signature to the DMG. Stapling is only necessary if a macOS machine is
offline and cannot verify the notarization of an app by connecting to the internet.

In the install4j IDE, notarization must be enabled on the "General Settings->Code signing"
step and an App Store Connect API key, issuer, and private key file has to be entered. The
access role of the key must be "Developer”. You can generate API keys on Apple's App
Store Connect website.

(8) https://developer.apple.com/support/code-signing/
(9) https://developer.apple.com/documentation/security/notarizing _your_app_before _distribution
(10) https://en.wikipedia.org/wiki/Mach-0

150

https://developer.apple.com/support/code-signing/
https://developer.apple.com/support/code-signing/
https://developer.apple.com/documentation/security/notarizing_your_app_before_distribution
https://en.wikipedia.org/wiki/Mach-O

Key store passwords

Private keys contain sensitive information, and if they get into the wrong hands, your
identity is compromised. Because of that, private keys are secured with a password. When
install4j signs your installers and launchers, it needs to work with the private key.

When you start a build in the install4j IDE, you will be asked for the Windows and macOS
key store passwords as required. install4j does not store those passwords to disk, but they
are cached on a per-project level as long as the install4j IDE remains open.

Enter Password X

Enter the password for the Windows key store. It will not be stored on disk.

When you run a command line build, the install4j command line compiler will ask you for
the required passwords. If you want to fully automate a build with code signing, you can
pass passwords on the command line by setting the --wi n- keyst or e- passwor d=
[password] and - - mac- keyst or e- passwor d=[passwor d] command line parameters.
The plugins for Gradle [p. 239], Maven [p. 246] and Ant [p. 255] offer the corresponding
"winKeystorePassword” and "macKeystorePassword" attributes. Note that adding these
passwords to shell scripts or ant build files constitutes a security risk.

In a setup where only a restricted number of people can build signed executables, you
canuse the - - di sabl e- si gni ng command line parameter, the "disableSigning” attribute
of the build system plugins or the corresponding build option in the "Build” step of the
install4j IDE to temporarily disable code signing. In that way, other developers can build
fully functional, unsigned installers without modifying the project file.

Time stamp counter-signing

Code signing certificates issued by certificate providers expire after a certain time. For
Windows code signing, the expiry time is usually one to three years, after which you have
to purchase a renewal from your certificate provider. Executables that were signed while
the certificate was still valid are trusted indefinitely unless the certificate is revoked.

A computer that validates an executable compares the signing time and the expiry time
of your certificate. Certificate providers have to prevent you from turning back the clock
of your computer to circumvent the expiry of your certificate. This is why the signing time
has to be counter-signed by a certificate provider. Certificate providers offer free web
services that will confirm that a signature was performed at a particular time. This
counter-signature is not related to a particular certificate, so you can use the web service
of any certificate provider, regardless of where the certificate came from. install4j uses
the DigiCert time stamp signing service at

http://timestanp.digicert.com

and falls back to the GlobalSign time stamp signing service at

http://tinestanp. gl obal si gn. cont ?si gnat ur e=sha2

if there is a failure.

To use a different service, define the compiler variable

151

sys. ext.ti mestanpUr | =<URL>

where <URL> can contain multiple URLs separated by semicolons.

If the timestamp service call fails, install4j will retry up to 10 times or whatever the sys.
ext . count er Si gnRet ry compiler variable is set to.

Apple has its own time stamp signature server at

http://tinestanp. appl e. com ts01

that can be changed with the compiler variable

sys. ext . macTi mest anpUr | =<URL>

Setting up a proxy for HTTP calls

The consequence of the time stamp counter-signature scheme is that you need an internet
connection at build time. Many build servers are behind fire walls, and you might need to
set up a proxy to get internet connectivity and whitelist the above time stamp servers.
install4j will try to auto-detect the proxy information. If that fails, the IDE will ask you for
proxy information, but the command line builds will not ask for user-input in order to avoid
hanging builds due to temporary internet connectivity problems.

For command line builds, you can pass the following VM parameters to the command
line compiler:

+ -DproxySet=true

« -DproxyHost=[host name]

+ -DproxyPort=1234

+ -DproxyAuth=true

- -DproxyAuthUser=[user name]

« -DproxyAuthPassword=[password]

The authentication parameters are optional, only the first 3 parameters are required to
set up a proxy.

If you pass these parameters to the command line compiler, you have to prefix them with
- J to mark them as VM parameters, such as

- J- DproxySet =t rue

The plugins for Gradle [p. 239], Maven [p. 246] and Ant [p. 255] offer way to set VM parameters
without using the - J prefix.

152

A.26 Submitting An App To The Apple App Store

Apps that are submitted to the macOS App Store have to fulfill a number of requirements
and pass a review process by Apple. While install4j can help you to prepare an artifact
that will be accepted by the App Store, you first have to make yourself familiar with the

submission process by studying the Apple Developer documentation W,

Configuring a media file for App Store submission

To prepare a package that can be uploaded to App Store Connect (2), start with a media
file of type "macOS single bundle archive” and select the ".pkg for App Store submission”
option on the “Installer options” step of the media wizard.

Right below that option you can select a provisioning profile file to request app capabilities
that have to be allowed by Apple, such as "com.apple.developer.team-identifier’,
‘com.apple.developer.applesignin” and "com.apple.developer.icloud-service". In addition,
using TestFlight is only possible when a provisioning profile is specified.

Media Wizard - macOS single bundle archive X
1. Media file type Configure installer options

2. Launcher

3. Installer options No installation directory can be set for a single bundle archive.

All files in a single bundle are in contained in a single directory whose name is

+ DMG options and files determined by the name of the main launcher. The user can move the entire bundle

4. Bundled JRE somewhere else by dragging the displayed icon.
5. Customize project defaults
6. Finished Archive Format

DMG archive ?)

.tgz archive 7]

© -pkg for App Store submission @

Provisioning profile: | my_app.provisionprofile »

Architecture
Intel binaries ?)
ARM binaries ?)
© Universal binaries €

@ Help 4 Back Next » Finish Cancel

This file is created in the "Profiles” section of your Apple Developer account ®) and
determines the Apple distribution channel which must be set to "Mac App Store Connect”.
When creating the provisioning profile, you will have to select the App Identifier and a
certificate of type "Mac App Distribution”. The App Identifier and the certificate have to be
created in the Apple Developer account before the provisioning profile can be created.

However, the above certificate is not the only certificate that is required. The PKCS #12
certificate file for code signing in the macOS section of the "General Settings->Code
signing” step has to contain

- a certificate of type "Mac App Distribution” certificate for your app
- a certificate of type "Mac Installer Distribution” for the submitted .pkg installer

- (optional) a certificate of type "Developer ID Application” if you also have media files
for standalone distribution on macOS

V) https://developer.apple.com/macos/submit/
) https://appstoreconnect.apple.com
3) https://developer.apple.com

153

https://developer.apple.com/macos/submit/
https://appstoreconnect.apple.com
https://developer.apple.com

As explained in the chapter on code signing [p. 148], you can export multiple certificates
by selecting them in the Keychain Access app together with their private keys.

Configuring the launcher for App Store submission

One requirement for macOS App Store submission is that the App icon contains images
in the formats 16x16, 32x32, 128x128, 256x256 and 512x512 as well as their Retina variants
with double the resolution. On the "Icon” step of the launcher wizard, add the files for the
non-Retina formats. The icon compiler will try to pick up Retina files with an "@2x.png"
ending and the same base name.

By default, install4j will generate a bundle identifier for your launcher that is written to the
Info.plist file. In case of an App Store submission, you have to explicitly set the bundle
identifier to the same value that you have configured in the App ID Configuration in your
Apple Developer account. This is done on the "Executable info->macOS options” step of
the launcher wizard.

Modify Launcher X
1. Select type Options for macOS launchers
2. Executable info
Application Bundle Overrides
« Redirection
. . Custom executable name: &)
« Single instance mode
+ Windows version info 2 Custom bundle identifier: €) = com.mycorp.myapp >
+ Windows manifest options
+ Unix options [Entitlements file: @ entitlements.xml »
- macOS options
. Menu \'nt:gration 2 Application category: &) | public.app-category.business »
« Auto-update integration
3.Icon Customize Plist File 7]
4. Java invocation Custom fragment for Info.plist file:
5. VM options file
. S.p\.ash screen Compile-Time File Associations and URL handlers 7]
7. Finished
r
&) Help 4 Back Next p Finish Cancel

Another requirement for the App Store is that the LSApplicationCategoryType key for the
application category is set in the Info.plist file. You can also do that on the "Executable
info->macOS options” step of the launcher wizard. Possible values for this key are listed
in the Apple Developer documentation @,

Finally, App Store apps have to run in a sandbox. This is enabled by the
‘com.apple.security.app-sandbox” key in the entitlements file that install4j adds
automatically. Your app may need further entitlements, like the ability to read and write
user-selected files. In that case, you have to include an entitlements file on the "Executable
info->macOS options” step of the launcher wizard with content like

(4) https://developer.apple.com/documentation/bundleresources/information _property _list/
Isapplicationcategorytype

154

https://developer.apple.com/documentation/bundleresources/information_property_list/lsapplicationcategorytype

<?xm version="1.0" encodi ng="UTF- 8" ?>
<I DOCTYPE plist PUBLIC "-//Apple//DTD PLI ST 1.0//EN'
"http://ww. appl e. conf DTDs/ PropertylList-1.0.dtd">
<plist version="1.0">
<di ct>
<key>com appl e. security.files.user-sel ected.read-wite</key>
<true/>
</dict>
</plist>

For a list of all available entitlements, see the Apple Developer documentation (®)

Testing the sandboxed App

install4j will create a .pkg file that contains your application bundle. This is the kind of
archive that is required for App Store submission. The App Store will install the .pkg file
silently. If you want to test the sandboxed environment of an app, you will want to install
it before submitting it to the app store. Apple offers the TestFlight app, so you and other
beta-testers can run uploaded builds locally in their final form.

However, if you want to test the app before uploading it and you use an app store
provisioning profile, you cannot install the compiled .pkg file locally. You have to use a
"macOS App Development” provisioning profile instead. A development provisioning profile
is associated with certificates of the type "Apple Development” or "Mac Development”. This
means that you have to change both the provisioning profile and the code signing
certificate to create a development build.

In addition, the development provisioning profile must allow your local device and it must
be installed by double-clicking on it in the Finder. When you register your macOS device
in the "Devices" section in the Apple Developer Account, make sure to specify the
Provisioning UDID and not the Hardware UUID, even if the web interface asks you for it. You
can find the UDID from a terminal by executing.

system profil er SPHardwareDat aType | grep UD D

If all these conditions are met, you can double-click the generated .pkg file and follow the
instructions in the wizard to install the application bundle to the / Appl i cati ons folder.
The installed application bundle will run in a sandbox with the requested entitlements just
like the app that end users will download from the App Store. If some functionality in your
application does not work as expected, it may be missing entitlements. Use the "Console”
app to record logging output and find the cause of a failure.

Submitting the App to the App Store

The most convenient way to upload the generated .pkg file to App Store Connect is through
the "Transporter” app that can be installed from the App store. For signing in, use the Apple
ID of the Apple Developer account where the App is configured.

Before uploading the .pkg file, it is checked for issues that will result in a rejection. After
you fix all these issues in your application, the .pkg file is uploaded and a more thorough
check is performed that may take a couple of minutes. If that check does not pass, you
will get an email with the list of issues that resulted in the rejection. If your app passes
these checks, it will be selectable as a build in the App configuration in App Store Connect.

(5)

https://developer.apple.com/documentation/bundleresources/entitlements

155

https://developer.apple.com/documentation/bundleresources/entitlements

A.27 styling Of DMGs On MacOS

On macOs, software is usually delivered as a DMG. DMG stands for "Disk image” and
contains afile system that can be mounted, rather than an archive that can be extracted.
When the user double-clicks on a DMG file in the Finder, it is mounted to/ Vol unes/ [vol une
name] and a new Finder window is opened for the mount point.

The Finder can be styled on a per-directory basis and the information about that styling
is saved to afilenamed . DS_St or e in every directory. This means that you can ship styling
information with a DMG file. Styling includes setting a background image for the Finder
window and that image file can be added to the DMG as well.

For single bundle GUI applications, a styled DMG generally includes a symbolic link to
/ Appl i cati ons in the top-level folder of the DMG, so that user can drag the application
bundle into the default installation directory with minimum effort.

install4j allows you to add any number of files and symbolic links to the DMG. All macOS
media file types have a step named "DMG options and files" as a sub-step of the "Installer
options” step. Here, you can add the top-level . DS_St or e files, a background image and
the symlink to / Appl i cati ons.

Step-by-step instructions

To create your . DS_St or e file, follow the steps below on a macOS machine where install4j
is installed.

1. Compile DMG

The first step is to compile your macOS media file from install4j without any custom
styling. This DMG will be the template for which we will define the style. You cannot use
just any other DMG, because each media file has a unique ID. When using background
images, the . DS_St or e file must have been created for a DMG with the same D,
otherwise the image will not be found reliably.

When you recompile the media file in install4j, this ID remains the same, so you can
add the . DS_St or e file from a previously compiled DMG to the additional DMG files in
the media wizard.

2. Convert the read-only DMG to a writable DMG

The generated DMG is a read-only image. To make any modifications at all, we have
to convert the DMG to a writable format.

First, make sure that the DMG is not mounted. In a terminal, cd to the directory where
the DMG was created and execute

hdi util convert hello.dnmg -format UDRW-o0 hello_rw dnyg

where "hello” has to be replaced by the actual name of your media file. Note that the
last argument has "_rw" appended at the end, because the output DMG must be
different from the input DMG.

3. Enlarge the writable DMG

By default, a DMG generated by install4j is full. It is not possible to add any more files
simply because the file system in it has no more available space. To enlarge the DMG,
we first determine its current size by executing

156

hdi util resize hello_4 0 rw. dng

The "cur” column of the output shows the number 512-byte sectors. To add about 10
MB, we add 20000 to that number and execute

hdi util resize -sectors <new nunber of sectors> hello_4_0 rw. dng

To check the new size, run

hdi util resize hello_4 0 rw. dng

again.
Mount DMG

We now mount the read/write DMG by executing

hdi util attach hello_4 0 rw. dng

and note the mount point /Volumes/[volume name] that is given by the output of the
above command.

. Copy background image to DMG

To add a background image, we first have to copy the image to the DMG. We do not
want the image file to show up in the finder, so we create a hidden directory in the
DMG. To do that, we execute

cd / Vol unes/ [vol une nane]
nkdir . background

To open this hidden directory in the Finder, we execute

cd . background
open .

Now, we open another Finder window, locate our background image and copy it to the
hidden directory that is visible in the original Finder window.

. Select background image for DMG top-level folder

Because we need the Finder with the hidden directory in a minute, we leave it as it is,
and double-click on the mounted volume on the desktop to open the default Finder
window for the DMG. We position the new Finder window side-by side with the Finder
window that shows the hidden directory.

To start changing styles, we invoke View->Show View Options. This will show a tool
window with styling controls. In the "Background® section, we choose "Picture” and notice
the drop target for a picture file.

157

10.

Use as Defaults

Now we have to perform a somewhat tricky operation. From the Finder window that
shows the hidden directory, we drag the image to the mentioned drop target in the
view options dialog without activating that Finder window (otherwise the view options
dialog would change its target folder%.

Finally, we see can see the background image applied to our read/write DMG.

Adjust DMG finder window

Two properties of the Finder window should be adjusted: Invoke View->Hide Toolbar
and resize the window so that it fits the size of the background image.

Add link to [Applications for single-bundle archives

If you have a single-bundle archive media file type, you probably want to add a
drop-target for the installation. In the terminal, we execute

cd / Vol unmes/ [vol une nane]
In -s /Applications " "

This creates a link with an empty name that immediately shows up in the Finder window.
The empty name is a good strategy to get around localization issues. The Applications
folder has a special icon and is easily recognizable, so a name is not necessary.

Adjusticons

Now you can position the icons as needed and adjust the “Icon size" property in the
view options dialog until they fit with your background image.

Extract .DS_Store file

The result of your work above is the . DS_St or e file in the top-level folder of the DMG.

Go to the terminal and copy it to your project folder so that you can reference it in the
install4j IDE:

cp .DS _Store [project folder]/DS Store

Note that we have omitted the leading dot before DS_Store in the target path. This
makes it easier to work with the file and prevents confusion with the Finder.

At this point, our work with the read/write DMG is finished. We should now delete it and
also remove it from the Trash. If we don't do this, subsequent tests will automatically mount

this DMG again. This is due to the "alias” feature in macOS. The .DS_Store contains an alias

158

to the configured background image and as long as the original DMG still exists somewhere,
it will open it from the template DMG instead of from the newly generated DMG.

Configuring the media file

In the media file wizard of the install4j project, we can now use the generated . DS_St or e
file. On the "Installer Options->DMG options and files” step we enter the [proj ect fol der]/
DS_St or e and give it the name . DS_St or e in the DMG.

The background image is added with the name . background/ [i nege nane with file
ext ensi on] where the image name must be the same as on the read/write DMG. The
. backgr ound folder will be created automatically.

If you have added a symbolic link to / Appli cati ons, you can add a corresponding
symbolic link entry here, the name should also be set to the same name as in the read/write
DMG. An empty name is entered as ™ (with the quotes).

Media Wizard - macQS single bundle archive X
1. Media file type Configure options and additional files for the DMG
2. Launcher
3. Installer options DMG Options
. DMG options and files Volume name: = ${compiler:sys.shortName} | 3N 7}
4. Bundled JRE " o
5. Customize project defaults Additional Files in DMG o
6. Finished .DS_Store [source \DS_Store] o
.background/background.png [source \background.png]
" " [target /Applications]
&) Help 4 Back Next » Finish Cancel

With the above files and symbolic links a newly generated DMG will look the same as the
read/write DMG where the styling was added. When you tweak your styling in the future,

you don't start from zero but with the styles that are already present in the generated
DMG.

159

B Configuring Installer Beans

B.1 The Screens & Actions Configuration Step

The “Installer->Screens & Actions” step shows a tree representation of the installer, the
uninstaller and other installer applications, such as updaters. The nodes in the tree are of
the following types:

- 4 Applications [p. 167]
An application consist of a series of screens.

- # screens [p.176]

A screens displays information to the user, optionally gathers user input and optionally
executes a series of actions when the user moves to the next screen.

- 1 Actions [p. 182]
An action usually makes a modification to the installation.

In this chapter, the functionality and configuration options on the “Installer->Screens &
Actions” step are discussed, the underlying concepts are discussed in a different help
topic [p. 25].

Adding new installer elements

Installer elements are added by clicking the " Add button.

Screens & Actions A Y 4

In this step, you configure the screens and actions that are displayed in the installer and uninstaller, updater and in custom
applications. Install4j offers a rich set of screens and actions to choose from.

Installer (8 screens) [ID instal | r |

3 Uninstaller (5 screens) [ID un Add Action
{5 Standalone update downloa... Add Screen
{5 Background update downloa.. Add Application
&

»ﬁ‘? Configure greeting [Custom a.. Custom Code »
Groups 4
Add link into >

Please select a screen

In the popup window you can select whether to add

« an action [p. 182], a screen [p. 176] or an application [p. 167]. Actions and screens are
made available by install4j or are contributed by an installed extension [p. 232]. A registry
dialog will be shown where you can select the desired screen or action. When adding
an application, the application template dialog is displayed.

« an action or a screen contained in your custom code. New types of reusable actions
or screens can be developed with the install4j API [p. 226]. In your custom code
configuration [p. 165] you can specify code locations that are scanned for suitable
classes.

- anaction group or ascreen group [p.195]. The new group is initially empty. You can also
create groups directly from a selection in the tree of installer elements.

160

Installer elements can only be added to appropriate parent elements. If no appropriate
parent element is selected, install4j tries to find one by moving in the ancestor hierarchy
from the current selection. If no appropriate parent element can be found, an error message
is displayed.

« Applications are added at the top level.
+ Screens and screen groups can be added to applications or screen groups.
+ Actions and action groups can be added to screens or action groups.

Editing installer elements

If you select a single installer element in the tree of installer elements, you can edit its
properties on the right side. Properties that have been modified are shown with an asterisk
(*) in front and can be restored to their default value with the "Reset To Default” action
from the context menu.

File [Default]
Excluded variables mmacialllcashccant
Overwrite strategy mand line

Register variables fq Reset to Default

Failure strategy Continue on failure
Error message

Condition expression context.getBooleanVariable("sys.confirmedUpd.
Rollback barrier
Can be executed multiple times (v}

Action elevation type Inherit from parent [Do not elevate]

Selecting multiple installer elements is possible on the same tree level, meaning that all
selected elements have to be siblings in the tree.

When the configuration area is focused, you can transfer the focus back to the tree of
installer elements with the keyboard by pressing ALT- F1.

The tree of installer elements provides the following actions in the toolbar on the right that
operate on the current selection. You can also access these actions from the context
menu or use the associated keyboard shortcuts.

+ Delete

All selected installer elements will be deleted after a confirmation dialog when invoking
the ¥ Delete action. The deleted installer elements cannot be restored. You will be
notified if deleting the selected installer elements would break links.

* Rename

After you add an installer element, the tree of installer elements shows it with its default
name. If you have multiple instances of the same installer element next to each other,
a custom name makes it easier to distinguish these instances. You can assign a custom
name to each installer element with the = Rename action. The default name is still
displayed in brackets after the custom name. To revert to the default, enter an empty
custom name in the rename dialog.

« Comment

You can add comments to selected installer elements withthe - Add Comments action.
When a comment is added, the affected installer elements will receive a "Comments”
tab. After adding a comment to a single installer element, the comment area is focused

161

automatically. Likewise, you can remove comments from one or more installer elements
with the Remove Comments action.

In order to visit all comments, you can use the Show next comment and Show previous
comment actions. These actions will focus the comment area automatically and wrap
around if no further comments can be found.

Disable

In order to "comment out” installer elements, you can use the 4 Disable action. The
configuration of the disabled installer elements will not be displayed, their entries in the
tree of installer elements will be shown in gray, and they will not be checked for errors
when the project is built.

Copy and paste

install4j has a clipboard for installer elements. You can & Cut or ' Copy installer
elements to the clipboard and &= Paste them in the same project or in a different project.
Note that references to launchers or references to files in the distribution tree might not
be valid after pasting to a different project.

Pasted installer elements are appended to the end of the same level that would be
chosen if you added installer elements of that type. Sequence restrictions with respect
to the already present installer elements may force a different order.

Reorder

If your selection is a single contiguous interval, you can move the entire block “~ up or
7 down in the list. The selection can only be moved within the same level with the
reorder actions. To move the selection to a different parent, you can cut and paste it.

Group

You can create a screen group or an action group [p. 195] from the selected installer
elements with the "o Create Group action. The new group will be inserted in place of
the selected installer elements.

You can dissolve a group with the Dissolve Group action. This action is only enabled if
the selection consists of a single screen group or action group. The elements contained
in the group will be inserted in place of the group. Nested groups will not be dissolved.

Link

You can reuse screens and actions by linking to a single definition. This is particularly
useful if you define an installer maintenance application [p.167] that should repeat parts
of the installer, such as a number of forms that query the user for initial values to set
up your application. Also, links are the only way to integrate screens and actions from
merged project [p. 113] into the main project.

In order to link to a screen, action, screen group or action group, you click on the "Add”
button and select Add Link Into from the popup menu. The first entry in that popup menu
is always "This project” for links into the current project. If you have set up merged
projects [p. 113], then you get an entry for each merged project. The configuration area
of alink will only contain a button that selects the original definition in the tree of installer
elements. For merged projects, the merged project is opened in a new window, unless
it is already open.

Another way to add a link into the same project is to select the installer element and
invoke the ¢ Copy Link action. Then you navigate to the installer element where the link
should be inserted and invoke the Paste Link action.

162

For links into the same project, install4j ensures that there are no broken links in the tree
of installer elements. When you delete an installer element, all links to it will be deleted
as well. If that is the case, the deletion message will tell you how many links are about
to be deleted. Links into merged projects may be broken, this condition is shown in in
the configuration panel.

Searching for installer elements

In the log files, actions and screens are logged with their IDs. You can navigate to an
installer element if you know their ID by clicking on the . search icon and choosing "Search
ID" from the popup menu.

Screens & Actions) G 4

In this step, you configure the screens and actions that are displayed in the installer and uninstaller, updater and in custom
applications. Install4j offers a rich set of screens and actions to choose from.

Installer (8 screens) [ID instal... "=
5 Uninstaller (5 screens) [ID un
o 8 Standalone update downloa...

135 Background update downloa...
" 9 P Search Text In Tree Ctrl+F
O Configure greeting [Custom a.. Search ID Ctrl+Shift+1

Search Names, Comments and Properties Ctrl+Shift+S

Please select a screen

When a match is found the result tree shows the match at the top together with the reverse
chain of installer elements that lead to it. You can either show the match itself or select
any other element in the result tree and show that element instead when closing the
dialog with the Show button. This works even if the target element is in a form component
dialog or an action list or a property. The scope of the search is always rooted in the
installer elements that are reachable from the current view.

A separate action "Search Names, Comments and Properties” is available to search for
arbitrary patterns. You can disable any of the search types to narrow down the scope of
the search.

Search Names, Comments And Properties X

Contains v | serice [Case sensitive

Search in: Element names, Comments, Properties v

18 matches

,+ Property Validation expression [if (\context.getBooleanVariable("specialUserAccour

j Service options [Form] [ID 1565]
Installer [ID installer]

," Property Screen subtitle

j Service options [Form] [

Installer [ID installe

/" Property HTML [The Hell

% Multi-line HTML label [ID

j Service options [Form] [ID 1565]

Installer [ID ins’

. Property Text [Install He

se options for the service]

1

uite includes a service that says hello every 2 sec

1d service]

163

Display options for installer elements

When using the install4j API, you reference installer elements with IDs. You can show IDs
in the tree of installer elements by toggling the & Show IDs tool bar button.

In order to adjust the information density in the tree of installer elements, you can change
the icon size by choosing large or small icons in the Icon Size sub-menu in the context
menu. The default setting is to show large icons.

164

B.2 Custom Code & Resources Step

Custom code is configured on the “Installer->Screens & Actions->Custom Code" step.

Custom Code & Resources N 7

In this step, you can configure the classpath for your custom code. Custom code is used for custom screens, actions and form
components on the "Screens & Actions" step and can be used directly in all scripts. Resource files in the custom code are

Static fields and methods available in all scripts: Edit Code

Custom Code & Resources:

~ Archive customCode.jar -
Resource file driver_installer.exe

Quick Help

Custom code & resources can contain class files, archives and resource files. It is used for

« Adding classes that you want to use in scripts and expressions in the install4j IDE

« Adding custom screens, actions and form components that you have developed with the install4j API that have not been packaged as an
extension

« Making arbitrary files available at installation time before the "Install files" action has run. Use the "Resource file" entry type for that purpose

Entries in the custom code are used for

- specifying additional libraries that can be used in scripts and expressions [p. 30] of
screens [p. 176], actions [p. 182] and form components [p. 198].

developing new types of actions, screens or forrm components with the install4j API. See
the help topic on using the API [p. 226] for more information.

Before you start to develop a new action, have a look at the available actions [p. 182]
and screens [p. 176]. If it is just a few lines of code, you can use the "Run script” action to
enter them directly into install4j. If you would like to collect user input, most use cases
can be solved with a form screen [p. 51].

An alternative way of adding your beans to the install4j is packaging them as an
extension [p. 232]. In that case, you can select them directly from the standard registry
dialogs instead of having to go through the "Search in custom code” menu entries when
adding beans to the installer.

including resource files into the installer. Resource files are arbitrary files like DLLs, external
executables or text files that have to be available before the "Install files” action has run.
All class files are packed into a single user. j ar file, archives and resource files are
extracted to the user subdirectory in the working directory of the installer. You can
access a resource file named fi | e. t xt with the following expression in custom code:

new File("user", "file.txt")

To specify resource files in text fields in the installer configuration, use the sys.
resour ceDi r installer variable:

${installer:sys.resourceDir}/file.txt

To load native libraries in custom code, do not use Syst em | oad(. .), butrather Uil .
| oadNat i veFr onResour ces(. . .) toload thelibrary in the same class loader that loads

165

scripts. For example, if you have added a native library j ni . dl | to your custom code,
you can load it in a "Run script” action by calling

Util.loadNativeFronResources("jni.dll");

The following types of custom code locations are available:

Class or resource files

For simple actions, screens or form components that do not depend on other classes,
it is easiest to insert their class files directly, especially if you build your installer extensions
together with your application. Anonymous inner classes will be included automatically.
If you select a resource file, for example, an image, it will be added to the top-level
directory of the custom JAR file and will be available via O ass. get Resour ceAsStreant) .

Directories

With this type of entry you can add an entire directory. Make sure to select a classpath
root directory, otherwise your classes cannot be loaded.

» Scan Directories

Use this type of entry to add all JAR and ZIP files in a selected directory.

: Archives

Use this type of entry to add a JAR file. Files that are present in both the custom code
as well as the distribution tree will not be packaged twice. Files that are also presentin
the distribution tree can be freely added to your custom code, they will not increase
the size of your installer. The compiler checks the source path of included files to
determine if they are already present in the installer.

166

B.3 Configuring Applications

Applications are configured on the Screens & and actions step [p. 160].

The top-level nodes represent the different applications that can be configured for the
project. There are three types of applications:

Installer

The installer is the application that is executed when the media file is invoked by the
user, for example, when the user double-clicks on the installer executable in the Windows
explorer. The installer cannot be deleted from the tree of installer elements.

' Uninstaller

The uninstaller is a special application for uninstalling an installation. It is used in various
contexts and can be

« directly invoked by the user
+ invoked from the Windows software registry
« invoked by the "Uninstall previous installation” action

The uninstaller cannot be deleted from the tree of installer elements. If you do not wish
to generate an uninstaller, you can disable it [p. 160].

% Custom installer application

You can add any number of custom installer applications that can be invoked after the
installation. install4j comes with several templates for auto-updater downloaders [p. 119].
Custom applications can also be used for writing maintenance applications for your
installation.

You can add a new custom installer application by clicking on the “* Add button on the
right side of the list and choosing Add Appl i cat i on from the popup. The application
templates dialog will be displayed and lets you choose a starting point for your custom
installer application. Application templates are entirely made up of existing screens,
actions and form components. You can modify the selected application template after
adding it.

Unlike the installer and uninstaller above, custom applications are also created for
archive media files [p.137]. See the help topic on media files [p. 137] for more information
on how to create first-run installers for archives.

Custom installer applications with a non-empty "Executable directory” property are
automatically added to the "Default file set”. If you leave the executable directory empty,
the custom installer application is added to the . i nst al | 4] directory and will always
be included, regardless of the installation component configuration.

Each installer application has a startup sequence of actions [p. 182]. Those actions are
executed before the installer application presents a user interface. If any of these actions
fails and has a "Quit on failure” failure strategy, the installer application will not be shown.

Properties of installer applications

Common properties of installer applications are:

167

Executable icon [Executable]

By default, a standard installer icon is used for the executable. To customize the icon,
press the customizer button in the configuration pane.

Allow unattended mode [Execution Modes]

If selected, the user can pass - g as an argument to run the installer application without
a GUL. No user input is required, the installer applications work with the default values.
Please see the corresponding help topic on installer modes for more information. All
standard actions and standard screens support unattended installations. If your policy
forbids unattended installations or if you include custom code that cannot handle
unattended installations, you can disable them by deselecting this property.

Progress interface creation script [Configuration]

If you would like to implement your own way of displaying progress information for
unattended installations, you can do so by returning a custom implementation of com
i nstal | 4j . api . cont ext. Unat t endedPr ogr essl nt er f ace from this script. If you return
nul I, no progress information will be shown just as if this script had not been set. There
is a default implementation com i nstall4j.api.context.
Def aul t Unat t endedPr ogr essl nt er f ace that does nothing for all its operations. You
can derive from that class if you just need to implement a few particular methods in
the progress interface.

If you just need a simple dialog that shows progress information in unattended mode,
please choose the "Unattended mode with progress dialog” execution mode instead.

This property is only visible if "Allow unattended mode" is selected.

Allow console installations [Execution Modes]

If selected, the user can pass - ¢ as an argument to run the installer application on the
console. The installer asks for user input on the console in that mode. Please see the
corresponding help topic on installer modes for more information. All standard actions
and standard screens support console installations, form screens are also fully mapped
to console installers. If your policy forbids console installations or if you include custom
code that cannot handle console installations, you can disable them by deselecting
this property.

Console screen change handler [Configuration]

By default, a screen in console mode does not show any particular separation. You
insert your own custom display with this script. The title parameter gives you access to
the title of the screen. In console mode, screens display their subtitle only, so the title
string will not be displayed again.

This property is only visible if "Allow console installations” is selected.
Disable console mode on Windows [Configuration]
Offer console mode only on non-Windows platforms.
This property is only visible if "Allow console installations” is selected.

Fall back to console mode on Unix [Configuration]

On Unix, users often operate in environments where no XI1 server is available and no
GUI can be displayed. The installer will fall back to console mode if console mode
execution is allowed and this option is selected. Otherwise, an error message will be
displayed that tells the user how to invoke the installer in console mode.

168

This property is only visible if "Allow console installations” is selected.

Default execution mode [Execution Modes]

The default execution mode for the installer application. By default, a GUI wizard will be
shown, but it is also possible to run in console mode or unattended mode by default.

Title for progress dialog [Configuration]

The title for the progress dialog, for example "Updating installation.This title and the
unattended mode with a progress window can also be set by passing - spl ash [title]
as an argument from the command line.

This property is only visible if "‘Default execution mode" is set to "Unattended mode with
progress dialog’".

Show alerts [Configuration]

By default, no alerts are shown in unattended mode. This includes messages boxes,
error alerts and questions. By selecting this property, alerts are enabled for unattended
executions with a progress dialog.

This mode can also be activated by passing -al erts as an argument from the
command line.

This property is only visible if "‘Default execution mode” is set to "Unattended mode with
progress dialog’.

Windows console executable [Execution Modes]

If selected, a console executable will be created on Windows. A non-hideable console
will be shown when the installer is double-clicked in the explorer. This improves the user
experience for a console-only installer (default execution mode set to console) and
allows execution through r sh.

VM parameters [Execution Options]

If you need to pass special VM parameters to the installer application, you can enter
them here. A common case would be to raise the maximum heap size with a different
-Xmx parameter if your installers require a lot of memory.

Arguments [Execution Options]

If you need to pass fixed default arguments to the installer application, you can enter
them here. For example, if you want to display a splash screen in unattended mode by
default, you can set the arguments to - spl ash "Installing ...".Please note that
command line arguments will be appended to this list, so it is not possible to “override’
a fixed argument from the command line.

Rollback on failure [Execution Options]

If selected, the installer application will try to restore the state before the last rollback
barrier by rolling back all actions that were executed since the last barrier. Any screen
or action can be selected as a rollback barrier with the property "Rollback barrier”. If no
rollback barrier was encountered, all executed actions will be rolled back.

Help customizer script [General Customization Options]

If the user starts the installer application with one of the arguments -h -hel p /2, help
regarding the available command-line options will be displayed. If you have your own
command-line options, you can customize this help with this script. The script receives
alLi st containing St ri ng arrays of length 2 with the options and explanations. You can

169

add options like this: opti ons. add(new String[] {"/nmySwi tch", "Explanation of
nySwi tch"}}. You can also delete default options in the list. Attention: The context
parameter has not been initialized at that point.

In order to get extra command line arguments in the installer, call context.
get Ext raConmandLi neAr gunment s() in any script.

Customize version info [Windows]

If selected, you can customize the fields of the Windows version info in the nested
properties. A Windows version info resource is always generated for the executable with
default values for product name and file version taken from the general settings.
Copyright [Configuration]

The copyright field in the version resource. If empty, the publisher name from the general
settings is used.

This property is only visible if “Customize version info" is selected.

File description [Configuration]

The file description field in the version resource. If empty, the full name from the general
settings is used.

This property is only visible if "“Customize version info" is selected.

File version [Configuration]

The file version field in the version resource. If empty, the version from the general
settings is used. The file version must consist of four numbers separated by spaces,
commas or dots.

This property is only visible if "Customize version info" is selected.

Internal name [Configuration]

The internal name field in the version resource. If empty, the short name from the general
settings is used.

This property is only visible if "“Customize version info" is selected.

Product name [Configuration]

The product name field in the version resource. If empty, the full name from the general
settings is used.

This property is only visible if "Customize version info" is selected.

macOos entitlements file [mac0Os]

If you have configured code signing for macOS, an entitlements file can unlock certain
features on macOS, such as iCloud storage or push notifications.

Custom fragment for Info.plist [macos]

On macOs, you may want to add additional elements to the Info.plist file of the
application bundle in order to customize its behavior in ways that are not directly
supported by install4j.

Custom script fragment [Unix]

On Unix and Linux, the JVM for an installer application is launched by a shell script. To
add your own code to the shell script, you can specify a script fragment that is added
immediately before the java invocation takes place.

170

Style [GUI Options]

The default screen style for this installer application. Screens and screen groups can
override this style.

Window width [GUI Options]

The width of the window displayed by the installer application. The default value is 500.
If the "Size client area” property is selected, this does not include the size of the window
frame border.

Window height [GUI Options]

The height of the window displayed by the installer application. The default value is
390.If the "Size client area” property is selected, this does not include the size of the
window frame border.

Size client area [GUI Options]

If selected, the supplied size for the window will not be applied to the outer dimensions
of the window, but to the actually usable area inside the window. Unusually large window
frame borders can occur due to user settings (occessibility, window themes, etc.) and
may interfere with banner images or introduce unwanted scroll bars to form screens.

Resizable [GUI Options]
If selected, the window displayed by the installer application is resizable.

Action elevation type [Privileges]

If any contained actions should run in the elevated helper process, if their "Action
elevation type" property is set to “Inherit from parent”An elevated helper process is
available on Windows and macOS if the process has been started without admin
privileges and the "Request privileges" action has been configured to require full
privileges.

Custom applications as well as the uninstaller are added to the distribution tree and have
additional related properties:

Executable name [Executable]

The name of the executable for the . Please enter a name without any path components
and without a file extension.

Executable directory [Executable]

The directory to which the executable of the will be written. If empty, it will be placed in
the . i nstal |l 4j runtime directory.

Use custom application bundle name [macos]

If selected, a different application bundle name is used on macOS. Executable names
on macOS are localizable. Otherwise, the value of the "Executable name” property is
used for the application bundle name.

Custom application bundle name [Configuration]

The application bundle name to be used for macOS media files. Bundle names on
macOS are shown in the Finder and are localizable. For example, the executable name
could be set to ${i18n: myLauncher Name(${conpiler:sys.fullName})} where
nyLauncher Nane is an il8n message with value "Launcher for {0}".

This property is only visible if "Use custom application bundle name” is selected.

171

Unix mode [Unix]
The executable mode for the on Unix.

The remaining properties that are specific to the installer are:

Suppress initial progress dialog [Execution Options]
If selected, the initial native progress dialog of the installer is not displayed.

Replacement script for language code [General Customization Options]
With this script you can replace the language that the installer will run with.

Parameters: The parameter | anguageCode contains the 2-letter ISO 639 code of the
auto-detected language. If auto-detection has not been enabled on the language step
of the general settings, the parameter will be nul | .

Return value: If you return nul |, the language selection dialog will be shown, if you
return a language code, the language selection dialog will not be shown, and the
returned language will be used. If the returned language code is a language that is not
configured for this installer, the language selection dialog will be shown.

Create log file for stderr output [Windows]

If selected, and output on stderr is detected, a log file will be created and all output to
stderr will be redirected to that file.

Log file for stderr [Configuration]

The log file for the stderr output relative to the installer media file.

This property is only visible if “Create log file for stderr output” is selected.

Finally, custom installer applications have the following additional properties:

Create executable [Executable]

If selected, an executable for this installer application will be created. If not selected,
this application launcher can only be invoked withthe com i nst al | 4j . api . | auncher.
Appl i cati onLauncher APl or an automatic launcher integration.

For macOS single bundles, executables for installer applications are never created.

single instance [Configuration]

If checked the application will ensure at startup that there is only one instance running
per user account.

This property is only visible if "Create executable” is selected.

File set [Executable]

Choose the file set to which the installer application is added. File sets can be defined
on the Files->Define Distribution Tree step.

This property is only visible if "Create executable’ is selected.

Change working directory [Execution Options]

If selected the working directory will be changed to the value in 'Working directory’ at
startup.

172

« Working directory [Configuration]
The working directory to be used when ‘Change working directory' is selected.

This property is only visible if "Change working directory” is selected.

« Execution level [Windows]

The execution level for this application. If you want to modify files in the installation
direction, you most likely need administrator rights. This is only relevant for Windows
Vista and higher.

« Window title [GUI Options]
The title of the application window.

+ Show message when user cancels [cul Options]

If selected, a message will be shown when the user cancels the installer application by
clicking on the "Cancel’ button or closing the application frame.

- Cancel message [Configuration]

The message that is shown if the user cancels the installer application by clicking on
the "Cancel’ button or closing the application frame. The options that are presented to
the user are "Cancel” or "Continue”.

This property is only visible if "Show message when user cancels” is selected.

Configuring installer variables

The second tab in the configuration area for installer applications is the Installer variables
tab. Here, you can check the bindings for all detected installer variables and pre-define
installer variables. For more information, see the help topic on variables [p. 68].

¢ Properties

Installer Variables
-

9 Launcher Integration

You can pre-define installer variables in order to document and categorize them or to
assign initial values.

.~ Configure Predefined Installer Variables

The following bound installer variables have been detected:

P> installerArguments [type java.lang.Object]

P> isArchive [type java.lang Object]

P> isDmg [type java.lang.Object]

P> updateDescriptor [type com.install4j.api.update.UpdateDescriptor]
e P fmven Inm Alias]

| ENOIPON U P, S

Bindings for selection:

Go To Selection

An additional feature with respect to the variable selection dialog is that you can navigate
to a binding by selecting an element in the binding tree at the bottom and click on the
Go To Selection button.

173

Launcher integrations

Custom installer applications have a Launcherintegrations tab in the configuration area
that helps you to start them when launchers are executed.

¥ Properties

Installer Variables
-

@ Launcher Integration

Programmatic Integration

To call this custom installer application from your own code: | Start Integration Wizard

Automatic Integration

Start automatically when launcher is executed

One way to start an installer application is programmatically, by using the install4j
API [p. 226]. To get the code snippet for starting the selected installer application, click on
the Start integration wizard button. The integration wizard will present a number of options
that control the condition and possible call backs from the installer application.

Another way to start an installer application is automatically, by defining a launch schedule
and a launch mode. The launch schedule is one of

+ Always
Every time you start the launcher, the installer application will be started as well.

+ According to update schedule

install4j provides a built-in update schedule registry that can be configured by the user
on a form screen with an "Update schedule selector” form component. Also, you can
programatically modify the update schedule through the class com i nstal | 4j . api .
updat e. Updat eSchedul eRegi stry in the API. The selected installer application will be
started only if the update schedule requires an update check.

+ First run of any launcher in archive media file by the current user

For archive media files (such as a Windows ZIP file), no installer is available. To execute
a sequence of screens and actions when a launcher is started for the first time after
the archive has been extracted, use this launch schedule. It may be convenient to link
to screen groups in the installer to avoid duplicating configuration in your custom
installer application.

In your launcher, you can check for this condition with

cominstall4j.api.launcher. ApplicationLauncher.isNewArchivelnstallation()
in case you want to perform some actions outside a custom installer application.

174

The launch mode is one of

 Blocking at start up

When the launcher is started, the selected installer application will be started first. When
the installer application terminates, the launcher will then start up, unless a "Shut down
calling launcher” action has been executed.

« Non-blocking at start up

When the launcher is started, the selected installer application will be started
immediately. The launcher continues to start up in parallel.

+ When first window is shown

The selected installer application will be started when the first window is shown. This
works for AWT, Swing and SWT applications. If you have an SWT application, the "Uses
SWT" check box in the "Executable info" step of the launcher wizard [p. 41] must be
selected.

Just like with the AP, the installer application can be started in the launcher process itself
or in a new process. By default, the installer application is started in the same process. If
the "Blocking at start up” or "Non-blocking at start up” launch modes are selected, the look
and feel is set to the system look and feel. For the "When first window is shown" launch
mode, the look and feel is not changed, so your own look and feel will be used. When the
installer application is executed in the same process, the "Shutdown calling launcher”
action has a different effect: The whole process will be terminated when the installer
application exits.

By default, the selected installer application is started for all launchers in your project. If
this is not desired, you can restrict the integration to selected launchers. Note that if "All
launchers” is selected and the project is merged into another project, the integration will
be performed for all launchers in the main project as well.

175

B.4 Configuring Screens

Screens are configured on the Installer->Screens & Actions step [p.160]. A screenis a single
step in an installer application. It displays information to the user or gathers user input.

Installer (8 screens) [ID instal t N Ny
() [B r Contains 4 form components 5 Configure @® Preview

t Startup (2 actions) x

v Welcome (1 action) [ID 47] jilfe} Update Alert

y Alert f date installati v
@ Load a response file [ert for update instafiation a

. Control Flow
%% Installation location (2 ac... Condition expression
,;:J Installation components [Validation expression
i Rollback barrier
& Create program group (ID Quit after screen
j Query greeting [Form] [ID 3 Back button
j Service options [Form] [ID GUI Options
/ Style Banner
Installation (13 actions) | ot Customize banner image
.ixA Finish (1 action) [ID 60] Privileges
r Uninstaller (5 screens) (1D un Action elevation type Inherit from parent [Do not elevate]
Screen Activation
{5 Standalone update downloa... Pre-activation script
{Jp Background update downloa... Post-activation script
Hi- Configure greeting [Custom a..
O gure g 9l Welcome

A screen that welcomes the user to the installation of your application. This screen should
be placed at the beginning of the installation

If a screen has attached actions [p. 182], there will be an expansion control to the left of
the screen icon that allows you to show the associated actions.

Some screens only make sense when corresponding actions are used later on in the
installer or uninstaller. For example, the "Services" screen will only be displayed at runtime
if there are "Install a service” actions present on a subsequent screen. If such a dependency
is not fulfilled after adding a screen, a corresponding notification is displayed.

Properties of screens

Common properties of screens are:

- Action elevation type [Privileges]

If any contained actions should run in the elevated helper process, if their "Action
elevation type" property is set to “Inherit from parent’An elevated helper process is
available on Windows and macOSs if the process has been started without admin
privileges and the "Request privileges” action has been configured to require full
privileges.

- Style [GUI Options]
The default screen style for this installer application. Screens and screen groups can
override this style.
- Condition expression [Control Flow]
This expression is evaluated to decide whether the screen is displayed. If the expression
or script returns false, the current screen will be skipped. This expression or script should
not have any side-effects, it will be called while another screen is still being displayed.
+ Rollback barrier [Control Flow]

If the screen should be a rollback barrier. When a rollback barrier is completed, none
of the preceding actions will be rolled back. You can use this property to prevent an

176

incomplete rollback of complex changes or to protect actions from rollback when the
user hits "Cancel” in the post-install phase.

Exit code [Control Flow]

If the "Rollback barrier” property is selected, and a rollback terminates at this screen,
this property determines the exit code of the installer. By default, reaching a rollback
barrier during a rollback is considered a success, but you can signal a failure by
specifying a non-zero exit code here.

This property is only visible if "Rollback barrier” is selected.

Validation expression [Control Flow]

This expression or script is called when the user clicks the next button. If it returns false,
the current screen will be displayed again. You can use this to validate user input. Error
messages are not displayed automatically, you can use the Util.showErrorMessage(String
errorMessage) method in your script.

Quit after screen [Control Flow]

If the screen should have a "Finish” button instead of a "Next" button. The installer or
uninstaller will quit after this screen. The "Cancel” button will not be visible if this option
is checked.

Back button [Control Flow]

Allowing the user to go back to previous screens can be problematic if the previous
screen has actions attached that cannot be executed multiple times. By default, every
action is just executed once, all actions have a property to allow multiple execution.
The default behavior is the "Safe back button”, where the back button is hidden if the
previous screen has actions attached that cannot be executed multiple times.

Wizard index [Screen Activation]

Every screen can set or change the current wizard index. The wizard index is an optional
panel on the left side of the wizard that shows overall installation progress. You can
leave the index unchanged as it was set by a previous screen, change the step in the
current wizard index, removed the current wizard index ot configure a new wizard index.
For conditional construction of a wizard index, please use the com i nstall 4j . api .

cont ext . W zar dl ndex class in the "Pre-activation” script.

Step key

The key for the step in the wizard index that should be activated.

This property is only visible if "Wizard index” is set to "Activate another step".
Steps

The steps that are displayed by the wizard index. Each step has a key that you can use
to switch to that step later on by setting the wizard index property to "Activate another
step” and specifying that key.

This property is only visible if "Wizard index” is set to "Set a new wizard index’".

Initial key

The key of the step in the wizard index that should be initially selected. Leave empty to
select the first step.

This property is only visible if "Wizard index" is set to "Set a new wizard index’".

177

Partially defined

If selected, the list of wizard index steps will be partially defined. This means that a "...
entry will be appended at the bottom.

This property is only visible if "Wizard index” is set to "Set a new wizard index’".
Numbered

If selected, the steps in the wizard index are numbered.

This property is only visible if "Wizard index" is set to "Set a new wizard index’".

Maximum width

The maximum width of the wizard index in pixels. The preferred with is determined by
the longest step name, the maximum width is an upper bound for the actual width.

This property is only visible if "Wizard index” is set to "Set a new wizard index’".

Minimum width

The minimum width of the wizard index in pixels. The preferred with is determined by
the longest step name, the minimum width is a lower bound for the actual width.

This property is only visible if "Wizard index” is set to "Set a new wizard index’".
Background color

The background color for the index panel. Set to "None" to restore the default color.
This property is only visible if "Wizard index” is set to "Set a new wizard index’".
Foreground color

The foreground color for the index panel. Set to "None" to restore the default color.
This property is only visible if "Wizard index” is set to "Set a new wizard index’".

Background image

The image file for the background of the wizard index panel. Leave empty if no
background image is required.

This property is only visible if "Wizard index” is set to "Set a new wizard index’".

Image anchor
The anchor for the background image. The default value is "North".

Pre-activation script [Screen Activation]
This script is called each time just before the screen is displayed.

Post-activation script [Screen Activation]

This script is called each time just after the screen has been displayed. It is not invoked
in console or unattended mode.

Available screens

The following standard screens are available in install4;j:

= Empty form

An empty form to which form components can be added. By default, form components
are layouted along the vertical axis, but you can use layout groups for greater flexibility.

178

Wi

Wi

0

i

i

i

Form components with user input are bound to installer variables that can by referenced
by other elements in the installer, for example by actions.

Category: Form templates

Banner with header at the top

A form that has "Banner” as the default style and a configurable header label at the
top.

Directory selection

A form that asks the user to select a directory. All displayed messages are configurable.

Display PDF file
A form that displays a PDF file in an embedded cross-platform PDF viewer.

Display progress

A form that displays a progress bar with a status line capturing the progress information
of associated actions. The default post-activation script executes any associated
actions immediately when the screen is activated. All displayed messages are
configurable.

Display text

A form that displays text to the user, either plain text or HTML. All displayed messages
are configurable.

Program group selection

A screen that allows the user to select a program group on Microsoft Windows. All
displayed messages are configurable.

Category: Standard screens

" Welcome

A screen that welcomes the user to the installation of your application. This screen
should be placed at the beginning of the installation

' Display license agreement

A screen that displays a license agreement to the user, either plain text or HTML. The
license agreement must be accepted before the installation continues.

" Installation location

The screen that asks the user where to install the application. This determines the
principal installation directory.

" Installation type

A screen that displays a list of installation types that correspond to configurable set
of installation components. The default types “Full’,’'Standard” and "Customize” are
provided by default, with localized names and descriptions. Installation components
are configured in the install4j IDE on the Files->Installation Components” step

179

r

The "Installation components” screen may be hidden by this screen, depending on the
installation type selected by the user. This screen will not be shown if no installation
components are defined.

You can choose for each installation type if it should be customizable or not. If the
installation type that is selected by the user is customizable, the ‘Installation
components” screen will be shown if present, otherwise that screen will be skipped.
This condition can also be checked by inspecting the boolean value of the installer
variable sys. pr event Conponent Cust om zati on.

" Installation components

A screen that displays all installation components and asks the user which components
should be installed. This screen will not be shown if no installation components are
defined.

' Create program group

A screen that allows the user to select the default program group. Under Windows, this
screen sets installer variables that influence "Create program group” and "Create start
menu entry” entry actions. Under Unix, the screen asks the user whether and where
symbolic links to launchers should to be created. Under macOS, the screen is not shown.

" File associations

A screen that displays a list of all subsequent file association actions and asks the user
which associations should be made. This screen will not be shown if there are no
corresponding file association actions after this screen.

" Additional confirmations

A screen that displays a list of confirmations as check boxes whose results can be used
in condition expressions for actions. While other types of form components can be
added to this screen, only check boxes and other simple elements are consistent with
the displayed text. For arbitrary forms, use the "Configurable form" screen instead.

Installation

The screen that displays the installation progress. Where possible, installation actions
should be added to this screen.

' Display information

A screen that displays text to the user, either plain text or HTML. In contrast to the "Display
text” form template, all messages on this screen are pre-defined and localized.

" Finish

A screen that tells the user that the installation is finished. This screen should be placed
at the end of the installation.

" Uninstall Welcome

A screen that welcomes the user to the uninstallation of your application. This screen
should be placed at the beginning of the uninstallation.

Uninstallation

180

The screen that displays the uninstallation progress. Where possible, uninstallation
actions should be added to this screen.
" Uninstallation failure

The screen that is displayed if the uninstallation was not completed successfully. Further
information regarding the uninstallation problems is displayed to the user. This screen
is not shown if the uninstallation was completed successfully or if it is placed before
the uninstallation screen. The uninstaller will terminate after showing this screen in
case of failure.

" Uninstallation success

The screen that is displayed if the uninstallation was completed successfully.

181

B.5 Configuring Actions

Actions are configured on the Installer->Screens & Actions step [p. 160]. An action performs
a configurable unit of work in the installer application.

Configuration

Installer (8 screens) [ID instal o §
N File [Default]
T\ Startup (2 actions) X Excluded variables specialUserAccount
_';' Welcome (1 action) (1D 47]| | ¢ Overwrite strategy Do not overwrite command line

X Register variables for response file (v]
O Load a response file [I...

Error Handling

¢ Installation location (2 ac... g Failure strategy Continue on failure

._:‘ Installation components [Error message

! - Control Flow
4 (Create program group [ID Condition expression context.getBooleanVariable("sys.confirmedUpd:
j Query greeting [Form] [ID 3 Rollback barrier
j Service options [Form] [ID Can be executed multiple times (V]

. . / Privileges
Installation (13 actions) [g Action elevation type Inherit from parent [Do not elevate]

& Finish (1 action) [ID 60]

5 Uninstaller (5 screens) [ID un
_3‘; Standalone update downloa...
::i; Background update downloa...
e 3 Configure greeting [Custom a.. Load a response file

Load a response file that has previously been saved with the "Create a response file" action.

Actions are attached to screens [p. 176] or they are part of the "Startup sequence” that
allows you to perform actions before the installer or uninstaller is displayed. If any one of
these actions fails and has a "Quit on failure” failure strategy, the installer application will
not be shown.

Most often, actions are added to the “Installation” or “Uninstallation” screens. The advantage
of those screens is that they have a progress bar and a status display that is utilized by
actions. If a screen does not expose a progress interface, the status and progress messages
of attached actions are lost. This is no problem for near-instantaneous actions such as
setting an environment variable, but for time-consuming operations the user should be
informed about progress, even if it is only an indeterminate progress bar. As an alternative
to the "Installation” or "Uninstallation” screens, you can use "Display progress” screens to
create additional installation phases.

Some actions have an “affinity” to a particular screen and will suggest to add themselves
to that screen, such as the actions in the “Final options” category which would like to go
to the "Finish” screen. However, this is only a suggestion to guide you for the most common
use cases.

Some actions have an associated screen that allows the user to modify the behavior of
the action. For example, the “Install a service” action has a corresponding "Services” screen
where the user can decide whether the service should be installed and started when
booting. If such a relationship exists, a corresponding notification is displayed after adding
an action.

Properties of actions

Common properties of actions are:

- Action elevation type [Privileges]

If the action should run in the elevated helper process.An elevated helper process is
available on Windows and macOSs if the process has been started without admin

182

privileges and the "Request privileges” action has been configured to require full
privileges.
Condition expression [Control Flow]

This expression is evaluated to decide whether the action is executed. If the expression
or script returns false, the current action will be skipped. This expression or script should
not have any side-effects, it will be called while another screen is still being displayed.

Rollback barrier [Control Flow]

If the action should be a rollback barrier. When a rollback barrier is completed, none of
the preceding actions will be rolled back. You can use this property to prevent an
incomplete rollback of complex changes or to protect actions from rollback when the
user hits "Cancel’ in the post-install phase.

Exit code [Control Flow]

If the "Rollback barrier” property is selected, and a rollback terminates at this action,
this property determines the exit code of the installer. By default, reaching a rollback
barrier during a rollback is considered a success, but you can signal a failure by
specifying a non-zero exit code here.

This property is only visible if "Rollback barrier” is selected.

Can be executed multiple times [Control Flow]

If the action can be executed multiple times. If unselected, the action will only be
executed once and do nothing for subsequent invocations of the containing screen.
The default settings for screens ensure that a screen with actions that cannot be
executed multiple times is only shown once. However, if the "Back button” property is
changed of if you skip screens programmatically, a screen might be shown multiple
times.

Failure strategy [Error Handling]

If an action fails (i.e. returns f al se), the installer or uninstaller can continue, quit, or ask
the user what to do. If you select something other than "Continue on failure’, you should
enter an error message in the "Error message” property unless the action displays the
error itself.

For "Return to the parent screen’, no further actions will be executed and the previous
screen will be displayed again. If the action is contained in the "Startup” node, the first
screen will be shown and in unattended mode the application will quit.

Ask whether to retry the action
If the action fails, ask the user whether to retry the action.

This is one button in a message dialog that shows the error message and the available
options to react to the failure.

This property is only visible if “Failure strategy” is set to "Ask user".
Ask whether to quit
If the action fails, ask the user whether to quit the installer application.

This is one button in a message dialog that shows the error message and the available
options to react to the failure.

This property is only visible if "Failure strategy” is set to "Ask user".

183

« Ask whether to ignore the failure
If the action fails, ask the user whether to ignore the failure and continue.

This is one button in a message dialog that shows the error message and the available
options to react to the failure.

This property is only visible if “Failure strategy” is set to "Ask user".

« Error message [Error Handling]
If the action fails, this error message is displayed to the user. Otherwise the action fails

silently.
Available actions

The following standard actions are available in install4;:

Category: Control

@ Change cancel button state

Changes the visibility and the enabled state of the cancel button. This action works in
GUI mode as well as in unattended mode when the - spl ash option has been passed

onthe command line and the simple unattended progress dialog with a cancel button
is shown.

“ Run script

Runs a custom script. The script must return a boolean value. If it returns false, the
installation will be canceled.

ik setavariable

Sets a variable by running a custom script. The script canreturn anyj ava. | ang. Gbj ect.

1+ set messages

Sets the messages in the progress interface.

1+ setthe progress bar
Change the value of the progress bar or set it to indeterminate mode.
Lt sleep

Sleep a specified number of milliseconds. This is useful to ensure that a progress screen
is displayed for at least a certain period of time.

Category: Desktop integration

24

“ Add a desktop link

Create a link on the desktop to an installed executable or file. This action will be
automatically reverted by the 'Uninstall files" action.

¥ Add a startup executable on Windows and macOS

184

Add an installed executable to the startup folder on Windows or to the login items on
macOS so that it will be started automatically when the user logs in. This action will be
automatically reverted by the 'Uninstall files" action.

“ Add an executable to the dock
Add an installed executable to the dock on macOS. This action will be automatically
reverted by the 'Uninstall files" action.

Create a Windows URL link

Create a URL link on Windows. This is a special text file with a .url link that is supported
by the Windows desktop, start menu, and explorer. To create links in the start menu,
the "Create program group” action can be used as well. This action will be automatically
reverted by the 'Uninstall files’ action.

* Create afile association

Create an association between a file extension and a launcher, so that the launcher
is invoked when the user double-clicks a file with the selected extension.

If the application has not yet been started, the arguments to the main method will
contain the file name. Subsequent invocations can be intercepted with the com
install4j.api.launcher.StartupNotification class. This action will be
automatically reverted by the 'Uninstall files" action.

For macOs, file associations have to be defined on the "Executable info->macOS options”
step of the launcher wizard.
“* Create program group
Create standard program group entries on Windows and freedesktop.org compatible
UNIX desktops. This action will be automatically reverted by the 'Uninstall files" action.
@ Create start menu entry

Create a single start menu entry on Windows and Unix. For creating multiple program
group entries, please see the "Create program group” action. This action will be
automatically reverted by the 'Uninstall files" action.

i+ Register Add/Remove item

Register an Add/Remove item in the Windows software registry.

If this action runs with elevated privileges, the uninstaller will be started with elevated
privileges by Windows and no unelevated actions can be performed. In the event that
you need to execute processes without elevation, set the "Action elevation type” property
to "Do not elevate’. Note that the Add/Remove item will be registered for the current
user only in that case.

This action will be automatically reverted by the ‘Uninstall files' action.

“# Register a URL handler

Register a URL handler for a custom scheme, so that the launcher is invoked when the
user clicks on a link with the specified scheme.

On Windows and Linux, the arguments to the main method will contain the URL. On
macOsS, the arguments are available from the cominstall 4j.api.launcher.
StartupNotification class. If the "Allow only a single running instance of the

185

application” check box is selected on the "Java invocation” step of the launcher wizard,
subsequent invocations are intercepted by the cominstall 4j.api.|auncher.
StartupNotification class on all platforms.

This action will be automatically reverted by the ‘Uninstall files' action.

For macOS, URL handlers have to be defined on the "Executable info->macOS options”
step of the launcher wizard.

Category: File operations

Change Windows file rights
Changes access rights to files and directories on Windows.

If a helper process with elevated privileges has been created by the "Request privileges”
action, this action is pushed to the helper process. Please see the help topic on “Elevation
Of Privileges” for more information.

Copy files and directories

Copy files and directories. This action will be automatically reverted by the ‘Uninstall
files' action.

Create a symbolic link

Creates a symbolic link. On Windows, symlinks can by default only be created with
elevated privileges.

Delete files and directories

Deletes files and directory. Directories can be deleted recursively.

Move files and directories

Moves files and directories. The newly created files are subject to removal by the
‘Uninstall files' action.

Set the UNIX access mode of files and directories

Sets the UNIX access mode of files and directories. This action has no effect on Windows.

Set the modification time of files

Sets the modification time of files.

Set the owner of files and directories

Sets the owner and optionally the group of files and directories. This action has no
effect on Windows.

Category: Final options

Execute launcher

Execute an installed launcher and return immediately. This action is intended to be
placed on the "Finish" screen. A confirmation can be added automatically to the "Finish’
screen.

186

{g‘r

If the main installation process has been elevated by the "Request privileges” action,
this action is pushed to the original process with limited rights. Please see the help
topic on "Elevation Of Privileges” for more information.

Open PDF viewer

Displays a PDF file in a cross-platform PDF viewer. A separate window will be opened.

Reboot computer

Reboot the computer on Windows and macOS. This action will trigger a reboot that
takes place at the end of installation or uninstallation. By default, the user will be asked
whether to reboot or not.

Show URL

Show a URL in the default browser. This action is intended to be placed on the "Finish”
or the "Uninstallation success” screen.

If the main installation process has been elevated by the "Request privileges” action,
this action is pushed to the original process with limited rights. Please see the help
topic on "Elevation Of Privileges" for more information.

Show file

Show a file with the associated application. Usually, a text file or an HTML file is
appropriate. This action is intended to be placed on the “Finish” screen. A confirmation
can be added automatically to the "Finish” screen.

If the main installation process has been elevated by the "Request privileges” action,
this action is pushed to the original process with limited rights. Please see the help
topic on "Elevation Of Privileges" for more information.

Category: HTTP and network

Add a Windows firewall rule

Add a Windows firewall rule. This action will be automatically reverted by the ‘Uninstall
files’ action.

Download file

Download a URL and save it to a file

HTTP request

Make an HTTP request to a specified URL. All common HTTP request methods are
supported for REST calls. For mime types starting with t ext or containing “charset’

information, the response body can be saved to an installer variable. To download
large files, use the "Download file" action instead.

The action will succeed if an HTTP response code in the 2xx range is received, otherwise
it will fail. You can save the response code to a variable to inspect it in a later action.

Upload file
Upload a file to an HTTP server with a POST request.

Wait for HTTP server

187

Wait until an HTTP or HTTPS port becomes available. This is useful if you start a server,
for example with a "Start a service” action, and need to wait until the server is operational
before proceeding with the installation.

Wait for Socket

Wait until a socket can be connected to. This is useful if you start a non-HTTP server.
For HTTP and HTTPS, use the "Wait for HTTP server” action instead.

Category: JDBC

%+ check JDBC connection

Check if a connection can be made to the configured JDBC database. If no connection
can be made, the action will fail. If the action is attached to a form screen that queries
a database location, set its "Error message” property to an appropriate error message
and the "Failure strategy” property to "Return to the parent screen”.

¥ Execute SQL query

Execute a single SQL query and store the result in an installer variable. If only the first
row is taken, the row value is stored directly. Otherwise, the variable will contain an
instance of j ava. uti | . Li st with the row values. If the query is for a single column, the
row value is the Java object representation of the return type, e.g.j ava. | ang. Stri ng
for VARCHAR or j ava. | ang. Long for | NT.

1 Execute SQL script

Execute a single SQL statement or a script of SQL statements.

i+ JDBC container action

This action allows you to configure connection properties just once and then execute
a list of JDBC actions with the same connection.

Category: JSON files

“ Count occurrences in a JSON file

Count the occurrences of a JSONPath expression in a JSON file and save the result
to an installer variable.

“ Modify JSON files

(2

Modify parts of JSON files specified by a JSONPath) expression. Several modification

types are available.

Read value from a JSON file

(3

Read one or multiple values from a JSON file as specified by a JSONPath) expression

and save the result to an installer variable.

(1) https://jsonpath.com/
) https://jsonpath.com/
(3) https://jsonpath.com/

188

https://jsonpath.com/
https://jsonpath.com/
https://jsonpath.com/

Category: Java preference store

Delete a node or key in the Java preference store

Delete an entire package node or a key-value pair in the Java preference store.

Load installer variables from the Java preference store

Load installer variables from the Java preference store that have been previously saved
by the "Save installer variables to the Java preference store” action.

Read a key from the Java preference store

Read the value of a key from the Java preference store and save it to an installer
variable. Only string values can be read.

Save installer variables to the Java preference store

Save installer variables to the Java preference store. This can be used to communicate
installer variables to the uninstaller or to installers with different application IDs.

Set a key in the Java preference store

Set a key-value pair in the Java preference store. The package node is created if
necessary. This is the most convenient way to communicate settings to related installers.
Only string values can be set.

Category: Miscellaneous

Add VM options

Adds VM options for a launcher by modifying or creating a . vnopti ons file or by
changing the Info.plist file. This action will be automatically reverted by the ‘Uninstall

files' action.

Check for running processes

Check for installed launchers and additional running processes on Windows and
macOsS.

Modify an environment variable on Windows

Sets, appends to, prepends to or removes an environment variable on Windows. This
action can be automatically reverted by the 'Uninstall files' action.

Modify classpath

Changes the classpath of a launcher by modifying or creating a . vnopt i ons file or by
changing the Info.plist file. This action will be automatically reverted by the ‘Uninstall
files' action.

Request privileges

Requests configurable administrator privileges. On Windows Vista and higher and on
macOs, the installer will be restarted with the requested privileges or a helper process
will be created that can perform certain actions in a privileged context. When you
restart the installer, you should not install files before this action.

189

Please see the help topic on "Elevation Of Privileges” for a detailed discussion of this
action.
Require installer privileges

Require the same privileges as the ones that were obtained during the installation. On
Windows Vista and higher and on macOS, the uninstaller or custom installer application
will be restarted with the requested privileges if necessary. This action only has an
effect if a "Load response file" action is executed previously.

Please see the help topic on "Elevation Of Privileges” for a detailed discussion of this
action.
Run executable or batch file

Runs an executable or a Windows batch file. The action can optionally wait for
termination of the executable.

Category: Persistence of installer variables

Create aresponse file

Create a response file at an arbitrary location to save user input for subsequent
installations. This file can be used with the - var f i | e command-line option.

Load a response file

Load a response file that has previously been saved with the "Create a response file”
action.

Modify a response file

Update all variables in an existing response file. The action does not delete variables
in the response file for which no installer variables are defined, but keeps them as they
are.

This action is useful for updating a response file from a custom installer application,
where not all installer variables are available.

Category: Properties files

Read a properties file

Read a properties file and save a j ava. uti|. Map object with the properties to an
installer variable. If you use a "Write properties to file" action to write the variable back
to disk, the comments on the existing property definitions will be preserved.

Remove keys from properties file

Remove selected keys from a properties file. The line separator of the properties file is
conserved.

W Write properties to file

Write property definitions to a properties file. The properties can come from aninstaller
variable with a j ava. uti | . Map object, another properties file or from direct entry.

190

If the "Merge into existing file" property is selected, the new property definitions will be
added to the existing ones.

Category: Services

Install a service

Installs a service. On Windows, this is done by executing the service launcher with the
appropriate arguments. On Unix, if systemd is detected, a config file will be created in
/ et c/ syst end/ syst em otherwise a link will be placed in/etc/init.d. On macOs, a

LaunchDaemon will be created. This action will be automatically reverted by the
‘Uninstall files' action.

If a helper process with elevated privileges has been created by the "Request privileges”
action, this action is pushed to the helper process. Please see the help topic on “Elevation
Of Privileges” for more information.

Start a service

Starts a service by executing the service launcher with the appropriate arguments.

If a helper process with elevated privileges has been created by the "Request privileges”
action, this action is pushed to the helper process. Please see the help topic on “Elevation
Of Privileges" for more information.

Stop a service

Stops a service by executing the service launcher with the appropriate arguments.

If a helper process with elevated privileges has been created by the "Request privileges”
action, this action is pushed to the helper process. Please see the help topic on “Elevation
Of Privileges" for more information.

Category: Text files

Fix line feeds

Changes the line feeds of text files to the platform-specific type.

Modify text files

Modify installed text files by replacing a search value in the selected files. This action
does not read the entire file into memory and can work on arbitrarily large text files.

Modify text files with regular expressions

Modify installed text files by applying a regular expression.

Read text from file

Read the content of a text file and save it to an installer variable. The variable value
will be of type Stri ng.

Replace installer variables in text files

Modify installed text files by replacing all occurrences of installer variables of the form
${installer:nyVariabl e} with their current values. The action also replaces i18n

191

ok

L

variables like ${i18n;mykey} and compiler variables like ${conpiler:
nmyConpi | er Vari abl e}
Write text to afile

Write text to a new file or append text to an existing file.

Category: Update

Check for update

Load the update descriptor from a URL and save it to a variable. If successful, the
variable will contain an instance of com i nst al | 4j . api . Updat eDescri pt or
Schedule update installation

Schedule a downloaded media file to be started upon the next start of a launcher
configured accordingly or by calling UpdateChecker.executeScheduledUpdate().

Shut down calling launcher

Shut down the launcher that called this application if it was started with the com
i nstall4j.api.launcher. Applicati onLauncher API

Category: Windows registry

Change access rights for a key in the Windows registry
Changes access rights for a key in the Windows registry.

If a helper process with elevated privileges has been created by the "Request privileges”
action, this action is pushed to the helper process. Please see the help topic on “Elevation
Of Privileges” for more information.

Delete a key or value in the Windows registry

Delete a key or value in the Windows registry.

Read a value from the Windows registry

Read a value from the Windows registry and save it to an installer variable. The type
of the value depends on the type in the registry, it will be an instance of one of the
following classes: String, Integer, String[], byte[], WnRegistry.
ExpandStri ng.

Set a value in the Windows registry

Set a value in the Windows registry. This action can also create the appropriate key if
necessary.

Category: XML files

Apply an XSLT transform
Transform an installed file by applying an XSLT stylesheet.

Count nodes in XML file

192

&

%

Count the occurrences of an XPath expression in an XML file and save the result to an
installer variable.

Insert XML fragment into XML files

Insert an XML fragment into the position defined by an XPath expression. The fragment
can replace an existing element node, or it can be inserted as a child or a sibling.

Read value from XML file

Read a string value from an XML file specified by an XPath expression and save the
result to an installer variable.

Remove nodes from XML files

Remove selected nodes from XML files by specifying an XPath expression.

Replace text in XML files

Modify installed XML files by selecting nodes with an XPath expression and applying a
regular expression on the selected values.

Category: ZIP files and archives

Create a ZIP file

Create a ZIP file from the specified source files and directories.

Extract a DMG file on macOS

Extracts the content of a DMG file to an arbitrary location on macOS.

Extract a TAR file

Extracts the content of a tar or tar.gz file to an arbitrary location.

Extract a ZIP file

Extracts the content of a ZIP file to an arbitrary location.

Install content of a ZIP file

Installs the content of an external ZIP file to an arbitrary location. This action will be
automatically reverted by the 'Uninstall files" action.

Modify a ZIP file

Modify the contents of a ZIP file with a configurable list of actions.

Download and install component

Download a specified downloadable component and install it. This action only works
for installation components that have been marked as "downloadable” on the "Options”
tab of the installation component configuration.

Note: The “Install Files" action already downloads and installs all selected downloadable
installation components. This action is intended for scenarios where an installation
component has to be downloaded after the “Install files” action has run. For example,
you could use this in a custom installer application to install optional files.

193

" Execute previous uninstaller

Uninstalls the previous installation of this application in the selected installation directory
by executing the previous uninstaller.

Install files

Install all files in the distribution tree that are contained in the selected installation
components.

" Uninstall files

Uninstall all installed files.

194

B.6 Configuring Screens And Actions Groups

Screen and action groups can be configured on the ‘Installer->Screens & Actions”

step [p.160].

Installer (8 screens) [ID ins.

3

Startup (2 actions)

| Welcome (1 action) [ID
" Installation location @..

¢ Installation compone...

Error Handling

On error break group
Default error message
Control Flow
Condition expression
Loop

Privileges

.~.:J Create program group | Action elevation type Inherit from parent [Do not elevate]

j Query greeting [Form] [
Service options [Form] [
Installation (13 action...

Y4

v E Stop Services [Action... ot
I:O:} Set messages [ID
@ Set the progress b...

{é}' Stop a service [I1D
@ Set the progress b...
1:0‘} Check for running pr... Action group

Install files [ID 55]

{é} Create program gro...
= SO S

An action group contains multiple actions that can be disabled with a single condition
expression on the group.

Actions and screens can be grouped in the tree of installer elements. Groups of the same
types can be nested, meaning that you can put a screen group into a screen group or an
action group into an action group.

You can nest as many levels of groups as you wish. Next to the label of the screen or action
group in the tree of installer elements the number of all contained screens or actions is
shown in bold where elements in nested groups are counted as well.

Grouping offers the following benefits:

+ Organization
If you have many screens or actions, groups emphasize which elements belong together.
You can add a common comment to the group.

« Common condition
Groups have a "Condition expression” property that allows you to skip the group with a
common condition instead of having to repeat the condition for each contained element.

+ Single link target
If you want to reuse a set of adjacent screens or actions in a different part of your project,
you can put them in a group and add a single link to that group instead of linking to
each element separately.

* Looping
A group has a "Loop expression” property that allows you to execute the group repeatedly
until the loop expression returns f al se.

« Jump targets (screen groups only)

When you jump to a screen programmatically with cont ext . gotoScreen(...), itis

more maintainable to jump to a group instead of to a single screen. You can think of
the group as a label in this case.

195

Properties of screen and action groups

The common properties of screen and action groups are:

Condition expression [Control Flow]

This expression is evaluated just before the screen is displayed. If the expression or script
returns f al se, the entire screen group will be skipped.

Loop [Control Flow]

If selected, the screen group will be looped. With the child properties you can set an
expression that terminates the loop and configure a loop index that is available inside
the loop.

Note: If actions should be repeated in a loop, their "“Can be executed multiple times”
property has to be selected. If forrm components in a screen should be re-initialized on
each loop, their "Reset initialization on previous” property has to be selected.

Loop expression [Configuration]

This expression is evaluated when the end of the screen group is reached. If it returns
t rue, all screens will be repeated. If you leave the expression empty, no loop will be
performed.

This property is only visible if “Loop” is selected.

Loop index start value [Configuration]
The start value for the loop index variable that is passed to the "Loop expression’

This property is only visible if "“Loop” is selected.

Loop index step [Configuration]

The step for the loop index variable that is passed to the “Loop expression”. At the end
of each loop, this step is added to the loop index. It is added before the "Loop expression”
is evaluated. To decrement, specify a negative value.

This property is only visible if “Loop" is selected.

Loop index variable name [Configuration]

If you want to use the loop index in a screen that is contained in the group, you can
optionally save the value to an installer variable. Specify the variable name to which
the value should be saved as aj ava. | ang. | nt eger.

This property is only visible if “Loop" is selected.

Style [GUI Options]

The default screen style for this installer application. Screens and screen groups can
override this style.

Action elevation type [Privileges]

If any contained actions should run in the elevated helper process, if their "Action
elevation type" property is set to “Inherit from parent’.An elevated helper process is
available on Windows and macOSs if the process has been started without admin
privileges and the "Request privileges” action has been configured to require full
privileges.

In addition, action groups have the following properties:

196

On error break group [Error Handling]

If selected, and one of the contained actions returns with an error, the control flow will
step out of the action group and continue with the next element after the group. This
behavior only takes effect if the problematic action has its failure strategy set to
"Continue on failure”.

Error message [Configuration]

If the action group fails, this error message is displayed to the user. Otherwise, the action
group fails silently.

This property is only visible if “On error break group” is selected.

Failure strategy [Configuration]

The failure strategy that should be chosen if the action group fails. The "Error message’
property will be used for the option dialog. If you also define a "Default error message’,
you will get two option dialogs, the first one from the action that causes the failure.

This property is only visible if "On error break group” is selected.
Ask whether to ignore the failure [Configuration]
If an action fails, ask the user whether to ignore the failure and continue.

This is one button in a message dialog that shows the error message and the available
options to react to the failure.

This property is only visible if "Failure strategy” is set to "Ask user".
Ask whether to quit [Configuration]
If an action fails, ask the user whether to quit the installer application.

This is one button in a message dialog that shows the error message and the available
options to react to the failure.

This property is only visible if “Failure strategy” is set to "Ask user".
Ask whether to retry the action [Configuration]
If an action fails, ask the user whether to retry the action.

This is one button in a message dialog that shows the error message and the available
options to react to the failure.

This property is only visible if “Failure strategy” is set to "Ask user".

Retry expression [Configuration]

If this expression is set and returnst r ue, the action group is repeated. If the action group
is configured to loop, the loop index will not be incremented.

This property is only visible if “On error break group” is selected.

Default error message [Error Handling]
A default error message used by all actions that have no dedicated error message.

197

B.7 Configuring Form Components

Form components are configurable units that can be added to a form screen. In this
chapter, the functionality and configuration options of the form components dialog are
discussed. The underlying concepts are discussed in a different help topic [p. 51].

Form elements are added by clicking the " Add button.

40 world [Single radio button] [ID 483] ' ol
‘ | | Allow:_canfianratinn an screen

Ao person [Single radio button] [ID 484] Add Form Component

‘4. Text field [ID 77] Search Form Component in Custom Code

Groups »

Tabbed Panes 4
A —
Visibility script

Text Name of the person:
3 Font Default

Font color =3

" Icon
Icon-text gap 4

In the popup window you can select whether to add

a form component. Form components are made available by install4j or are contributed
by an installed extension [p. 232]. A registry dialog will be shown where you can select
the desired form component.

a form component that is contained in your custom code. New types of reusable form
components can be developed with the install4j API [p. 226]. In your custom code
configuration [p. 165] you can specify code locations that are scanned for suitable
classes. A class selector will be shown where you can select the desired class.

a layout group [p. 204], either a vertical group or a horizontal group. The new layout
group is initially empty. You can also create layout groups directly from a selection in
the tree of installer elements.

You can preview a form screen with the @ Preview button which is also available on the
property page of a screen. For screens that embed forms, the preview may not show the
actual screen. However, the layout of the form itself will be the same at runtime.

Properties of form components

Common properties of form components are:

Insets [Layout]

This insets around the form component. The format is top;left;bottom;right, use the
drop-down button at the right side to show the insets editor.

Initialization script [Initialization]

A script that initializes the form component. To configure the contained principal
component, such as a JCheckBox, use the configurationObject parameter (if available).
This script will run after the internal initialization of the form component, just before the
component appears on the screen. It will not be invoked in console mode.

198

« Reset initialization on previous [Initialization]

If set, the component will be initialized each time the user enters in the forward direction.
Otherwise, the initialization will be performed only once. This setting affects both the
internal initialization as well as the initialization script.

« Visibility script [Initialization]

A script that determines whether the form component will be visible or not. This works
for both GUI and console modes. In GUI mode, the script will be invoked each time just
before the form component is initialized.

Available form components

The following standard form components are available in install4j:

Category: Action components

¥ Button

A standard button with an optional leading label. When the user clicks on the button,
an action script is executed.

#* Dark mode switcher

A button that switches between dark and light mode. If the current look and feel does
not support switching between dark and light mode, the button is invisible.

* Hyperlink URL label

A label that displays a hyperlink. When the user clicks on the hyperlink, the appropriate
action is performed, depending on the protocol of the URL.

* Hyperlink action label

A label that displays a hyperlink. When the user clicks on the hyperlink, an action script
is executed

Category: Labels and spacers

i+ Horizontal separator

A horizontal separator with an optional label.

* Key value pair label

A pair of labels. The first ('key’) label aligns with other leading labels on the form, the
second ('value') label consumes the remaining horizontal space,

#* Label

A single label. It is left-aligned with leading labels from other form components and
extends beyond other leading labels.

* Leading label

A form component that only has a leading label and no central component. This can
also be used to create standalone help tooltips.

199

Multi-line HTML label

A multi-line label that wraps text as needed and displays simple HTML. In particular,
you can include HTML links that open a browser.

Multi-line label

A multi-line label that wraps text as needed.

Spring

An invisible spring that can be used in horizontal and vertical layout groups to push
subsequent components to the right or to the bottom

Vertical spacer

An invisible vertical spacer of configurable height.

Category: Option selectors

Check box

A check box with an optional leading label. The user selection (Bool ean. TRUE or
Bool ean. FALSE) is saved to a variable.

Combo box

A combo box with an optional leading label. The user can enter arbitrary text into the
combo box. The user selection (the selected item as a string) is saved to a variable.

Drop-down list

A drop-down list with an optional leading label. The user selection (the selected index
as ajava.l ang. | nt eger) is saved to a variable.

List

A list with an optional leading label. The user selection (the selected indices) is saved
to a variable.

Radio button group
A number of radio buttons in a common button group with an optional leading label.
The user selection (the selected indexas aj ava. | ang. | nt eger) is saved to a variable.
Single radio button

A single radio button with an optional leading label. If selected, a specified string is
saved to a variable. If you place multiple instances of this form component on a form
screen and give them the same variable name, they will form a radio button group.

Category: Sliders and spinners

Slider

A slider with an optional leading label. The user input (ajava. | ang. I nt eger) is saved
to a variable.

200

Spinner of dates

A spinner with date and time values with an optional leading label. The user input is
saved to a variable.

Spinner of enumerated values

A spinner with enumerated values with an optional leading label. The user input is
saved to a variable.

Spinner of integer values

A spinner with integer values with an optional leading label. The user input is saved to
a variable.

Category: Special selectors and displays

Directory chooser

A directory chooser with an optional leading label. The user selection is saved to a
variable.

File associations selector

A form component that displays a list of all subsequent file association actions and
asks the user which associations should be made. This form component will be empty
if there are no corresponding file association actions after this screen.

File chooser

A file chooser with an optional leading label. The user selection is saved to a variable.

HTML or text display

A scroll panel that displays HTML or plain text. The HTML or plain text is easily localizable
because the file selection allows you to enter separate files for all supported languages.
Installation components selector

A form component that displays all installation components and asks the user which
components should be installed.

Installation directory chooser

An installation directory chooser with an optional display of required and free space.
The user selection is set as the installation directory.

License agreement

A form component that displays a license agreement to the user, either plain text or
HTML. The license agreement must be accepted before the next screen can be shown.
Log file viewer

A text area that shows the contents of a text file. The viewer follows additions to the file
like the UNIX commandtail -f,with aconfigurable maximum number of displayed
lines.

201

V)

The log file does not have to exist when the form is shown, it can be created later on.
Also, the file can be deleted and re-created. Modifications before the previously
observed end of the file will not be picked up by the viewer unless the length of the file
decreases.

PDF display

Displays a PDF file in an embedded cross-platform PDF viewer.

Program group selector

A form component that allows the user to select a program group on Microsoft Windows.

Progress display

An progress display that can show the progress of the actions attached to the
containing screen.

Update alert

A pair of radio buttons offering the user a choice whether to update an existing
installation or not. If the existing installation should be updated, the installer variable
sys.confirmedUpdatelnstallation is set to true. Several standard screens use that
installer variable in their default condition expression.

Update schedule selector

Drop-down box that lets the user select an update schedule for your application. You
can use the cominstall 4j. api.update. Updat eSchedul eRegi stry class in your
application to check if you should launch an updater. Please see the Javadoc for more
information. Please note that simply adding this form component does not
automatically launch an updater at regular intervals.

Windows user selector

A component for selecting Windows users or groups in the native Windows user dialog.
Optionally, you can display a button to create a new user. The selection is saved as a

sib” to a string variable. If multiple selection is enabled, the result is a string array of
SIDs.

This component does not do anything in console mode, since it requires the native
Windows dialog for selecting users and groups.
Category: Text fields

Password field

A password text field with an optional leading label. The user input is displayed with *'
characters. The user input is saved to a variable.

Text area

A text area with an optional leading label. The user input is saved to a variable.

Text field

A text field with an optional leading label. The user input is saved to a variable.
https://en.wikipedia.org/wiki/Security _Identifier

202

https://en.wikipedia.org/wiki/Security_Identifier

Text field with date format

A text field with an optional leading label and a date format. The user input (a j ava.
util . Date) is saved to a variable.

Text field with format mask

A text field with an optional leading label and an arbitrary format mask. The user input
is saved to a variable. The default mask is that of an SSN. For more information, please
see the javadoc of j avax. swi ng. t ext . MaskFornatter.

Text field with integer format
A text field with an optional leading label and an integer format. The user input is saved
to a variable with type j ava. | ang. Long.

Text file editor

A text area for editing afile. If the file does not exist, a configurable initial text is presented
to the user and the file is created. The file is saved when the user clicks on the "Next"
button.

Console handler

Allows you to interact with the user in a console installer. All standard form components
expose appropriate behavior in console mode, however, there are situations where
you need to fine-tune your console installer with additional messages or questions. In
GUI or unattended mode, this form component does not have any effect.

203

B.8 Configuring Layout Groups

Layout groups can be configured in the form components [p. 198] configuration dialog.
This chapter discusses the configuration options for layout groups, for more information
on layout groups, see the corresponding help topic [p. 56].

4 Multi-line HTML label [ID 1568] ™ -

£ Image File

{4 Check box [ID 1566] X Background color 4
v . Vertical group (3 form components) [ID 1573] (Foreground color B

Check box [ID 1572] Border sides
eck box [ID 1572
.4' Allow configuration on screen

Vertical group (2 form components) [ID 157
{4 Windows user selector [ID 1569] Visibility script
‘40 Password field [ID 1570] Insets 0:20:0:0

Anchor [| North-West
Cell spacing 0
/ Make children same width

Vertical group

A vertical form component group contains one or more form
components that are distributed along the vertical axis.

You can create a layout group [p. 204] from selected form components with the = Create
Horizontal Group and Il create Vertical Group actions. The new group will be inserted in
place of the selected elements.

You can dissolve a group with the Dissolve Group action. This action is only enabled if the
selection consists of a single layout group. The elements contained in the group will be
inserted in place of the group. Nested groups will not be dissolved.

Grouping features

Form components can be grouped in horizontal and vertical layout groups, and you can
nest groups to an arbitrary depth.

Grouping offers the following benefits:

+ Custom layout

Instead of a simple sequence of form components on a form screen, you can use
horizontal layout groups to put form components side-by-side. Nesting vertical and
horizontal form components allows you to achieve virtually any layout.

Sometimes, enclosing groups and sibling groups create a cell that cannot be entirely
filled by a layout group. With the "Anchor” property you determine where the group
should be placed in that case. By default, horizontal layout groups are anchored at
"West" and vertical layout groups are anchored at "North-West".

Layout groups have a configurable cell spacing. For vertical layout groups, this is the
vertical gap between two form components (0 pixels by default), for horizontal layout
groups this is the horizontal gap between two adjacent form components (5 pixels by
default)

For each layout group, you can specify insets that are inserted around the entire layout
group. By default, the insets are zero in all directions.

By default, a horizontal layout group aligns a leading label of its first form component
with the leading label of the first formm component from a direct vertical parent group.
This is usually appropriate when horizontal groups are used to attach additional form

204

components to the right side. If this alignment is not desired, you can use the "Align first
label” property of a horizontal layout group to switch off the alignment.

Vertical layout groups always break the alignment of leading labels: Within a vertical
group, leading labels are aligned, but between vertical groups, the width of leading
labels is unrelated.

+ Organization
If you have many form components on a screen, vertical groups emphasize which form
components belong together. You can add a common comment to the group.

« Common visibility script

Groups have a "Visibility script” property that allows you to hide the entire group with a
common condition instead of having to repeat the condition for each contained form
component.

+ Single target for coupled form components

If a set of form components should be coupled to the selection state of a checkbox or
a single radio button, you can select the containing layout group as the target instead
of selecting all coupled form components separately.

+ Styling

Layout groups have properties for setting background images and borders, as well as
background and foreground colors. Styles [p. 208] use layout groups to achieve visual
effects.

Properties of layout groups

Common properties of horizontal and vertical layout groups are:

« Image File [Configuration]

An image that is shown on the edge or as a background. Apart from an image that is
anchored to the center of the group, the image can optionally cut off an entire edge
from the group. In that case, it is possible to set a background color for the edge stripe
so that the image can blend into the surroundings. Can be empty.

To add a high-resolution image, create a file with double the resolution and an additional
@x after the name (e.g.i mage. png and i mage@x. png) next to the selected image. To
use different images in dark mode, add files with an additional _dark suffix (e.g.
i mge_dar k. png and i mage@x_dar k. png)

The install4j runtime JAR file i 4j runti me. j ar contains a number of image files that
you can reference here by prefixing the icon file name with “icon:". For example, i con:
| ock_open_32. png loads a 32x32 icon showing an open lock.

« Image anchor [Configuration]
The anchor where the image will be attached to in the layout group. If Center is chosen,
the image is always displayed in the background.

 Image edge [Configuration]

For corner anchors, you have to select either the horizontal or the vertical edge that will
optionally be filled with the image edge background color and that will be cut of from
the layout group if the image is not displayed in the background.

205

Image edge background color [Configuration]

The background color that the image edge should be filled with. If the image terminates
with the same color, the image will blend with the background and the entire edge will
look like a single visual element.

Not available if the anchor is set to "Center”

Image edge border [Configuration]
If selected, the image edge will be separated by a line border from the content area.

Not available if the image overlaps the contained components.

Image edge border color [Configuration]

The color of the image edge border. Leave empty to choose the default separator color
of the current look and feel.

This property is only visible if "Image edge border” is selected.

Image edge border width [Configuration]
The width of the image edge border in pixels.

This property is only visible if "Image edge border” is selected.

Image insets [Configuration]

The insets around the image. The format is top;left;bottom;right, use the drop-down
button at the right side to show the insets editor.

Overlap with contained components [Configuration]

If selected, the image will be used as a background image and form components
contained in the layout group will overlap with the image. Otherwise, the image edge
will be cut off from the layout group and form components will not overlap with the
image. In that case, the insets of the layout group will be applied to the actual content
area that excludes the image edge.

Not available if the anchor is set to "Center”

Background color [Configuration]
The background color of the layout group. Can be empty.

Foreground color [Configuration]

The foreground color of the layout group. Can be empty. If set, all contained form
components will use this foreground color except those that have an explicitly configured
foreground color.

Border sides [Configuration]

On which sides a line border should be painted around the form component, a list of
"top’, "right”, "bottom" and “left’, separated by semicolons. Use the drop-down button to
select the sides visually.

Border color [Configuration]

The color of the drawn border sides. Leave empty to choose the default separator color
of the current look and feel.

Border title [Configuration]

Atitle that is displayed in the top-left corner of the border. Leave empty if no title should
be displayed.

206

Border width [Configuration]
The width of the drawn border sides in pixels.

Visibility script [Initialization]

A script that determines whether form components in the group (and all descendant
components in nested groups) will be visible or not. This works for both GUI and console
modes. In GUI mode, the script will be invoked each time just before the formm components
are initialized. Visibility scripts of nested form components can further hide single form
components, but they cannot show them if a parent layout group is already hidden.

Insets [Layout]
The insets around the entire group. The format is top;left;bottom;right, use the drop-down
button at the right side to show the insets editor.

Anchor [Layout]

The position in the available space where the group is anchored in the layout. This is
only relevant if the group takes less space than the cell that is created by the
surroundings.

Cell spacing [Layout]

The cell spacing determines how many pixels are inserted between single components
in the layout group.

Vertical layout groups have the additional properties:

Make children same width [Layout]
If all contained elements should have the same width.

and horizontal layout groups have the following specific properties:

Align first label [Layout]

If the horizontal group is directly added to a vertical group or to the top-level of a form,
the leading label in the horizontal group is aligned with other leading labels in the vertical
parent group. If this alignment is not desired, you can deselect this property.

Make children same height [Layout]

If all contained elements should have the same height.

Tabbed panes

In addition to horizontal and vertical layout groups, you can add tabbed panes to a form.
Atabbed pane is added by choosing Tabbed Panes->Add Tabbed Pane from the dropdown
menu displayed by the 5 Add button. Below the tabbed pane, you have to add one or
more single tabs by choosing Tabbed Panes->Add Single Tab For Tabbed Pane. Each
single tab can then contain arbitrary form components or layout groups.

207

B.9 Configuring Styles

Styles determine how screens look like in GUI installers. For more information on styles,
see the corresponding help topic [p. 60].

Styles are added by clicking the " Add button.

Styles L G 4

In this step, you configure the styles that can be applied to installer applications, screen groups and single screens. A style is a
graphical envelope that embeds the screen content and adds navigation controls.

@ Standard [Form style] [ID 2 | ol |

lz Banner [Form style] [ID 2394] Add Configurable Style
Style components (2 styles) Search Style in Custom Code
lz Standard header [Form sty... Add Group
m Standard footer [Form styl...
=

In the popup window you can select whether to add

« a configurable style. Styles can be constructed with a restricted set of the form
components [p. 198] for screens that do not take user input and some special form
components that are relevant in a styling context.

« a style that is contained in your custom code. New types of reusable styles can be
developed with the install4j API [p. 226]. In your custom code configuration [p. 165] you
can specify code locations that are scanned for suitable classes. A class selector will
be shown where you can select the desired class.

« a group for organizing styles, so you have a better overview of which styles belong
together.

For organizing styles in your project, you can create a group from selected styles with the
Create group from selection action and dissolve groups with the Dissolve Group action.
This action is only enabled if the selection consists of a single layout group. The elements
contained in the group will be inserted in place of the group. Nested groups will not be
dissolved.

You can preview a style with the @ Preview button which is also available on the property
page of a style.

Properties of styles

Form styles have the following properties:

+ Standalone style
If selected, the style can be selected for installer applications, screen groups and screens.
If a style is not standalone, it can only be used in other styles.

« Fill horizontal space

If selected, all available horizontal space is filled by this style. This setting is also used
when it is nested in another style by a "Nested style” form component.

208

Horizontal anchor

If “Fill horizontal space” is not selected, the style can be placed at different locations in
the available space.

This property is only visible if Fill horizontal space” is selected.

Fill vertical space

If selected, all available vertical space is filled by this style. This setting is also used when
it is nested in another style by a "Nested style” form component.

Vertical anchor

If "Fill vertical space’ is not selected, the style can be placed at different locations in the
available space.

This property is only visible if “Fill vertical space” is selected.

209

C Generated Installers

C.linstaller Modes

Installers generated by install4j can be run in three modes:

+ GUImode
The default mode for installer applications is to display a GUI installer or uninstaller.

« Console mode

If the installer application is invoked with the - ¢ argument, the interaction with the user
is performed in the terminal from which the installer was invoked.

 Unattended mode

If the installer is invoked with the - g argument, there is no interaction with the user and
the installation is performed automatically with the default values.

The flow of screens and action sequence is executed in the same way for all three modes.
If some actions or screens should not be traversed for console or unattended installations,
you can set their "“Condition expression” properties to

I cont ext . i sConsol e()

or

I context.isUnattended()

GUl mode

In GUI mode, the keyboard shortcut CTRL- SHI FT- L shows the log file in the Explorer on
Windows, in the Finder on macOS and in the file manager on Linux/Unix. This shortcut is
not advertised to the user, but you can communicate it to the user for debug purposes.

Console mode

Installers generated by install4j can perform console installations, unless this feature has
been disabled in the application configuration [p.167] of the "Installer->Screens & Actions”
step. To start a console installation, the installer has to be invoked with the - c argument.

All standard screens and form components in install4j present their information on the
console and allow the user to enter information as in the GUI installer. Not all messages
in the style are displayed in the console installer. By default, only the subtitle of a screen
is displayed as the first message, but you can change this behavior with the "Console
screen change handler” script of the installer application.

The subtitle is appropriate to display in console mode, because all standard screens in
install4j have a question as their subtitle. If you add your own forms to the screen
sequence [p. 160], you should phrase their subtitles as questions to create a consistent
user experience for the console installer.

On Windows, the information of whether an executable is a GUI executable or a console
executable has to be statically compiled into the executable. Installers are GUI executables,
otherwise a console would be displayed when starting the installer from the explorer. This

210

is also the reason why the JRE supplies both the j ava. exe console executable and the
j avaw. exe GUI executable on Windows.

However, a GUI executable can attach to a console from which it was started. GUI
executables are started in the background by default, which means that you have to use
the start command to put it in the foreground and be able to enter information:

start /wait installer.exe -c

If you develop new screens or form components, you have to override the method

bool ean handl eConsol e(Consol e consol e) throws User Cancel edExcepti on

to implement the behavior for console mode. Displaying default data on the console and
requesting user input is made easy with the Consol e class that is passed as a parameter.

Unattended mode

Installers generated by install4j can perform unattended installations, unless this feature
has been disabled on the application configuration [p. 167] of the "Installer->Screens &
Actions” step. To start an unattended installation, the installer has to be invoked with the
- q argument. The installer will perform the installation as if the user had accepted all

default settings.

There is no user interaction on the terminal. In all cases, where the installer would have
asked the user whether to overwrite an existing file, the installer will not overwrite it. You
can change this behavior by passing - over wr i t e as a parameter to the installer. In this
case, the installer will overwrite such files. For the standard case, it is recommended to
fine-tune the overwrite policy in the distribution tree [p. 14] instead, so that this situation
never arises.

The installer will install the application to the default installation directory, unless you pass
the -dir parameter to the installer. The parameter after - di r must be the desired

installation directory, for example:

installer.exe -q -dir "D:\ M/Apps\ My Application"

For the unattended mode of an installer, response files [p. 217] are an important instrument
to pre-define user input.

On Windows, the output of the installer is not printed to the command line for unattended
installation. If you pass the - consol e parameter after the - g parameter, the executable
will try to connect to the invoking console and display output to the user. This is useful for
debugging purposes.

If the installation was successful, the exit code of the installer will be 0, if no suitable JRE
could be found it will be 83 and for other types of failures it will be 1.

If you develop new screens or form components, you have to override the method

bool ean handl eUnat t ended()

in order to support unattended installations.

21

C.2 Command Line Options For Generated Installers

Installers generated by install4j recognize the following command line parameters:

Name

Explanation

-h or -help or [?

Show help for common command line
parameters. This will be shown in a message
box, regardless of the default execution mode.
If the GUI display fails, it will be printed on the
console.

-manual

This option only applies to Windows. In GUI
mode, the default JRE search sequence [p. 219]
will not be performed and bundled JREs will not
be used either. The installer will act as if no JRE
has been found at all and display the dialog
that lets you choose a JRE. If you locate a JRE,
it will be used for the installed application.

On Unix, you can define the environment
variable INSTALL4J _JAVA_HOME_OVERRIDE
instead to override the default JRE search
sequence.

Executes the installer in console mode [p. 210].

Executes the installer in unattended
mode [p. 210].

Forces the installer to be executed in GUI mode.
This is only useful if the default execution
mode [p. 167] of the installer has been
configured as console mode or unattended
mode.

-console

If the installer is executed in unattended mode
and - consol e is passed as a second
parameter, status messages will be printed on
the console from which the installer was
invoked.

-overwrite

Only valid if - q is set. In the unattended
installation mode, the installer will not overwrite
files where the overwrite policy [p. 14] would
require it to ask the user. If - overwri t e is set,
all such files will be overwritten. The default
value for this option can be changed with the
system property - Di nst al | 4j .

qui et Overwrite=true

-nofilefailures

Only valid if - q is set. In the unattended
installation mode, the installer will not fail if an
error occurs during a file installation. The default
value for this option can be changed with the

212

Name

Explanation

system property - Di nst al | 4j .
noFi | eFai | ures=true

-wait <timeout in seconds>

Only valid if - q is set. In unattended installation
mode, the installer will perform the installation
immediately. On Windows, this can lead to
locking errors if the installer is called by an
updater or by a launcher. If -wait is specified,
the installer application will wait until all
installed launchers and installer applications
(including the updater) have shut down. If this
does not happen within the specified timeout,
the installer application exits with an error
message.

-dir <directory>

Only valid if - q is set. Sets a different installation
directory for the unattended installation mode.
The next parameter must be the desired
installation directory.

The directory can be absolute or relative. If it is
relative, it will be resolved relative to the media
file.

-splash <title>

Only valid if - q is set. Instead of being
completely quiet in unattended installation
mode, a small window with a progress bar and
the specified title will be shown to inform the
user about the progress of the installer
application. This is useful if you start the installer
application programmatically and do not
require user input.

-alerts

Only valid if - g and - spl ash are set. By default,
in unattended mode, no alerts are shown. This
includes messages boxes, error alerts and
questions. By setting this command line
parameter, alerts are enabled for unattended
executions with a progress dialog.

-temp <directory>

Change the temporary directory for the installer
application on Windows. An installer may
extract a lot of files, and it also extracts
executables to its temporary directory. If the
default temporary directory of the system is not
suitable for this purpose, you can change the
directory with this parameter. The specified
directory must exist and must be writable. This
is useful for troubleshooting problems caused
by antivirus software.

213

Name

Explanation

-Dinstall4j.nolaf=true

Do not set the native look and feel but use the
default. In some rare cases, the native look and
feel is broken and prevents the use of the
installer or any other Java GUI application.

-Dinstall4j.debug=true

By default, install4j catches all exceptions,
creates a “crash log” and informs the user about
the location of that log file. This might be
inconvenient when debugging an installer, so
this system property switches off the default
mechanism and lets exceptions be printed to
stderr.

-Dinstall4jlog=<path>

install4j creates a log file prefixed withi 4j _| og
in the temporary directory when an installer
application is executed. This log file can be
helpful for debugging purposes. If your installer
contains an “Install files" action and terminates
successfully, the log file is copied to
<installation dir>/.install4j/

i nstall ation. | og, otherwise it will be deleted
after the installer application terminates.

With the - Di nst al | 4j . | og=<pat h> the log file
will be written to the file specified with <pat h>
instead and will not be deleted in any case. If a
relative path is specified, it will be resolved
relative to the installer media file for installers
and relative to the working directory for
uninstallers and custom installer applications.

-Dinstall4j.keeplLog=true

As analternativeto- Di nst al | 4j . | og=<pat h>,
you can ask the installer or the installer
application to not delete the temporary log file
under any circumstances.

For situations where you cannot modify the
command line arguments, you can set the
environment variable | NSTALL4J_KEEP_LOG=
true.

-Dinstall4jlogTimestamps=true

If set, each message in the log file is prepended
with a time stamp.

-Dinstall4j.logToStderr=true

In addition to the log file created by the installer
application, you can duplicate all log messages
to stderr with this argument.

-Dinstall4j.logencoding=<character set
name>

By default, the installer will write the log file in
the default encoding of the system where the
installer is running. If you wish to choose a
different encoding, you can pass this VM

214

Name

Explanation

parameter to the installer. Some common
character set names are

- UTF-8
- UTF-16
- 1SO-8859-1

The classj ava. ni 0. char set .
St andar dChar set s lists the encodings that are
guaranteed to be available in any JRE.

-Dinstall4j.suppressStdout=true

In unattended mode, status messages of
actions that are displayed in the installer are
printed on stdout. To suppress these messages,
you can set this VM parameter.

-Dinstall4j.detailStdout=true

In unattended mode, detailed messages
regarding file installations are not printed on
stdout. To enable these messages, you can set
this VM parameter.

-DinstalldjsuppressUnattendedReboot=true

In unattended mode, a reboot may be
undesirable. To prevent reboots, you can set
this VM parameter.

-Dinstall4jlanguage=<ISO code>

Overrides the language selection for a
multi-language installer. The language
selection dialog will not be displayed in this
case, unless the specified language is not
included in the installer.

-Dinstall4j.helperDebugPort=<port>

Debugging the installer application can be
done by passing - agent | i b: j dwp=t ransport =
dt _socket, server =y, suspend=n, addr ess=
<port >onthe command line, on Windows this
argument has to be prefixed with - J.

However, this will not debug the elevated helper
process started by the "Request privileges”
action. By setting the i nstal | 4j .

hel per DebugPort VM parameter, the same
-agent | i b parameter is passed to the JVM of
the helper process, and you can then attach to
it with a debugger. If you debug both the
unelevated and the elevated JVM at the same
time, you have to assign different ports and
start two separate debugging sessions.

-Dsun.locale.formatasdefault=true

Forces the installer locale to be detected from
the "Format” language setting and not from the

215

Name

Explanation

"Display language” setting in the Windows
"Region and Language” control panel.

-J<VM par anet er >

Specifies a VM parameter, for example
- J- Xmx512m Can be specified more than once.

-Dpr opert yNane=val ue

You can set further arbitrary system properties
with standard command line parameters. There
is no need to prefix them with - J on Windows.

-Vvari abl eNane=val ue

You can set arbitrary installer variables with the
-V parameter. If you pass - War i abl eNane=
val ue, you can use the variable value by
inserting ${i nst al | er: vari abl eNane} in text
fields in the install4j IDE. The variable value will
be ajava. |l ang. Stri ng object.

-varfile <fileName>

Instead of repeatedly using the >- V
command-line option, you can specify a
property file containing the variables you want
to set. This option shares the same mechanism
with response files [p. 217].

On macOs, you can use the INSTALL4J_ARGUMENTS environment variable to pass

arguments to the installer.

On Unix, the environment variable INSTALL4J_TEMP determines the base directory for
self-extraction. If the environment variable is not set, the parent directory of the installer

media file is used.

216

C.3 Response Files

With a response file, you can change the default user selection in all screens. A response
file is a text file with name-value pairs that represent installer variables. All screens and
form components provided by install4j ensure that user input is bound to appropriate
installer variables that are registered for being written to the response file.

Installer variable values are of the general typej ava. | ang. Obj ect.In aresponse file, only
variables with values of certain types can be represented: In addition to the default type
java.l ang. String,thetypesj ava. | ang. Bool ean,j ava. | ang. | nt eger,j ava. util . Date,
java.lang. String[] andint[] are supported.

In order to let the installer runtime know about these non-default types, the variable name
in the response file is followed by a '$’ sign and an encoding specifier like ‘Integer’ or
‘Boolean’.

Response file variables are variables that have been registered with

String variableNane = ... ;
cont ext . regi st er ResponseFi | eVari abl e(vari abl eNane) ;

in the installer. All variables that are bound to form components are automatically
registered as response file variables. Also, system screens register response file variables
as needed to capture user input.

All installer variables live in the same name space. If you use an installer variable more
than once for different user inputs, the response file only captures the last user input. If
you would like to optimize your installers for use with a response file, you have to make
sure that the relevant variable names are unique within your installer.

A response file can be used to

« Configure the installer for unattended execution mode
« Change the default settings in the GUI and console installer
+ Get additional debugging information for an installation

When applying a response file to an installer, all variable definitions are translated into
installer variables [p. 68]. The response file shares the same mechanism with the variable
file offered by the -varfile [p. 212] command-line option. You can add the contents of a
response file to a variable file and vice versa.

Generating response files

There are two ways to generate a response file:

« Aresponse file is generated automatically after aninstallation is finished. The generated
response file is found in the . i nstal | 4 directory inside the installation directory and
is named r esponse. var fi | e. When you request debugging information from a user,
you should request this file in addition to the installer log file.

- install4j offers a "Create a response file" action [p. 182] that allows you to save the
response file to a different file in addition to the automatically generated response file.

Here, you can also specify variables that you would not like to be included in the response
file.

217

Applying response files

When an installer is executed, it checks whether a file with the same name and the
extension .varfile can be found in the same directory and loads that file as the response
file. For example, if an installer is called hel | o_set up. exe on Windows, the response file
next to it has to be named hel | o_set up. varfil e.

You can also specify a response file explicitly with the -varfile [p. 212] installer option.
Response files work with all three installer modes [p. 210], GUI, console and unattended.

Response file variables

The variables that you see in the response file are realized as installer variables as soon
as the response file is loaded. You can use these installer variables to access or change
user selections on system screens. For example, the "Create program group” screen on
Windows binds the user selection for the checkbox that asks the user whether to create
the program group for all users to the variable sys. pr ogr anGr oup. al | User s. To access
the current user selection from somewhere else, you can use the expression

cont ext . get Bool eanVari abl e("sys. progranta oup. al | Users")

To change that selection, you can invoke

cont ext . set Vari abl e("sys. progranG oup. al | Users", Bool ean. FALSE)

218

C.4 How Installers Find A JRE

Installers generated by install4j are native executables or shell scripts and can start running
without a JRE. However, the installer itself requires a JRE to perform its work and so the first
action of the installer is to locate a JRE that is suitable for both the installer and your
application. In this process it performs the following steps:

1.

Look for a statically bundled JRE. If a statically bundled JRE is included with the installer,
it will unpack it and use it. First, this JRE is unpacked to a temporary directory. Later it is
copied to the j r e directory in the installation directory of your application. No other
installer generated by install4j with a different application id will find this JRE. It will not
be made publicly available, for example, in the Windows registry.

. Look for a suitable JRE in the configured search sequence. The installer uses the same

search sequence and Java version constraints as your launchers which are configured
for the entire project [p. 41]. The "Previous installations” search is only performed by the
installer and searches for installations with the same application id. If it finds a JRE from
a different installation directory, the "Install files” action will copy it as a private JRE to
the current installation directory.

. If no JRE has been found, the installer notifies the user. If the "Search Windows registry

and standard locations” entry is part of the search sequence, it will display information
on how to alternatively provide a JRE or provide a "Locate” button on Windows.

219

C.5 HTTP Requests

Actions that perform HTTP requests

install4j includes several actions that can perform HTTP or HTTPS requests:

+ The'Install files" action downloads installation components that have been marked as
"Downloadable” if the data files option has been set to "Downloadable” as well in the
media file wizard.

« The "Check for updates” action downloads the update descriptor updat es. xnl from
the specified web server to check if there is a new version available.

« The "Download file" action downloads the specified file from the web server.
+ the "Upload file" action uploads a specified file with a POST request.
« The "HTTP request” action performs generic HTTP requests.

« The "Wait for HTTP server” action waits until a specified HTTP or HTTPS port becomes
available.

When creating an HTTP/HTTPS connection to the requested resource there are three
different concerns that may require user interaction: Proxy selection, proxy authentication
and server authentication.

Proxy selection and authentication

On Windows, installer applications use native code to perform HTTP requests, so the native
Windows proxy dialog will be shown. The proxy configuration of the operating system is
used, and the system properties for setting an HTTP proxy in Java do not apply. This has
the advantage that a previously saved proxy password does not have to be entered by
the user.

On other platforms, HTTP requests are made through the Java HttpClient for Java 11+ or
a URLConnection for lower Java versions. If a proxy can be auto-detected from the system
settings, it is used automatically. If the proxy requires credentials, an authentication dialog
will be shown. User input in this dialog will be cached for the duration of the process. If the
proxy uses basic authentication, then HTTPS connections can only be tunneled if the VM
parameter

-Dj dk. htt p. aut h. tunnel i ng. di sabl edSchenes=

is set with an empty value as shown above. This is done automatically for installer
applications, but not for generated launchers where you would have to set this VM

parameter explicitly. If you do that, you should read about its security impact 'in case
you develop your own implementation of j ava. net . Aut henti cat or.

Entering proxy data is supported in console mode as well. In unattended mode, there is
no user interaction, so the proxy information has to be provided to the installer via
command line arguments. The following system properties for proxy configuration can
be used:

- Dpr oxyHost =<host nane>
- Dpr oxyPor t =<port nunber >

If the proxy requires credentials, you also have to specify
0 https:/ /bugzilla.redhat.com/show_bug.cgirid=1386103

220

https://bugzilla.redhat.com/show_bug.cgi?id=1386103

- Dpr oxyAut hUser =<user nane>
- Dpr oxyAut hPasswor d=<passwor d>

Except for the native Windows network connection, the above properties can also be used
to configure the proxy from outside. Furthermore, the global Java proxy properties

-Dhtt p. proxyHost =<host nane>
-Dhtt p. proxyPort=<port nunber>
-Dhtt p. proxyUser =<user nane>
-Dhtt p. pr oxyPasswor d=<passwor d>

and the corresponding properties with the "https” prefix are also used for HTTP and HTTPS
connections respectively. If you would like to use these properties on Windows as well, you
can disable the native Windows network connection with the system property
-Dinstal |l 4. noW nl net Connecti on=true.

Server authentication

The download URL can be password-protected with basic HTTP authentication. In this
case, the user has to supply a username and a password.

Enter Credentials X
0 Please enter your credentials for the download site www.mycorp.com
1 User Name: | Bob

Password:

Neither the username nor the password is cached by install4j. In unattended mode you
have to pass the arguments

- Dserver Aut hUser =<user nane>
- Dser ver Aut hPasswor d=<passwor d>

You can set these system properties via

System set Property("server Aut hUser", "<user nanme>");
Syst em set Property("server Aut hPassword", "<password>");

programmatically.

221

C.6 Updates

On the "Installer->Update Options” step, you can configure how an installer should behave
in the event of an update. An update occurs when the user installs an application into a
directory where an installation with the same application ID already exists.

3 - 1
0 % ® > d ©
New Open Project Build Dry Test Show -
Project Project Report Project Run Installer IDs P
v ; Update Options
jl General Settings P P \N 7z
In this step, you can choose how the generated installers should perform during an update.
il Different installer types allow you to handle different update scenarios.
iles
Application ID
9 Launchers o X
The application ID is used to recognize a previous installation of the same project. You can change the
application ID to create a new identity for this project.
Installer
Application ID: Regenerate ID

4 Screens & Actions Manually edit ID

styles Installer Type

Look & Feel © Regular installer

Custom Code [Detect previous installation directory
Update Options Add-on installer @)

Auto-Update Options For application with ID:
. Media

£3° Build
° 2

Idle)

Typically, minor upgrades of an application should be installed into the same directory
as earlier installations. The default behavior of install4j is to suggest the previous installation
directory and program group, so that the user is guided into installing the application into
the same directory. If this behavior is not desired, you can switch off these suggestions or
change the application ID on the “Installer->Update Options” step.

Updates into the same installation directory

The following points are of interest with respect to updates into the same installation
directory:

+ Generated installers will refuse to install on top of installations with a different application
ID by default. You can change this behavior with the "Validate application id" property
of the installation directory chooser on the “Installation location” screen.

« Generated installers will detect if any of the previously installed launchers are still running
and will ask the user to shut down these applications. This happens when the “Install
files" action or a "Check for running processes” action is executed.

« Deployed services will be stopped and uninstalled before the installation. This happens
when the “Install files" action is executed. You can optionally stop your services earlier
with the "Stop a service" action if your update process requires it.

« During an update, the installation databases will be merged, so that files, menu entries,
file associations and other modifications from old installations can still be uninstalled
when the uninstaller is executed.

« After an update, only the uninstallation actions of the newer installation will be executed
when the uninstaller is executed. However, the auto-uninstall actions from previous

222

installations will be executed, too, for example, the uninstallation of a service that was
registered by an “Install service” action during the installation.

If you would like to uninstall the previous installation before installing any new files, you
can add the "Execute previous uninstaller” action before the “Install files” action. In this
context, the uninstallation policies [p. 14| that exclude updates are important. With these
uninstallation policies, you can preserve certain files for updates, but uninstall them when
the user manually invokes the uninstaller. The uninstaller invoked by the “Execute previous
uninstaller” action is running in unattended mode. You can use

I cont ext . i sUni nstal | For Upgr ade()

to exclude certain actions for an update uninstaller.

Add-on installers

install4j offers two types of installers that can be selected on the "Installer->Update options”
step:

« Regularinstallers

This option generates standalone installers. If the "Detect previous installation directory”
check box is selected and a previous installation can be detected on the computer, the
installer will suggest the directory of that previous installation. In that case, the "Update
alert” form component on the "Welcome" screen will ask the user if the previous
installation should be updated.

+ Add-on installers

This generates an installer that can only be installed on top of an installation with a
specified application ID. An add-on installer does not have a separate uninstaller. This
is useful to distribute additional files that do not change the version number of the
installation.

If the add-on installer type is selected, you have to specify the application ID for the
base application.

223

C.7 Error Handling

Debugging on Windows

On Windows, when an installer is executed it always generates a log file in the temp
directory that contains information about the JRE search sequence and can be used for
debugging purposes. The name of the log file starts with i 4j _nl og_. If you have a problem
with JRE detection or the installer startup, send this log file along with your support request.

It is also possible to generate this native debug log file for the generated Windows
launchers. To switch on logging, define the environment variable

| NSTALL4J_LOG=yes

and look for the newest text file whose name starts with i 4j _nl og_ in the temp directory.
This is done silently, without notifying the user and is also suitable for situations where
launchers are called automatically or repeatedly.

An easier way for a user to create a log file is to start the launcher with the argument

/create-id4j-I|og

The launcher will notify the user where the log is created and will offer to open an explorer
window with the log file selected. After the message box is closed, the launcher will continue
to start up.

Debugging on macOs

Similar to Windows, macOS launchers also support the | NSTALL4J_LOG=yes environment
variable definition for debug logging. Rather than writing a log file, they write to the system
log. You can display the system log by starting the "Console” application which is located
in/ Applications/Wilities.

Setting the environment variable can be done by opening a terminal and executing

| aunchct| setenv | NSTALL4J LOG=yes

Then all newly started applications in the Finder will have this environment variable set.
The current terminal will not be affected until you quit the Terminal application and start
it again.

Rather than setting the environment variable for all install4j launchers, you can set it for
a particular invocation only. To do that, call the Cont ent s/ MacOS/ JavaAppl i cati onSt ub

inside the application bundle and prefix the call with the definition of the environment
variable. For an application bundle "MyApp.app’, the call looks like this:

| NSTALL4J_LOG=yes MyApp. app/ Cont ent s/ MacOS/ JavaAppl i cati onSt ub

In this case, the log output will also be written to the terminal. Using / usr/ bi n/ open will
not work with this technique, because the latter gets the environment variables from the
Finder.

Note that logging only works for GUI launchers and not for command line and service
launchers which are implemented as Unix shell scripts. There is no command line argument
that activates logging, like on Windows.

224

Errorlogs

If an exception is thrown in the installer, it prepares an error log and informs the user about
its location

install x
8 An error occurred:
&' jov2.ang RuntimeException: ntemal error

—— g
Showlog Fie

You can force the installer to print exceptions to stderr for debugging purposes with the
-Di nst al | 4j . debug=t r ue command-line option [p. 212].

Installation log

All installer applications generate an installation log that can be used for debugging
purposes. After a successful installation the log file is saved to

<installation dir>/.install4j/installation.log

For an uninstaller or if the installer exited before the “Install files” action was run, you can
find it in the temporary directory if you pass - Di nst al | 4j . keepLog=t r ue to the installer

or uninstaller. The file is prefixed i 4j _| og.

If you would like the installer to log to stderr as well, you can pass -Di nstal | 4j.
| ogToSt der r =t r ue to the installer. Both arguments can also be useful for debug installers
and uninstallers, where they have to be passed as VM parameters.

Error handling of Actions

You can define the error handling for every installation or uninstallation action separately.
Mor information is available in the DMG options and files on screens and actions [p. 25].

Return values

The process of an installer returns 0 if the installation was completed successfully, 1 if the
installation fails and 83 if the installer could not find a suitable JVM to run. These exit codes
are useful when checking the result of an unattended installation [p. 210].

225

D API

D.1 API For Installer Applications

There are two different use cases where the install4j APl is required: Within expression/script
properties [p. 30] in the configuration GUI and for the development of custom elements
in install4j. The development of custom elements in install4j is rarely necessary for typical
installers, most simple custom actions can be performed with a "Run script” action, and
most custom forms can be realized with a "Customizable form” screen.

If you would like use your IDE while writing more complex custom code, you can put a
single call to custom code into expression/script properties. The location of your custom
code classes must be configured on the ‘“Installer->Screens & Actions->Custom Code”
step, so install4j will package it with the installer and put in into the class path. In this way
you can completely avoid the use of the interfaces required to extend install4j.

Expression/script properties

Using expression/script properties in install4j is required for wiring together screens and
actions ﬁ) 25] as well as for the conditional execution of screens and actions. The most
important element in this respect is the context which is an instance of

« com.api.installdj.context.InstallerContext
in an installer

« com.api.install4j.context.UninstallerContext
in an uninstaller

The context allows you to query the environment and the configuration of the installer as
well as to perform some common tasks.

See the documentation of the com.install4j.api.context package for the complete
documentation of all methods in the context. Some common applications include:

+ Setting the installation directory

By usingcontext.setlnstallationDirectory(File installationDirectory) inthe
installer context, you can change the default installation directory for the installer.
Typically, this call is placed into a "Run script” action on the "Startup” screen.

+ Getting and setting installer variables

Theget Vari abl e(String vari abl eNane) andset Vari abl e(String vari abl eNane,
bj ect val ue) methods allow you to query and modify installer variables. Note that
besides the "Run script’ action, there is also a "Set a variable action” where you don't
have to call set Var i abl e yourself.

+ Conditionally executing screens or actions

Often, condition expressions for screens and actions check the values of variables. In
addition, the context provides a number of boolean getters that you can use for
conditionally executing screens and actions depending on the installer mode and
environment. These methods include i sConsol e(),i sUnat t ended() and others.

226

« Navigating between screens

Depending on the user selection on a screen, you might want to skip a number of
screens. The goForward(...), goBack(...) and goBackl nHi story(...) methods
provide the easiest way to achieve this.

Many other context methods are only useful if you develop custom elements for install4;.

Also have a look at the com i nstal | 4j . api . Uil class which offers a number of utility
methods that are useful in expression/script properties.

Development environment

To develop custom elements in your IDE, you have to add the install4j API to the compilation
class path. The entire install4j APl is contained in the single artifact with maven coordinates

group: cominstall4j
artifact: install4j-runtine
version: <install4j version>

where the install4j version corresponding to this manual is 11.0.3.

Jar, source and javadoc artifacts are published to the repository at

https://maven. ej -t echnol ogi es. conl reposi tory

You can either add the API to your development class path with a build tool like Gradle or
Maven, or use the JAR file

resource/i4jruntinme.jar

in the install4j installation.

To browse the Javadoc, go to

j avadoc/ i ndex. ht m

For a general overview on how to start developing with the install4j API, how to set up your
IDE and how to debug your custom elements, see the APl overview in the javadoc.

Developing custom elements for install4j
install4j provides four extension points: actions, screens, form components and styles

All actions, screens and form components in install4j use this APl themselves. To make
your custom elements selectable in the install4j IDE, you first have to configure the custom
code locations on the “Installer->Screens & Actions->Custom Code" step. When you add
an action, screen or form component, the first popup gives you the choice on whether to
add a standard element or search for suitable elements in your custom code.

227

Installer (5 screens) [ID instal ol

Contains 4 form components 5 Configure @® Preview
k> :)
=\ Startup (1 action) Add Action
& " Welcome (1 action) [ID 2] Add Screen
"1 . . icati te installation v
i Installation location (1 ac... Add Application ! a9

& " Installation components [Custom Code > Search Action in Custom Code

Groups 4 Search Screen in Custom Code

Add link into > fer
— QuIT arter screen

Installation (3 actions) [

% Finish 1D 20]

r Uninstaller (4 screens) [ID un 3 Back button
GUI Options
X Style . . Banner
Customize banner image
Privileges
Action elevation type Inherit from parent [Do not elevate]

Screen Activation

Pre-activation script

Post-activation script
Welcome

A screen that welcomes the user to the installation of your application. This screen should
be placed at the beginning of the installation

If you want to ship your custom code to third parties, consider packaging an install4j
extension [p. 232], which displays your custom elements alongside the standard elements
that are provided by install4j and allows you to add dependency JAR files that are included
in the installers if any of the contained elements are used in a project.

Serialization

install4j serializes all instances of screens, actions and form components with the default
serialization mechanism for JavaBeans.

To learn more about JavaBeans serialization, visit

* https://docs.oracle.com/javase/8/docs/api/java/beans/XMLEncoder.html O for API
documentation on the long-term persistence mechanism for JavaBeans.

* https://www.oracle.com/technical-resources/articles/java/persistence4.html @ for
information on how to write your own persistence delegates. In your beaninfos for
screens, actions and form components, you can specify a list of additional persistence
delegates for non-default types. Writing custom persistence delegates will generally
not be necessary unless you want to serialize special types from third party libraries.

Compiler variables are replaced in the serialized representation of a bean. In this way,
compiler variable replacement is automatically available for all properties of type j ava.
| ang. Stri ng. The values of installer variables and localization keys are determined at
runtime, so you have to call the utility methods in cominstall4j. api.beans.
Abst r act Bean before you use the values in the installer or uninstaller. For more information
on variables, see the separate help topic [p. 68].

Internationalization

install4j offers custom localization files in the install4j IDE to localize your own messages.
cominstall 4j.api.context.Context.get Message(String key) gives access to all
messages.

If you develop your own user-configurable screens, actions or forrm components, you can
replace all custom localization keys and installer variables in property values with calls

V) https://docs.oracle.com/javase/8/docs/api/java/beans/XMLEncoder.html
2 https://www.oracle.com/technical-resources/articles/java/persistence4.html

228

https://docs.oracle.com/javase/8/docs/api/java/beans/XMLEncoder.html
https://www.oracle.com/technical-resources/articles/java/persistence4.html

tothecominstall 4j. api . beans. Abst ract Bean. repl aceVari abl es(...) methods. All
abstract base classes for beans extend com i nst al | 4j . api . beans. Abstr act Bean.

The locale of the installer will always be set to the language selected by the user or
configured for the media file, not the locale of the system that the installer is running on.
You cancallcominstall 4j.api.context.Context.getlLanguagel d() to find out what
language your installer is running with.

Testing and debugging

To test and debug screens, actions and form components for your installer, enable the
Create additional debug |auncher build option in the "Build" section. After the build,
your media file output directory will contain directories with the name debug_[nanme of
the nedia file without the file extension] foreach mediafile that you have built.

The debug directories contain

- the Windows batch files debug_i nstall er.bat and debug_uni nstall er. bat for
Windows media files

« the shell scripts debug_i nstal | er. sh and debug_uni nstal | er. sh for media files of
Unix-based platforms

These scripts start the installer and the uninstaller with a plain java invocation. All exceptions
are directly printed to stderr, and no separate error log files are created.

The file user . j ar in the debug directory contains all your custom code. For interactive
development, you will not want to rebuild the project after each modification of your
custom code. You can set up the installer or the uninstaller in your IDE by

+ setting the working directory to the debug directory
+ including your own code in the class path
« including i4jruntime.jar in the class path

« including user.jar in the class path. Your own code will also be contained in user.jar, but
the IDE typically places project code at the beginning of the class path so it will override
equivalent classes in user.jar.

« usingthe mainclasscominstal | 4j.runtine.installer.Installer fortheinstaller
orcominstall4j.runtime.installer.Uninstaller forthe uninstaller

+ passing the VM parameter - Di nst al | 4j . debug=t r ue

Note that the working directory for the executed java process must be the debug directory,
otherwise both the installer as well as the uninstaller will not work.

This procedure allows for an edit-compile-debug cycle that is much faster than building
the media file and running the installer. In addition, output on stderr and stdout can be
captured, and you can debug your screens, actions and form components this way.

229

D.2 API For Generated Launchers

Generated launchers in install4j have some features that you can interact with from your
own code. The corresponding API is contained in the cominstall 4j. api .| auncher
package. This chapter gives an overview of the most important use case, the detailed
documentation is contained in the Javadoc.

install4j's launcher API is automatically available to an application deployed with install4;j.
For compiling your application, you have to add the runtime classes to your class path.
You can learn how to set up a dependency in build systems in the APl overview.

Receiving Startup Events in Single Instance Mode

If you have enabled the single instance mode [p. 41] for your executable, the application
can only be started once. For a GUI application, the existing application window is brought
to front when a user executes the launcher another time.

The scope of the single instance check can be per-user or globally across all users. For
the per-user scope, the "Per session on Windows" setting controls whether multiple RDP
sessions for the same user on Windows can support one instance per session or only one
instance across all sessions.

In single instance mode, you may want to receive notifications about multiple startups
together with the command line parameters. If you have associated your executable with
a file extension, you will likely want to handle multiple invocations in the same instance
of your application. Alternatively, you might want to perform some action when another
startup occurs.

To do that, create a class that implements the cominstall4j.api.|auncher.
StartupNotification. Listener interface and register it with cominstall 4j. api .
| auncher. StartupNotification.registerStartupLi stener(listener). Your listener
will then be notified when another startup occurs. See the Javadoc for more information.

Startup notifications only work when the same user starts the executable again. With the
global scope, a startup of a different user will not produce a startup notification. On macOs,
this setting only applies to console launchers, for GUI launchers, the macOS operating
system enforces single instance mode if the user starts and application bundle from the
Finder. With the /usr/bi n/ open command line tool and the -n option, the user can
circumvent single instance mode.

Controlling the Splash Screen from your Application

If you have enabled a splash screen [p. 41] for a launcher, you will want to hide it once
the application startup is finished. The splash screen will be hidden automatically as soon
as your application opens the first AWT, JavaFX or SWT window. See the Javadoc for more
information.

However, you might want to hide the splash screen programmatically by calling com
i nstal | 4j.api.launcher. Spl ashScreen. hi de() or update the contents of the status
text line on the splash screen with cominstall 4j. api.| auncher. Spl ashScreen.
writeMessage(...) duringthe startup phase to provide more extensive feedback to your
users. Also, if the Ul subsystem is not loaded by the system class loader, install4j cannot
automatically detect displayed windows and you have to hide the splash screen
automatically. For example, this is the case for eclipse RCP applications.

Reading compiler and installer variables from response files

All installer variables that are registered for response files will be saved to the file
.install4j/response.varfil e just before the installer exits. This includes all variables

230

that are bound to form components and variables for which you have called cont ext .
regi st er ResponseFi | eVari abl e(vari abl eNane).

Some of these variables will contain user input that you need at runtime. You can use the
cominstall4j.api.launcher. Vari abl es class to access the variable values. The variable
values from the response file are fixed, and its backing file is usually not writable by the
user. If you want to update the variable values at runtime, you can save variables to the
preference store with a "Save installer variables to the preference store” action. The com

i nstal | 4j.api.launcher. Vari abl es class has methods for reading and saving these
variables from the preference store.

In addition, all compiler variable values can be retrieved at runtime. See the Javadoc for
detailed information.

Starting installer applications from your launchers

Installer applications like update downloaders are separate executables and can be
started manually by the user. Most often, however, they will be launched by one of the
generated launchers. install4j offers a configurable launcher integration mechanism that
automatically executes an installer application when a launcher is started. For greater
flexibility, you may want to execute the installer application from your code
programmatically. On the "Installer->Screens & Actions” step, when an installer application
is selected, the integration wizard on the "Launcher integration” tab produces code that
usesthecominstall 4j.api.launcher. Appli cati onLauncher class.

There are two ways to start installer applications: In-process and out-of-process. For an
in-process invocation, the installer application will use the look and feel of your JVM. The
AWT subsystem will be initialized which may be undesirable if you use a different Ul toolkit
like JavaFX. For greater isolation, out-of-process invocations are recommended. The
ApplicationLauncher API offers both options. In both cases you can supply a callback that
is notified when the installer application exits or if a "Shutdown calling launcher” action in
the installer application request a shutdown of the launcher.

In addition, the Appl i cati onLauncher class provides a mechanism to run an installer
application the first time a launcher from an archive installation is started. Archives do
not have an installer, but you may still want to run some install4j actions, for example, to
configure afile association. With the Appl i cati onLauncher. i sNewAr chi vel nstal | ati on()
method you can check at startup if this is the first time that the launcher is being executed.

231

D.3 Extensions

Introduction

All standard actions, screens and form components in install4j use the installer API [p. 226]
themselves. With this APl you can create new elements that are displayed in the standard
registries by packaging a JAR file with a few special manifest entries and putting that JAR
file into the ext ensi ons directory of your install4j installation.

Configurability

An extension to install4j will likely need to be configurable by the user. install4j uses the

JavaBean specification " to control the user presentation of properties in the install4j IDE.
Screens, actions and form components correspond to beans in this context.

Optionally, you can add Beanlinfo classes. A Beaninfo class next to the bean itself describes
which properties are editable and optionally gives details on how they should be presented.
See the documentation of the com.install4j.api.beaninfo package for the complete
documentation on how to develop Beaninfo classes. Also, sanpl es/ cust onCode/ sr ¢ in
the installation directory contains sample beans with associated BeanInfo classes.

JAR manifest
In order to tell install4j which classes are screens, actions or form components, you have
to use the following manifest keys:

+ Install-Action
for actions implementing com i nstal | 4j . api . actions. I nstal | Action

 Uninstall-Action
for actions implementing com i nst al | 4j . api . acti ons. Uni nstal | Acti on

» Installer-Screen
for screens implementing com i nstal | 4j . api . screens. I nstal | er Screen

+ Uninstaller-Screen
for screens implementing com i nstal | 4j . api . screens. Uni nstal | er Screen

* Form-Component
for form components implementing cominstall4j.api.forntonponents.
For mConponent

+ Style-Component

for form components implementing cominstall4j.api.fornconmponents.
For mConponent that should also be available in styles. Such form components should
not take any user input because they will have a different life-cycle in styles than in
screens.

Note that usually you do not implement these interfaces yourself, but rather extend one
of the abstract base classes.

A typical manifest with one action and one screen looks like this:

M http://www.oracle.com/technetwork/articles/javaee/spec-136004.html

232

http://www.oracle.com/technetwork/articles/javaee/spec-136004.html

Depends- On: driver.jar conmon.jar

Name: coni mycor p/ actions/ MyActi on. cl ass
Install-Action: true

Name: coni mycor p/ screens/ MyScr een. cl ass
Install er-Screen: true
Uni nstal |l er-Screen: true

If you only have named sections and no global section in your manifest file, the first line
must be an empty line since it separates the global keys from the named sections.

The Depends- On manifest key can specify a number of relative JAR files separated by
spaces that must be included when the extension is deployed. That key can also occur
separately for each named section.

As you see in the example for the screen, each class can have multiple keys if the
appropriate interfaces are implemented.

Localization

Extensions can provide localized messages. During development, you can keep these
messages in the custom localization file of the project that you use for testing purposes.
When packaging the extensions, these custom localization files have to be given special
names and be put into a particular location in the extension JAR file.

The names of the extension localization files have to be the same as those of the system
localization filesinther esour ce/ messages directory, for example nessages_en. ut f 8 and
similarly for other languages. Thej ava. uti | . Properti es file encoding is also supported
if the file name has a .properties extension, like messages_en. properti es.

When creating the extension JAR file, all extension localization files have to be put into the
directory messages. No special directives in the manifest are required. Dependencies
included with the Depends- On manifest key are not scanned for extension localization
files.

Extension deployment

On startup, install4j will scan the manifests of all JAR files that it finds in the ext ensi ons
directory. Any screens, actions or form components that are found in the manifests are
added to the standard registries. If a bean cannot be instantiated, the exception is printed
to stderr which is captured in <tenp directory>/install4j_error.| og and no further
error is displayed.

If any of those screens, actions or form components are selected by the user, the required
JAR files are deployed with the generated installers. This means that installing extensions
does not create an overhead for installers that do not use them.

233

E Command Line Tools

E.1Install4j Command Line Compiler

install4j's command line compiler i nst al | 4j c[. exe] can be found in the bi n directory
of your install4j installation. It operates on project files with extension . i nstal | 4j that
have been produced with the install4j IDE. (i nst al | 4j [. exe]). The install4j command
line compiler is invoked as follows:

install4jc [OPTIONS] [config file]

A quick help for all options is printed to the terminal when invoking

install4jc --help

In order to facilitate usage of install4jc with automated build processes, the destination
directory for the media files and the application version can be overridden with
command-line options. Furthermore, you can achieve internationalization and powerful
customizations with compiler variables [p. 68]. As a last resort, since the file format of
install4j's config files is xml-based, you can achieve arbitrary customizations by replacing
tokens or by applying XSLT stylesheets to the config file.

Options for the install4j command line compiler

The command line compiler has the following options:

* ~hor--help
Displays a quick help for all available options.

« -Vor--version
Displays the version of install4j in the following format:

install4j version X.Y, built on YYYY- M DD

+ =-vor--verbose
Enables verbose mode. In verbose mode, install4j prints out information about internal
processes. If you experience problems with install4j, make sure to include the verbose
terminal output with your bug report.

« -qor--quiet
Enables quiet mode. In quiet mode, no terminal output short of a fatal error will be
printed.

+ ~tor--test
Enables test mode. In test mode, no media files will be generated in the media file
directory.

« -ior--incremental

Enables incremental test execution. A test installer [p. 11] for the current platform is
updated with the latest screens, actions and form components and executed

234

immediately. Because the files are taken from a previously built media file, the
compilation is very fast.

-g or --debug

Create additional debug installers for each media file. For each built media file, a
directory named like the media file will be created in the media file output directory.
-p or —--preserve

Do not delete the temporary directory that the compiler uses for staging all files and
launchers.

-w or --fail-on-warning

If a warning is printed and this option is specified, the build will fail at the end. It does
not fail immediately, so you can see all warnings and fix them all at once. The exit code
in this case is 2 instead of 1 for an actual error and 0 for a successful execution.

-n or --faster

Disable LZMA and Pack200 compression. If you have enabled LZMA or Pack200
compression on the "General Settings->Media File Options” step, this allows you to create
development builds much faster, since LZMA and Pack200 are expensive compression
algorithms.

-u or --disable-signing

Disable code signing. If you have configured code signing [p. 148], this allows you to skip
code signing for a build. In that case you do not have to enter the passwords for the
key stores.

-j or --disable-bundling
Disable JRE bundling. If you have configured JRE bundles [p. 96] for any media files,

those bundles will not be used and the installer will be built without a contained JRE.
This speeds up the build and the installation.

--win-keystore-password=<password>

Set the Windows keystore password for the private key that is configured for code
signing [p. 148]. If code signing is enabled for Windows media files and this option is not
set, the command line compiler will prompt you for the password.

--mac-keystore-password=<password>
Set the macOS keystore password for the private key that is configured for code

signing [p. 148]. If code signing is enabled for macOS media files and this option is not
set, the command line compiler will prompt you for the password.

--disable-notarization

Disable notarization of macOS media files. If you have enabled notarization for code
signing [p. 148], this option allows you to skip notarization.

-L or --license=<key>

Update the license key on the command line and exit. This is useful if you have installed
install4j on a headless system and cannot start the GUI. <key> must be replaced with
your license key. If you use floating licenses, replace <key> with FLOAT: ser ver where
"server” is the host name or IP address where the floating license server is installed. For
floating licenses, you can choose the requested edition by passing - - wi ndows- edi ti on
or--multi-platformedition.

235

The config file that contains the license key has a platform-specific location:

« Windows: % OCALAPPDATA% i nst al | 4j \ v<versi on>\ confi g. xm
« macOS: ~/ Li brary/ Appl i cati on Support/install 4j/v<version>/config.xm

« Linux/Unix:. confi g/ i nstal | 4j / v<ver si on>/ confi g. xnl , the root directory may be
modified by the environment variable XDG_CONFI G_HOVE

Note that you can also set the environment variable | NSTALL4J_LI CENSE_KEY to set
the license key just for the current invocation.

-r <string> or --release=<string>

Override the application version defined in the "General Settings->Application Info" step.
<st ri ng>must be replaced with the actual version number. Version number components
can be alphanumeric and should be separated by dots, dashes or underscores.

-d <string> or --destination=<string>

Override the output directory for the generated mediafiles. <st ri ng>must be replaced
with the actual directory. If the directory contains spaces, you must enclose <stri ng>
in quotation marks.

-s or --build-selected

Only build the media files which have been selected in the install4j IDE. By default, all
media files are built regardless of the selection in the "Build" step.

-b <list> or --build-ids=<list>

Only build the media files with the specified IDs. <I i st > must be replaced with a comma
separated list of numeric IDs. The IDs for media files can be shown in the install4j IDE by
choosing Project->Show IDs from the main menu. Examples would be:

-b 2,59
--build-ids=2,5,9

-m or --media-types=c<type>[,<type>]...
Only build media files of the specified type. <t ype> must be replaced with a media file
type recognized by install4j. To see the list of supported media types, execute

install4jc --1ist-nedia-types
. Examples would be:

-m wi n32, macos, macoskol der
--nedi a-t ypes=wi n32, macos, nacosFol der

-D <name>=<value>[,<name>=<value>]...

Override a compiler variable [p. 68] with a different value. You can override multiple
variables by specifying a comma separated list of name value pairs. <name> must be
the name of a variable that has been defined on the "General Settings->Compiler
Variables" step. The value can be empty.

236

To override the platform-specific value for a variable add the prefix wi ndows: , macos:
or uni x: before the variable name. To override a variable for a specific media file
definition, you can add the prefix | D: to specify the ID of the media file. The IDs for media

files can be shown in the install4j IDE by choosing Project->Show IDs from the main
menu.
Examples would be:

- D MYVARI ABLE=15, OTHERVARI ABLE=
- D wi ndows: MYVARI ABLE=wi nVal ue, macos: MYVARI ABLE=nacVal ue
"-D MYVARI ABLE=15, OTHERVARI ABLE=t est , 8: MEDI ASETTI TLE=ny title"

A special system variable that you can override from the command line is sys.
| anguagel d. sys. | anguagel d must be set to the ISO code of the language displayed
in the language selection dialog and determines the principal installer language [p. 86]
for the project or the media file.

-f «file> or --var-file=«file>

Load variable definitions from a file. This option can be used together with the - Doption,
which takes precedence if a variable occurs twice. The file can contain

+ variable definitions
One variable definition per line of the form NAME=VALUE.

+ blanklines
blank lines will be ignored.

« comments
lines that start with # will be ignored.

The file is assumed to be encoded in the UTF-8 format. Should you require a different
encoding you can prefix the filename with CHARSET: , where CHARSET is replaced with
the name of the encoding.

Instead of a single variable file you can also specify a list of files separated by
semicolons. The optional charset prefix must be specified for each file separately.
Examples would be:

-f varfile.txt

--var-file=lI SO 8859-3:varfile.txt
--var-file=one. txt;two.txt

--var-file=l SO 8859-3: one. txt;| SO 8859-1:two. txt

-M or --list-media-types
Prints out a lists of supported media types for the - - nedi a- t ypes option and quits.

237

E.2 Command Line Tool For Pre-Created JRE Bundles

To automate the creation of pre-created JRE bundles [p. 96], you can use the command
line utility cr eat ebundl e[. exe] inthe bi n directory of your install4j installation. The bundle
creation tool is invoked as follows:

creat ebundl e [OPTIONS] [JRE hone directory]

The available options are:

-h, --help Di spl ays this help.
-0, --output Qutput directory, default is the current directory.
-V, --version=<VERSI ON> JRE version to be used in the bundle file nane.
The default is the version as reported by the JRE.
-i, --id Sets customid for bundle file nane.
The default is the enpty string.
-u, --unpacked Create bundl e with unpacked JAR files as required
for the macOS singl e bundl e archive.
-r, --jdk-rel ease Rel ease of JDK that provides the JDK tools. Only
=<RELEASE> required if the JRE does not contain the jlink tool

and if the JRE version is 9 or higher. This is not a
version nunber, but a release string as shown on the
"JRE Bundl es" step in the install4j |DE

-p, --jdk-provider-id JDK provider ID for the JDK that is specified with
=<| D> --jdk-rel ease. By default, "Adoptium' is used.
-m --add-nmodul es Add a conmma-separated |list of nodules to the JRE
bundl e. Can be passed nore than once.
-s, --add-nodul e-set Add a set of nodules to the JRE bundle, either a

=min|jre|lall|none mninmset, a typical JRE, all nodules, or none.
The default is "jre".
-j, --add-j nod=<pat h> Add a JMXD file to the JRE bundl e. Can be passed
nore than once.
-d, --add-jnod-dir Add a directory with JMOD files to the JRE bundl e.
=<pat h> Can be passed nore than once.

There are Ant [p. 255] and Gradle [p. 239] tasks as well as a Maven Mojo [p. 246] tasks that
you can use to call this command line application from your build system.

238

E.3 Using Install4j With Gradle

You can execute the install4j compiler from gradle D with the install4j Gradle plugin. To
make the Gradle plugin available to your build script, you have to apply the install4j Gradle

plugin:

pl ugi ns {
id "cominstall4j.gradle" version "X Y.Z"
}

If you do not want to use the Gradle plugin repository for this purpose, the Gradle plugin
is distributed in the file bi n/ gradl e. j ar.

The plugin has two parts: The global configuration with the top-level i nstal I 4 {...}
configuration block and tasks of type com i nstal | 4j . gradl e. | nstal | 4j Task.

The global configuration block can specify defaults for task properties that are applied
to all i nstall 4] tasks, for example, the optional install4j installation directory, if no
auto-provisioning is desired:

install4j {
instalIDir = file("/path/to/install4j_ hone")
}

Task parameters

The i nstal | 4) task supports the following parameters, many of which are explained in
greater detail for the command line compiler [p. 234].

Attribute Description Required Global

installDir The install4j installation directory. If No Yes
this parameter is omitted, an
install4j installation with the same
version as the used plugin will be
auto-provisioned. Auto-provisioned
install4j distributions will be saved
under <G adl e use home>/
install4j/dist.

On macOs, the installation directory
is the path of the application
bundle, for example

[Applications/install4j.app.
The actual command line compiler
is located under / Appl i cat i ons/

i nstal | 4j . app/ Cont ent s/

Resour ces/ app/ bi n/install 4j in
that case.

projectFile The install4j project file that should Yes No
be built.

0 https://gradle.org

239

https://gradle.org

Attribute

Description

Required

Global

variableFiles

Correspondstothe--var-file
command-line option. Specify the
list of variable files with variable
definitions.

No

No

variables

A map of variable definitions. These
definitions override compiler
variables [p. 68] in the project and
correspond to the - D
command-line option. Definitions
with vari abl e elements take
precedence before definitions in the
variable file referenced by the

vari abl eFi | es parameter.

The names of the variables must
have been defined on the "General
Settings->Compiler Variables” step.
The values can be of any type,
toString() will be called on each
value to convert the value to a

j ava. |l ang. Stri ng. For example:
[vari abl eOne: "One",

vari abl eTwo: 2].

No

No

release

Corresponds to the - - r el ease
command-line option. Enter a
version number like "3. 1. 2". Version
number components can be
alphanumeric and should be
separated by dots, dashes or
underscores.

No

No

destination

Correspondstothe- - destination
command-line option. Enter a
directory where the generated
media files should be placed.

No

No

buildlds

Corresponds to the - - bui | d-i ds
command-line option. Enter a list
of media file ids. The IDs for media
files can be shown in the install4j IDE
by choosing Project->Show IDs from
the main menu. For example: [12,
24, 36].

No

No

verbose

Corresponds to the - - ver bose
command-line option. Either t r ue
orfal se.

240

No, verbose
and quiet
cannot both
betrue

Yes

Attribute Description Required Global
quiet Corresponds to the - - qui et Yes
command-line option. Either t r ue
orfal se.
license Corresponds tothe --1i cense Yes
command-line option. If the license
has not been configured yet, you
can set the license key with this
attribute.
Note that you can also set the
environment variable
| NSTALL4J LI CENSE_KEY to set the
license key just for the current
invocation.
test Corresponds to the - - t est No, test and Yes
command-line option. Either t rue | incremental
orfal se. cannot both
betrue
incremental Correspondstothe--i ncremnent al Yes
command-line option. Either t r ue
orfal se.
debug Corresponds to the - - debug No Yes
command-line option. Either t r ue
orfal se.
preserve Corresponds to the - - preserve No Yes
command-line option. Either t r ue
orfal se.
faster Corresponds to the - - f ast er No Yes
command-line option. Either t r ue
orfal se.
disableSigning Corresponds to the No Yes
- - di sabl e- si gni ng command-line
option. Either t r ue or f al se.
disableBundling Corresponds to the No Yes
--di sabl e-bundl i ng
command-line option. Either t r ue
orfal se.
winKeystorePassword | Corresponds to the No Yes

--wW n- keyst or e- password
command-line option.

241

Attribute Description Required Global

mackKeystorePassword | Corresponds to the No Yes
--mac- keyst or e- password
command-line option.

disableNotarization | Corresponds to the No Yes
--di sabl e-notari zati on
command-line option.

buildSelected Corresponds to the No Yes
- - bui | d- sel ect edcommand-line
option. Eithert rue or f al se.

mediaTypes Correspondstothe - - medi a-t ypes No Yes
command-line option. Enter a list
of media types. To see the list of
supported media types, execute
installd4jc --1ist-nedia-types.

vmParameters A list of VM parameters for the No Yes
install4j command line compiler
process. For example:
["-DproxySet=true",

" - Dpr oxyHost =nypr oxy",

" - DproxyPort=1234",

" - DproxyAut h=true",

" - Dpr oxyAut hUser =bui | dServer",
" - Dpr oxyAut hPasswor d=

i g4zexwb8et "] sets an HTTP proxy
that is required for code signing.

The "Global" column shows if a parameter can also be specified in the global i nst al | 4]
{...} configuration block. Definitions in the task override global definitions.

Examples

Simple example:

install4) {
instalIDir = file("/opt/install4j")
}

task medi a(type: cominstall4j.gradle.lnstall4jTask) {
projectFile = file("myProject.install4j")
}

More complex example:

242

if (!'hasProperty("install4jHoneDir")) {

File propertiesFile =
file("${System get Property("user.hone")}/.gradle/gradle.properties")

t hrow new Runti neException("Specify install4jHoneDir in $propertiesFile")
}

bool ean dev = hasProperty("dev")

install4j {
instalIDir = file(install4j HoneDir)
faster = dev
di sabl eSi gni ng = dev
wi nKeyst or ePassword = "supersecret Wn"
nmacKeyst or ePassword = "supersecret Mac"

if (dev) {
medi aTypes = ["w ndows"]
}

}

task medi a(type: cominstall4j.gradle.lnstall4jTask) {
dependsOn "dist" // exanple task that prepares the distribution for install 4]

projectFile = "nyProject.install4j"
vari abl es = [mgj or Versi on: version.substring(0, 1), build: 1234]
variableFiles = ["varl.txt", "var2.txt"]

The "hello” sample project includes a Gradle build script that shows how to set up the
install4j task. To install the sample projects, invoke Project->Open Sample Project from
the install4j IDE. When you do this for the first time, the sample projects are copied to the
‘Documents” folder in your home directory.

In the sanpl es/ hel | o directory, execute

gradl e nedi a

to start the build. If you have not defined i nst al | 4 HomreDi r in gradl e. properties next
to bui | d. gr adl e, the build will fail with a corresponding error message.

Configuration cache

By default, the install4j tasks in the install4j Gradle plugin are never up to date and will run
on every execution. This is because the task would have to perform a dry run to get a list
of input files.

However, once you add file inputs to the install4j task, regular up-to-date checking will
be done. File inputs are specified with method calls on the i nput s property of a task:

task nmedi a(type: cominstall4j.gradle.lnstall4jTask) {
i nputs.dir(stagingbDir)
inputs.files(filel, file2)

Then the task will be up to date if the inputs of its properties and your custom inputs are
up to date with respect to the last task execution. In this way you can use the Gradle
configuration cache which is otherwise supported by the install4j task.

243

Creating JRE bundles

To create a JRE bundle from your Gradle build script, use the com i nstal | 4j . gradl e.
Cr eat eBundl eTask and and set its j avaHome property to the JRE that you want to create
a bundle for.

The Cr eat eBundl eTask invokes the createbundle command line executable [p. 238] in the
install4j installation and has the following properties:

Attribute Description Required

jovaHome The home directory of the JRE that should be Yes
bundled

outputDirectory Corresponds to the - - out put command-line No
option.

version Corresponds to the - - ver si on command-line No
option.

id Corresponds to the - - i d command-line option. No

unpacked Corresponds to the - - unpacked command-line No
option.

jdkRelease Corresponds to the - - j dk-rel ease No

command-line option.

jdkProviderld Corresponds to the - - j dk- provi der-id No
command-line option.

addModules Corresponds to the - - add- nodul es No
command-line option.

addModuleSet Corresponds to the - - add- nodul e- set No
command-line option.

jmodFiles Corresponds to the - - add- j nrod command-line No
option.
jmodDirs Corresponds to the - - add- j nod-di r No

command-line option.

vmParameters Like the vmParameters property of the No
I nstal |l 4j Task

Example:

244

task createBundl e(type: cominstall4j.gradle.CreateBundl eTask) {
javaHome = "/usr/lib/jvmjre-11/jre"
outputDirectory = "/hone/ buil d/ projects/ nmyProject/jreBundl es"

version = "11"

id="j3d"

jmodDirs = ["] npds"]

jmodFiles = ["one.jnod", "two.jnpd"]

245

E.4 Using Install4j With Maven

You can execute the install4j compiler from maven D with the install4j Maven plugin.

The install4j maven plugin is available from the following repository:

<pl ugi nReposi tori es>
<pl ugi nReposi t ory>
<i d>ej -t echnol ogi es</i d>
<url >https://maven. ej -t echnol ogi es. com r eposi t ory</url >
</ pl ugi nReposi t ory>
</ pl ugi nReposi tori es>

Compile Mojo parameters

The conpi | e Mojo supports the following parameters, many of which are explained in
greater detail for the command line compiler [p. 234].

Parameter Description Required

projectFile The install4j project file that should be built. Yes

User property of type j ava.io. Fil e:
install4j.projectFile

attach Attach generated installers. Uses the media file No
ID as the classifier.

User property of type bool ean: install4j.attach

buildlds Only build the media files with the specified IDs, No
separated by commas.

Corresponds to the - - bui | d-i ds
command-line option.

User property of type j ava. | ang. Stri ng:
install4j.buildids

buildSelected Only build the media files which have been No
selected in the install4j IDE.

Corresponds to the - - bui | d- sel ect ed
command-line option.

User property of type bool ean:
install4j.buildSelected

debug Create additional debug installers for each No
media file.

Corresponds to the - - debug command-line
option.

User property of type bool ean: install4j.debug

M https://maven.apache.org/

246

https://maven.apache.org/

Parameter Description Required
destination The output directory for the generated media No
files. By default, this is set to ${ pr oj ect . bui I d.
di rectory}/ nedi a, so this flag is always
passed to the install4j compiler.
Corresponds to the - - desti nati on
command-line option.
User property of type j ava.io. Fil e:
install4j.destination
disableBundling Disable JRE bundling. No
Corresponds to the - - di sabl e- bundl i ng
command-line option.
User property of type bool ean:
install4j.disableBundling
disableNotarization | Disable Notarization for macOS media files. No
Corresponds to the - - di sabl e-not ari zati on
command-line option.
User property of type bool ean:
install4j.disableNotarization
disableSigning Disable code signing. No
Corresponds to the - - di sabl e- si gni ng
command-line option.
User property of type bool ean:
install4j.disableSigning
failonWarning If a warning is printed and this option is No
specified, the build will fail at the end.
Corresponds to the - - f ai | - on- war ni ng
command-line option.
User property of type bool ean:
install4j.failoOnWarning
faster Disable LZMA and Pack200 compression. No
Corresponds to the - - f ast er command-line
option.
User property of type bool ean: install4j.faster
incremental Enables incremental test execution. The No

parameters "test” and "incremental’ cannot
both be true.

Corresponds to the - -i ncr enent al
command-line option.

247

Parameter

Description

Required

User property of type bool ean:
install4j.incremental

installDir

The location of the install4j installation. If not
specified, an install4j distribution with the same
version as this plugin will be auto-provisioned.
Auto-provisioned install4j distributions will be
saved under $HOVE/ . i nst al | 4j Di st .

User property of type j ava.io. Fil e:
install4j.home

No

jvmArguments

Pass JVM arguments to the install4j command
line compiler.

No

license

install4j license key. If the license has not been
configured yet, you can set the license key with
this attribute.

Corresponds to the - - 1 i cense command-line
option.

User property of type j ava. | ang. Stri ng:
install4j.license

No

macKeystorePassword

Set the macOS keystore password for the
private key that is configured for code signing.

Corresponds tothe - - nac- keyst or e- passwor d
command-line option.

User property of type j ava. | ang. Stri ng:
install4j.macKeystorePassword

No

mediaTypes

Only build media files of the specified types,
separated by commas.

Corresponds to the - - bui | d-i ds
command-line option.

User property of type j ava. | ang. Stri ng:
install4j.mediaTypes

No

preserve

Preserve the temporary staging directory.

Correspondstothe - - pr eser ve command-line
option.

User property of type bool ean: install4j.preserve

No

quiet

Enables quiet mode. The parameters "verbose”
and "quiet’ cannot both be true.

Corresponds to the - - qui et command-line
option.

User property of type bool ean: install4j.quiet

No

248

Parameter

Description

Required

release

Override the application version. By default, this
is set to ${ proj ect . ver si on}, so this flag is
always passed to the install4j compiler unless
you set it to the special string #pr oj ect .

Corresponds to the - - r el ease command-line
option.

User property of type j ava. | ang. Stri ng:
install4j.release

No

skip

Skip execution.

User property of type bool ean: install4j.skip

No

test

Enables test mode. In test mode, no media files
will be generated in the media file directory. The
parameters "test’ and “incremental’ cannot
both be true.

Corresponds to the - -t est command-line
option.

User property of type bool ean: install4j.test

No

variableFiles

Load variable definitions from files.

Correspondstothe--var-fil ecommand-line
option.

No

variables

Override compiler variables with different
values.

Corresponds to the - Dcommand-line option.

No

verbose

Enables verbose mode. The parameters
"verbose" and "quiet” cannot both be true.

Corresponds to the - - ver bose command-line
option.

User property of type bool ean: install4j.verbose

No

winKeystorePassword

Set the Windows keystore password for the
private key that is configured for code signing.

Corresponds to the - - wi n- keyst or e- passwor d
command-line option.

User property of type j ava. | ang. Stri ng:
install4j.winKeystorePassword

No

Example

A minimal example is:

249

<bui | d>
<pl ugi ns>
<pl ugi n>
<gr oupl d>com i nst al | 4j </ gr oupl d>
<artifactld>install4j-mven</artifactld>
<versi on>11. 0. 3</ ver si on>
<execut i ons>
<execution>
<i d>conpil e-install ers</id>
<phase>package</ phase>
<goal s>
<goal >conpi | e</ goal >
</ goal s>
<confi guration>

<proj ect Fi |l e>${proj ect. basedir}/src/min/installer/nyProject.install4j</projectFile>
</ configuration>
</ executi on>
</ executi ons>
</ pl ugi n>
</ pl ugi ns>
</ bui | d>

Compilation can be skipped by setting the i nst al | 4j . ski p property on the command
line:

mvn -Dinstall4j.skip

Using profiles for configuring parameters

If you do not wish to auto-provision an install4j installation, it is recommended to configure
the installation location in set t i ngs. xm with the i nst al | 4j . hone user property:

<profil es>
<profil e>
<i d>devel opnent </ i d>
<properties>
<install4j.home>/path/to/install4j</install4j.hone>
</ properties>
</profile>
</profiles>

<activeProfil es>
<activeProfil e>devel opnent </ acti veProfile>
</activeProfil es>

Further parameters that are recommended to be configured in setti ngs. xm are the

license key and the passwords for code signing. The license key configuration is only
required if it was not configured manually in advance for the user that is running the build.

Note that you can also set the environment variable | NSTALL4J_LI CENSE_KEY to set the
license key just for the current invocation.

250

<profil es>
<profile>
<i d>devel opnent </ i d>
<properties>
<install4j.license>CHANGEME</instal |l 4j.|icense>
<i nstal |l 4j . wi nKeyst or ePasswor d>SECRET</ i nst al | 4j . wi nKeyst or ePasswor d>
<i nstall 4j.macKeyst or ePasswor d>SECRET</ i nst al | 4] . macKeyst or ePasswor d>
</ properties>
</profil e>
</profil es>

<activeProfil es>
<acti veProfil e>devel opnent </ activeProfil e>
</activeProfil es>

Passing the build class path to the project

A common use case is the need to add all dependency JAR files from the build class path
to the distribution tree. To do that, you first have to execute the "build-classpath” goal of
the "maven-dependency-plugin” to set a property with the class path:

<pl ugi n>
<artifact!|d>maven- dependency-pl ugi n</artifactld>
<version>3. 1. 2</ ver si on>
<execut i ons>
<execution>
<phase>gener at e- sour ces</ phase>
<goal s>
<goal >bui | d- cl asspat h</ goal >
</ goal s>
<configuration>
<out put Property>ny. cl asspat h</ out put Property>
</ configuration>
</ execut i on>
</ executi ons>
</ pl ugi n>

In the configuration of the install4j plugin, you then pass this property as a compiler
variable:

<confi guration>

<vari abl es>
<ext er nal d assPat h>${ ny. cl asspat h} </ ext er nal d assPat h>
</vari abl es>
</ confi gurati on>

On the "Files->Define distribution tree” step in the install4j step, you can add entries of type
"Compiler variable” [p. 14]. This type of entry will split the variable value with a configurable
path separator and add all contained files. Continuing the above example, you have to
add a compiler variable entry with the compiler variable name "externalClassPath” and
the default path list separator ${conpi |l er: sys. pat hl i st Separator} to add all the
dependency JAR files to the selected location in the distribution tree.

Attaching media files

Media files compiled by install4j can be attached to the Maven project when the "attach”
parameter is set to t r ue.

25]

Attached files will be installed into the local repository and will also be deployed. The
classifier for each deployed media file is the media file ID.

Creating JRE bundles

To create a JRE bundle from your Maven build, use the cr eat ebundl e Mojo and set its
j avaHone property to the JRE that you want to create a bundie for.

The cr eat ebundl e Mojo supports the following parameters, many of which are explained
in greater detail for the command line compiler [p. 234].

Parameter

Description

Required

jovaHome

The home directory of the JRE that should be
bundled.

User property of type j ava.io. Fil e:
install4j.bundleJavaHome

Yes

addModuleSet

Add a set of modules to the JRE bundle, one of
"MIN", "JRE", "ALL", "NONE". Corresponds to the
- - add- nodul e- set command-line option.

User property of type com i nst al | 4j .
bui | dt ool s. Modul eSet : install4j.addModuleSet

No

addModules

Comma-separated list of modules to be added
to the JRE bundle. Corresponds to the
- - add- rodul es command-line option.

User property of type j ava. | ang. Stri ng:
install4j.addModules

No

Optional custom ID for the bundle. Corresponds
to the - -i d command-line option.

User property of type j ava. | ang. Stri ng:
install4j.bundleld

No

installDir

The location of the install4j installation. If not
specified, an install4j distribution with the same
version as this plugin will be auto-provisioned.
Auto-provisioned install4j distributions will be
saved under $HOVE/ . i nstal | 4j Di st .

User property of type j ava.io. Fil e:
install4j.home

No

jdkProviderld

JDK provider ID for the JDK that is specified with
j dkRel ease. Corresponds to the
- -j dk- provi der -i d command-line option.

User property of type j ava. | ang. Stri ng:
install4j.jdkProviderld

No

jdkRelease

Release of a JDK that provides the JDK tools.
Required only if the bundled JRE does not

252

No

Parameter

Description

Required

contain the jlink tool. Corresponds to the
- - j dk- r el ease command-line option.

User property of type j ava. | ang. Stri ng:
install4j.jdkRelease

jmodDirs

Directories with JMOD files to be added to the
JRE bundle. Corresponds to the - - add- j nod- di r
command-line option.

No

jmodFiles

JMOD files to be added to the JRE bundle.
Corresponds to the - - add- j mod command-line
option.

No

jvmArguments

Pass JVM arguments to the install4j command
line compiler.

No

outputDirectory

Output directory for the bundle. Corresponds
to the - - out put command-line option.

User property of type j ava.io. Fil e:
install4j.bundleOutputDir

No

skip

Skip execution.

User property of type bool ean: install4j.skip

No

unpacked

Create a bundle with unpacked JAR files,
required for macOS single bundle archives.
Corresponds to the - - unpacked command-line
option.

User property of type bool ean:
install4j.bundleUnpacked

No

version

JRE version to be used, if different from the
detected version. Corresponds to the - - ver si on
command-line option.

User property of type j ava. | ang. Stri ng:
install4j.bundleVersion

No

An example that shows the usage of this Mojo is:

253

<bui | d>
<pl ugi ns>
<pl ugi n>
<gr oupl d>com i nst al | 4j </ gr oupl d>
<artifactld>install4j-mven</artifactld>
<versi on>11. 0. 3</ ver si on>
<execut i ons>
<execution>
<i d>create-jre-bundl e</id>
<phase>package</ phase>
<goal s>
<goal >cr eat ebundl| e</ goal >
</ goal s>
<confi guration>
<j avaHome>/usr/lib/jvmjre-11/jre</javaHone>
<out put Di r ect or y>/ horre/ bui | d/ pr oj ect s/ myProj ect/j reBundl es</ out put Di r ect or y>

<j nodFi | es>
<par anpone. j nod</ <par an
<par anpt wo. j nod</ <par an®
</ j modFi | es>
</ confi guration>
</ execut i on>
</ execut i ons>
</ pl ugi n>
</ pl ugi ns>
</ bui | d>

254

E.5 Using Install4j With Ant

To integrate install4j with your Ant script O Use the I nstal | 4JTask that is provided in
$I NSTALL4J_HOVE/ bi n/ ant . j ar and set theCreateBundleTask pr oj ect Fi | e parameter
to the install4j project file that you want to build.

To makethei nst al | 4] task available to Ant, you must first insert at askdef element that
tells Ant where to find the task definition. Here is an example of using the task in an Ant
build file:

<t askdef nanme="install4j"
cl assnanme="cominstall 4j.|nstall4JTask"
cl asspat h="C.\ Program Fil es\install4j\bin\ant.jar"/>

<target nane="nedi a">
<install4j projectFile="nyapp.install4j"/>
</target>

On macOs, the ant . j ar file is inside the application bundle, for the default application
directory the full pathis/ Appl i cati ons/instal | 4j . app/ Cont ent s/ Resour ces/ app/ bi n/
ant.jar

Thet askdef definition must occur only once per Ant build file and can appear anywhere
on the top level below the pr oj ect element.

Note that it is possible to copy the ant.j ar archive to a location outside the install4j
installation directory. In that case, an install4j installation with the same version as the
ant.jar file will be auto-provisioned. Auto-provisioned install4j distributions will be saved
under $HOVE/ . i nst al | 4j Di st.

Task parameters

Thei nstal | 4] task supports the following parameters:

Attribute Description Required
projectFile The install4j project file that should be built. Yes
verbose Corresponds to the - - ver bose command-line | No, verbose

option. Eithertrue orf al se. and quiet
cannot both be
quiet Corresponds to the - - qui et command-line true

option. Eithertrue or f al se.

failonWarning Corresponds to the - -f ai | - on-war ni ng
command-line option. Either t rue or f al se.

license Corresponds to the - - | i cense command-line Yes
option. If the license has not been configured
yet, you can set the license key with this
attribute.

Note that you can also set the environment
variable | NSTALL4J LI CENSE_KEY to set the
license key just for the current invocation.

0 https://ant.apache.org

255

https://ant.apache.org

Attribute Description Required

test Corresponds to the - -t est command-line No, test and

option. Either t rue or f al se. incremental
cannot both be

incremental Corresponds to the - - i ncr enent al true
command-line option. Either t rue or f al se.

debug Corresponds to the - - debug command-line No
option. Eithertrue or f al se.

preserve Correspondstothe- - pr eser ve command-line No
option. Eithertrue orf al se.

faster Corresponds to the - - f ast er command-line No
option. Eithert rue or f al se.

disableSigning Corresponds to the - - di sabl e-si gni ng No
command-line option. Either t rue or f al se.

winKeystorePassword | Corresponds to the - - wi n- keyst or e- passwor d No
command-line option.

mackKeystorePassword | Corresponds to the - - mac- keyst or e- passwor d No
command-line option.

disableNotarization | Corresponds to the - - di sabl e-not ari zati on No
command-line option.

release Corresponds to the - - r el ease command-line No
option. Enter a version number like "3. 1. 2".
Version number components can be
alphanumeric and should be separated by dots,
dashes or underscores.

destination Corresponds to the - - desti nati on No
command-line option. Enter a directory where
the generated media files should be placed.

buildSelected Corresponds to the - - bui | d- sel ect ed No
command-line option. Either t rue or f al se.

buildlds Corresponds to the - - bui | d-i ds No
command-line option. Enter a list of media file
ids. The IDs for media files can be shown in the
install4j IDE by choosing Project->Show IDs from
the main menu.

mediaTypes Corresponds to the - - nedi a-t ypes No

command-line option. Enter a list of media
types. To see the list of supported media types,
executeinstall4jc --1ist-nedia-types.

256

Contained elements

« Thel nstal | 4JTask cancontainvari abl e elements. These elements override compiler
variables [p. 68] in the project and correspond to the - Dcommand-line option. Definitions
withvar i abl e elements take precedence before definitions in the variable file referenced
by the vari abl ef i | e parameter.

The vari abl e element supports the following parameters:

Attribute Description Required

name The name of the variable. This must be the Yes
name of a variable that has been defined
on the "General Settings->Compiler
Variables” step.

value The value for the variable. The value may Yes
be empty.
mediaFileld The ID of the media file for which the No

variable should be overridden. The IDs for
media files can be shown in the install4j
IDE by choosing Project->Show IDs from
the main menu.

Example:

<install4j projectFile="nyapp.install4j">

<vari abl e name="MY_VARI ABLE" val ue="15"/>

<vari abl e name="OTHER_VARI ABLE" val ue="test" nedi aFilel d="8"/>
</install4j>

- Theinstall 4] task can contain vari abl ef i | e elements. These elements read text
files containing compiler variables definitions. They correspond to the --var-file
command-line option

Thevari abl ef i | e element supports the following parameters:

Attribute Description Required

file The path of the variable Yes
file.

- The install 4j task can contain vnPar anet er elements. These elements set VM
parameters for the install4j command line compiler process.

The vPar anet er element supports the following parameters:

Attribute Description Required

value The value of the VM parameter. Yes

Example for setting an HTTP proxy (an internet connection is required for Windows code
signing):

257

<install4j projectFile="nyapp.install4j" w nKeystorePassword="Kajjs7sgLg22">
<vnPar anet er val ue="- DproxySet =true"/>
<vnPar amet er val ue="- Dpr oxyHost =mypr oxy"/ >
<vnPar anet er val ue="-DproxyPort=1234"/>
<vnPar anet er val ue="- Dpr oxyAut h=t rue"/>
<vnPar amet er val ue="- Dpr oxyAut hUser =bui | dServer"/ >
<vnPar anet er val ue="- Dpr oxyAut hPasswor d=i g4zexwb8et "/ >
</install4j>

Complete example

The "hello” sample project includes an Ant build script that shows how to set up the install4j
task. To install the sample projects, invoke Project->Open Sample Project from the install4;j
IDE. When you do this for the first time, the sample projects are copied to the "Documents”
folder in your home directory.

In the sanpl es/ hel | o directory, execute

ant nedi a

to start the build. If you have not defined i nst al | 4j HomeDi r in bui | d. x,m , the build will
fail with a corresponding error message.

Creating JRE bundles

To create a JRE bundle from your Ant build script, use the Creat eBundl eTask that is
provided in $| NSTALL4J_HOVE/ bi n/ ant . j ar and set the j avaHone parameter to the JRE
that you want to create a bundle for.

The Cr eat eBundl eTask invokes the createbundle command line executable [p. 238] in the
install4jinstallation. Just like for the | nst al | 4JTask above, at askdef elementis required:

<t askdef nanme="creat ebundl e"
cl assnanme="com i nst al | 4j . Cr eat eBundl eTask"
cl asspath="C:\ Program Fil es\instal | 4j\bin\ant.jar"/>

<target nanme="nedi a">

<cr eat ebundl e j avaHome="c:\ Program Fi | es\ Java\jre"/>
</target>

The Cr eat eBundl eTask task supports the following parameters:

Attribute Description Required

jovaHome The home directory of the JRE that should be Yes
bundled

outputDirectory Corresponds to the - - out put command-line No
option.

version Corresponds to the - - ver si on command-line No
option.

id Corresponds to the - - i d command-line option. No

258

Attribute Description Required

unpacked Corresponds to the - - unpacked command-line No
option.

jdkRelease Corresponds to the - - j dk-rel ease No
command-line option.

jdkProviderld Corresponds to the - - j dk- provi der-id No
command-line option.

addModules Corresponds to the - - add- nodul es No
command-line option.

addModuleSet Corresponds to the - - add- nodul e- set No

command-line option.

The Cr eat eBundl eTask task can contain viPar anet er elements like the | nst al | 4JTask
as well as j nod elements with the following parameters:

Attribute Description Required
file Corresponds to the - - add- j rod command-line | Either file or dir
option. must be set,
but not both
dir Corresponds to the - - add- j nod- di r
command-line option.
Example:

<creat ebundl e javaHome="/usr/lib/jvmjre-11/jre"
out put Di rect ory="/hone/ bui | d/ proj ect s/ nyProj ect/jreBundl es"
version="11"
id="j 3d">
<j nod di r="/hon®e/ bui |l d/ proj ects/ myProj ect/jnods">
<jnod file="/hone/buil d/projects/ myProject/otherJnods/one.jnod">
<jnmod file="/hone/buil d/ projects/ nmyProject/otherJnods/two.jnod">

</ cr eat ebundl| e>

259

	Introduction
	Concepts
	Projects
	Building projects
	Distributing files
	File sets and components
	Screens and actions
	Scripts
	Generated launchers
	Form screens
	Layout groups
	Styles
	Look & feel
	Variables
	Localization
	VM parameters
	JRE bundles
	Services
	Elevation of privileges
	Merged projects
	Auto-update functionality
	Checking for updates
	Background auto-updates
	Version numbers
	Media files
	Data files
	Code signing
	Apple App Store Submission
	Styling of DMGs on macOS

	Configuring installer beans
	Screens & actions step
	Custom code
	Configuring applications
	Configuring screens
	Configuring actions
	Configuring groups
	Configuring form components
	Configuring layout groups
	Configuring styles

	Generated installers
	Installer modes
	Command-line options
	Response files
	JRE search
	HTTP requests
	Updates
	Error handling

	API
	Installer API
	Launcher API
	Extensions

	Command line tools
	Command line compiler
	Pre-Created JRE Bundles
	Gradle plugin
	Maven plugin
	Ant task

